JPS63195111A - Synthesis of fluorine mica clay - Google Patents

Synthesis of fluorine mica clay

Info

Publication number
JPS63195111A
JPS63195111A JP2596587A JP2596587A JPS63195111A JP S63195111 A JPS63195111 A JP S63195111A JP 2596587 A JP2596587 A JP 2596587A JP 2596587 A JP2596587 A JP 2596587A JP S63195111 A JPS63195111 A JP S63195111A
Authority
JP
Japan
Prior art keywords
water
soluble
precipitate
raw material
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2596587A
Other languages
Japanese (ja)
Other versions
JPH0639324B2 (en
Inventor
Mitsuru Suda
充 須田
Kunio Otsuka
大塚 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP2596587A priority Critical patent/JPH0639324B2/en
Publication of JPS63195111A publication Critical patent/JPS63195111A/en
Publication of JPH0639324B2 publication Critical patent/JPH0639324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to produce a product having a small amount of impurities and excellent uniformity in melting method, by using precipitate obtained by reaction between aqueous solutions or organic solvent solutions containing constituent elements of fluorine mica clay. CONSTITUTION:One or more substances which are soluble in water or organic solvents and contain one or more of an alkaline (earth) metal, Al, iron, Co, Ni, Mn, Zn, copper, Cr, Si, Ge and B and one or more fluorine compounds which are soluble in water or the organic solvents are dissolved in water or an organic solvent. Two or more raw material solutions are prepared, blended and reacted to form slightly soluble precipitate, which is separated and dried. The dried precipitate is heated at 400-1,400 deg.C to give a product shown by the formula. In the formula, X is one or more cations of alkaline (earth) metal; Y is one or more cations of Mg, Al, iron, Co, Ni, Mn, Zn, copper Cr and Li; Z is cation of Si or Ge or cation wherein Si or Ge is partially replaced with Al, iron or B; number of coordination number of X, Y and Z are 12, 6 and 4, respectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気絶縁材料、無機ゾル、無機フィルム、無
機多孔体、マシナブルセラミックス、イオン交換体、触
媒、吸着材、担体、フィラー等に適用される非膨潤性又
は膨部性のふっ青雲母系粘土の合成方法に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to electrical insulating materials, inorganic sols, inorganic films, inorganic porous bodies, machinable ceramics, ion exchangers, catalysts, adsorbents, carriers, fillers, etc. The present invention relates to an applicable method for synthesizing non-swelling or swelling fluoromite-based clay.

[従来の技術] 従来、この種の合成方法として、 SiO2,MgO。[Conventional technology] Conventionally, this type of synthesis method includes SiO2, MgO.

MgFz 、 Kt COz、  Ma2SiFs 、
 Al2O3等の固体原料を所定の組成になるように配
合し、゛これらを混合、粉砕してつくられた調合原料を
1400℃〜1500℃に加熱して溶融した後、冷却し
てふっ素雲母系粘土結晶を析出させる溶融法がある。こ
の溶融法は加熱方式により、外熱溶融法と内熱溶融法の
二つに分けられる。
MgFz, KtCOz, Ma2SiFs,
Solid raw materials such as Al2O3 are blended to have a predetermined composition, and the blended raw materials made by mixing and pulverizing these are heated to 1400°C to 1500°C and melted, and then cooled to form fluorinated mica clay. There is a melting method that precipitates crystals. This melting method is divided into two types, an external heat melting method and an internal heat melting method, depending on the heating method.

外熱溶融法は調合原料を入れたるつぼを炉内に設置して
、このるつぼを外側から電気、ガス等で加熱する方法で
ある。また内熱溶融法は、例えば特公昭57−8784
号公報に示されるように、黒鉛電極に接続した黒鉛棒が
差込まれた炉内に、黒鉛棒全体を覆うように調合原料を
入れ、黒鉛電極に通電して黒鉛棒を発熱させ、黒鉛棒の
周囲の原料を溶融させた後、溶融原料自身も発熱体とな
ってその周囲の原料の溶融を促進していく方法である。
The external heat melting method is a method in which a crucible containing prepared raw materials is placed in a furnace and the crucible is heated from the outside with electricity, gas, etc. In addition, the internal heat melting method is used, for example, in Japanese Patent Publication No. 57-8784.
As shown in the publication, the blended raw materials are placed in a furnace into which a graphite rod connected to a graphite electrode is inserted so as to cover the entire graphite rod, electricity is applied to the graphite electrode to make the graphite rod generate heat, and the graphite rod is heated. In this method, after melting the raw materials around the molten raw material, the molten raw material itself also becomes a heating element to promote the melting of the surrounding raw materials.

現在は熱効率がよいことから工業的には殆ど内熱溶融法
が採用されている。
Currently, the internal thermal melting method is mostly adopted industrially because of its high thermal efficiency.

[発明が解決しようとする問題点] しかし、に記溶融法は外熱法及び内熱法とも調合原料の
溶融を容易にするために配合した固体原料をボールミル
等で十分に混合、粉砕する必要があり、また加熱温度も
1400°C以−ヒの高温を要し、エネルギコストが高
い欠点があった。更に溶融中に溶融物からのふっ素の揮
散が起こり、溶融物の均質性が低下し、その結果、種々
の不純物が共析したり、得られる結晶の形状や粒子径が
不揃いとなる欠点があった。
[Problems to be Solved by the Invention] However, in both the external heating method and the internal heating method, the blended solid raw materials must be thoroughly mixed and pulverized using a ball mill, etc. in order to facilitate the melting of the blended raw materials. Moreover, the heating temperature required was as high as 1400° C. or higher, and the energy cost was high. Furthermore, fluorine volatilizes from the melt during melting, reducing the homogeneity of the melt.As a result, various impurities may eutectoid, and the resulting crystals may have irregular shapes and particle sizes. Ta.

また内熱溶融法は、単一の炉において調合原料の投入工
程、加熱工程、及び溶融物取出し工程を繰返すバッチ方
式であるため、連続生産が不可能なうえ、調合原料の投
入時と溶融物取出し時には溶融物周囲の固い瀕溶層を電
気ドリル等で破砕する必要があっ゛た。更に内熱溶融法
は、溶融物中の共析不純物や溶融物取出し時に混入する
未溶融の調合原料を除去しなければならず、煩わしい作
業の多いしかも生産効率の悪い問題点があった。
In addition, the internal heat melting method is a batch method that repeats the process of inputting raw materials, heating process, and taking out the melt in a single furnace, which makes continuous production impossible. When taking out the molten material, it was necessary to break up the hard, near-molten layer around the molten material using an electric drill or the like. Furthermore, the internal heat melting method requires the removal of eutectoid impurities in the melt and unmelted raw materials mixed in when the melt is taken out, which poses the problem of a lot of troublesome work and poor production efficiency.

本発明の目的は、不純物が少なく均質性に優れたふっ青
雲母系粘土を、簡単なプロセスで効率良くかつ少ないエ
ネルギ消費で安価に合成することができるふっ青雲母系
粘土の合成方法を提供することにある。
An object of the present invention is to provide a method for synthesizing fluobionite clay that has few impurities and has excellent homogeneity, which can be synthesized efficiently through a simple process, with low energy consumption, and at low cost. be.

[問題点を解決するための手段] 本発明者らは、上述した従来のふっ青雲母系粘土の合成
方法の種々の欠点を解消するために鋭意研究を重ねた結
果、出発原料として固体原料を使用せず、ふっ青雲母系
粘土の構成元素を含む水溶液又は有機溶媒溶液を調製し
て、これら溶液間の反応により生じる難溶性の沈殿物を
分離、乾燥すれば、簡単にしかも非常に微細で均質性に
優れた調合原料を得ることができ、その後の加熱処理温
度も調合原料の溶融点以下の低い温度にすることができ
る点に着目し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of extensive research to eliminate the various drawbacks of the above-mentioned conventional fluobionite clay synthesis method, the inventors of the present invention have developed the method of using a solid raw material as a starting material. By preparing an aqueous solution or an organic solvent solution containing the constituent elements of fluobionite clay, separating and drying the hardly soluble precipitate produced by the reaction between these solutions, it is easy to obtain extremely fine and homogeneous material. The present invention has been completed based on the fact that it is possible to obtain a blended raw material with excellent properties, and the subsequent heat treatment temperature can be lowered to a temperature lower than the melting point of the blended raw material.

すなわち、本発明は、水又は有機溶媒に可溶であってか
つアルカリ金属、アルカリ土類金属。
That is, the present invention provides alkali metals and alkaline earth metals that are soluble in water or organic solvents.

Al、 Fe、 Go、 Ni、 Mn、 Zn、 C
u、 Cr、 Si、 Ge又はBから選ばれた元素を
1又は2以上含む1又は2以上の物質と、水又は有機溶
媒に可溶なl又は2以上のF化合物とを水又は有機溶媒
に溶解して2以上の原ネ4溶液を調製する調製工程と;
前記原料溶液を混合かつ反応させて難溶性の沈殿物を生
成する混合反応工程と;前記沈殿物を前記原料溶液から
分離して乾燥する乾燥工程と;乾燥した沈殿物を 40
0°C〜1400℃の温度で加熱することにより Xc+、t−s、o   Y2  〜3  Z4  0
to   F2      ””1 (1)なるふっ青
雲母系粘土を得る加熱工程とを含むふっ青雲母系粘土の
合成方法である。
Al, Fe, Go, Ni, Mn, Zn, C
One or more substances containing one or more elements selected from u, Cr, Si, Ge, or B and one or more F compounds soluble in water or an organic solvent are added to water or an organic solvent. a preparation step of preparing two or more raw material 4 solutions by dissolving;
a mixing reaction step of mixing and reacting the raw material solutions to produce a hardly soluble precipitate; a drying step of separating the precipitate from the raw material solution and drying it; and a drying step of drying the dried precipitate.
By heating at a temperature of 0°C to 1400°C, Xc+, t-s, o Y2 ~3 Z4 0
to F2 ""1 (1) A method for synthesizing a fluobionite clay, which includes a heating step to obtain a fluobionite clay.

前記(1)式において、Xはアルカリ金属又はアルカリ
土類金属の中から選ばれたl又は2以上の金属陽イオン
;YはMg、 Al、 Fe、 Co、 Xi、 Mn
In the above formula (1), X is one or more metal cations selected from alkali metals or alkaline earth metals; Y is Mg, Al, Fe, Co, Xi, Mn
.

Zn、 Cu、 Cr、又はLiから選ばれたl又は2
以上の金属陽イオン;ZはSiもしくはGeの陽イオン
、又はSiもしくはGeの一部をAl、 Fe、又はB
で置換した陽イオンであり;Xは配位数12、Yは配位
数8、Zは配位数4である。
l or 2 selected from Zn, Cu, Cr, or Li
The above metal cation; Z is a Si or Ge cation, or a part of Si or Ge is Al, Fe, or B
X has a coordination number of 12, Y has a coordination number of 8, and Z has a coordination number of 4.

本発明のふっ素置母系粘土の結晶構造は、上記Zと酸素
からなる四面体層2枚の間にY、酸素、及びFからなる
八面体層が挾まれた形の三層格子が積重なった構造であ
り、この三層格子中の陽電荷不足を補償する形でXが三
層格子と三層格子の間に居間イオンとして配位している
The crystal structure of the fluorine matrix clay of the present invention is a stacked three-layer lattice in which an octahedral layer consisting of Y, oxygen, and F is sandwiched between two tetrahedral layers consisting of Z and oxygen. In order to compensate for the lack of positive charge in this three-layer lattice, X is coordinated as a living room ion between the three-layer lattice.

Xは、アルカリ金属イオン又はアルカリ土類金属イオン
であるが、アルカリ金属イオン、特にLi”、Na”、
 K+が一般的な陽イオンである。
X is an alkali metal ion or an alkaline earth metal ion, but alkali metal ions, especially Li'', Na'',
K+ is a common cation.

Yは、F4g24.  A13+、  Fe34;  
Fe24.  Co24.  pij2+。
Y is F4g24. A13+, Fe34;
Fe24. Co24. pij2+.

M n ”+  Z n ”+  Cu ”*  Cr
 ”又はLi+であるが、特にMg”、  AI3+又
はLi+が一般的な陽イオンである。
M n ” + Z n ” + Cu ” * Cr
"or Li+, but especially Mg", AI3+ or Li+ are common cations.

Zは、Si’+もしくはGe’+の陽イオン、−ヌはS
i″もしくはGe’+の一部をA13+、Fes+、又
はB3÷テat換した陽イオンであるが、特にSi4+
又はAI”“が一般的な陽イオンである。
Z is Si'+ or Ge'+ cation, -nu is S
It is a cation obtained by replacing a part of i'' or Ge'+ with A13+, Fes+, or B3÷teat, but especially Si4+
or AI"" is a common cation.

上記X、 Y、及びZの組合せを変えることにより多種
類の同型置換体が得られる他、陽電荷不足の位置や層間
イオンであるXの種類により、三層格子と三層格子の間
に水を引入れる性質、すなわち膨潤性や、Xが他の陽イ
オンと交換するイオン交換性が付与されるようになる。
By changing the combinations of X, Y, and Z mentioned above, many types of isomorphic substituents can be obtained. In addition, depending on the position of insufficient positive charge and the type of The property of attracting X, that is, swelling property, and the ion exchange property of exchanging X with other cations are imparted.

陽電荷不足の位置が三層格子の中央の八面体層、すなわ
ちYにある場合や、Xがイオン半径が小さくかつ水和性
の強いLi+やNa+である場合には膨潤性やイオン交
換性が付与されやすい。
If the position of insufficient positive charge is in the central octahedral layer of the three-layer lattice, that is, Y, or if X is Li+ or Na+, which has a small ionic radius and strong hydration, the swelling and ion exchange properties will be poor. easily granted.

このような膨潤性ふっ素置母系粘土としては、例えば、
NaNgz、s 5i4011T F2 (ナトリウム
型四けい素ふっ青雲母) 、 NaMgL 1SiJ 
1o F2 (ナトリウムテニオライト) 、 Lil
ziMg@zzLi1/3Si40toF2(リチウム
へクトライト)等が挙げられる。また非膨潤性ふっ素置
11系粘土としては1例えばKMgtS +s A I
 O1゜F2(ふっ素金雲1) 、 KMg2LiSi
+0toF2(テニオライト)、又はKMgt、s 5
i401o F2 (四けい素ふっ青雲11 )等が挙
げられる。
Examples of such swellable fluorine matrix clays include:
NaNgz, s 5i4011T F2 (sodium type tetrasilicon fluoromite), NaMgL 1SiJ
1o F2 (sodium taeniolite), Lil
Examples include ziMg@zzLi1/3Si40toF2 (lithium hectorite). In addition, examples of non-swellable fluorinated 11-based clays include 1, for example, KMgtS +s A I
O1°F2 (fluorine gold cloud 1), KMg2LiSi
+0toF2 (teniolite) or KMgt, s 5
Examples include i401o F2 (tetrasilicon fluorine cloud 11).

く出発原料と原料溶液調製工程〉 本発明の出発原料は、水又は有機溶媒に可溶であってか
つアルカリ金属、アルカリ土類金属。
Starting materials and raw material solution preparation process> The starting materials of the present invention are soluble in water or organic solvents, and are alkali metals and alkaline earth metals.

Al、 Fe、 Co、旧、 Mn、 Zn、 Cu、
 Cr、 Si、 Ge又はBから選ばれた元素を1又
は2以上含む物質及び水又は有機溶媒に可溶なふっ素化
合物であって、前記物質及び前記F化合物を液相反応さ
せたときに難溶性の沈殿物を生成するものである。
Al, Fe, Co, old, Mn, Zn, Cu,
A substance containing one or more elements selected from Cr, Si, Ge, or B, and a fluorine compound soluble in water or an organic solvent, which is poorly soluble when the substance and the F compound are subjected to a liquid phase reaction. This produces a precipitate.

このために、前記物質及び前記F化合物は、加水分解に
より難溶性の水酸化物を形成するか、又は前記物質及び
前記F化合物が互いに反応して難溶性の化合物を形成す
る性質のものをそれぞれ選ぶことが望ましい。
For this purpose, the substance and the F compound each have the property of forming a poorly soluble hydroxide upon hydrolysis, or that the substance and the F compound react with each other to form a sparingly soluble compound. It is desirable to choose.

有機溶媒は溶解する前記物質又は前記F化合物の種類に
応じて選定される。有機溶媒の具体例としてはアルコー
ル類、ケトン類、エーテル類、ベンゼン等が挙げられる
が、水と混ざり合うこと並びに経済的な観点からアルコ
ール類が特に好ましい。
The organic solvent is selected depending on the type of the substance or F compound to be dissolved. Specific examples of the organic solvent include alcohols, ketones, ethers, benzene, etc., but alcohols are particularly preferred from the viewpoint of being miscible with water and from the economic standpoint.

前記物質を前記(1)式のX、 Y及びZに関連させて
説明する。
The substance will be explained in relation to X, Y, and Z in the formula (1).

前記(1)式のXを含む水に可溶なアルカリ金属化合物
としては、例えばNa化合物を挙げれば、Na0)1.
 Na2CO3,NaNO3,NaF、 Na)lF2
等の無機化合物の他、CH3C0ONa 、 HCOO
Na 、 NazCto 4等の有機化合物が挙げられ
る。また有機溶媒に可溶なNa化合物とその有機溶媒の
組合せの具体例としては、Na0CHt−メタノール、
NaCHxC0(JCOCH3−アセトン等が挙げられ
る。これらのNa化合物はいずれも他の化合物1例えば
Si化合物やF化合物と反応して難溶性のけいふり化ナ
トリウムを生じる。また前記Na化合物の中でNaOH
、Na2COsの水溶液はアルカリ性を呈し、他の成分
、例えばSi、 AI或いはM、化合物の加水分解を促
進する効果があるので好ましい。NaOCH3は加水分
解によりNaOHとメタノールに分解してアルカリ性を
皇するため、上述と同じ理由により好ましい。
Examples of water-soluble alkali metal compounds containing X in formula (1) include Na compounds, such as Na0)1.
Na2CO3, NaNO3, NaF, Na)lF2
In addition to inorganic compounds such as CH3COONa, HCOO
Organic compounds such as Na and NazCto 4 can be mentioned. Further, specific examples of combinations of Na compounds soluble in organic solvents and their organic solvents include Na0CHt-methanol,
Examples include NaCHxC0 (JCOCH3-acetone, etc.). All of these Na compounds react with other compounds such as Si compounds and F compounds to produce poorly soluble sodium silicate. Also, among the Na compounds, NaOH
, Na2COs is preferable because it exhibits alkalinity and has the effect of promoting hydrolysis of other components, such as Si, AI or M, and the compound. NaOCH3 is preferable for the same reason as mentioned above, since it decomposes into NaOH and methanol by hydrolysis and becomes alkaline.

前記(1)式のYを含む水に可溶なアルカリ土類金属化
合物としては、例えばMg化合物を挙げれば、Ng(N
(h’h、 MgCl2. MgSO4等の無aJnm
の他、Mg(CHtCOOh、  Mg(HGOO)2
等の有機塩類が挙げられる。また有機溶媒に可溶なMg
化合物とその有機溶媒の組合せの具体例としては)Ig
(OCH3)2−メタノール、MgCCfh C;0C
HCOCHs) !−アセトン等が挙げられる。これら
のMg化合物はいずれも、加水分解により難溶性の水酸
化マグネシウムを形成し、 またF化合物と反応して難
溶性のふっ化マグネシウムを形成する。とりわけ、Mg
(HCI3)2はアルカリの添加なしに加水分解が起き
るので好ましい。
Examples of water-soluble alkaline earth metal compounds containing Y of formula (1) include Mg compounds, such as Ng(N
(h'h, MgCl2. No aJnm such as MgSO4
In addition to Mg(CHtCOOh, Mg(HGOO)2
Organic salts such as Also, Mg soluble in organic solvents
Specific examples of combinations of compounds and their organic solvents include) Ig
(OCH3)2-methanol, MgCCfh C; 0C
HCOCHs)! -Acetone etc. All of these Mg compounds form sparingly soluble magnesium hydroxide by hydrolysis, and also form sparingly soluble magnesium fluoride by reacting with the F compound. In particular, Mg
(HCI3)2 is preferred because hydrolysis occurs without the addition of alkali.

前記(1)式のZを含む化合物の中で、例えばSj化合
物は水溶液では不安定で、直ちに加水分解されやすい化
合物であるため、有機溶媒の溶液として使用することが
望ましい。
Among the compounds containing Z in the formula (1), for example, the Sj compound is unstable in an aqueous solution and is easily hydrolyzed immediately, so it is desirable to use it as a solution in an organic solvent.

有機溶媒に可溶なSi化合物とその有機溶媒の組合せの
具体例としてはS 1cI4−ベンゼン、(CHI )
2SiCh−1チルエーテル、S i (OC2HS 
)4−エタノール、5i(C)l*cOcHcOcHz
)scI−HCI−アセトン等が挙げられる。なお、有
機けい素化合物の中には5i(OC2HS )4のよう
にそれ自身液状のものも多いが。
Specific examples of combinations of Si compounds soluble in organic solvents and organic solvents include S1cI4-benzene, (CHI)
2SiCh-1 thyl ether, Si (OC2HS
)4-Ethanol, 5i(C)l*cOcHcOcHz
) scI-HCI-acetone and the like. Note that among organosilicon compounds, many of them are liquid themselves, such as 5i(OC2HS)4.

この場合、有機溶媒に溶解することなく、そのまま原料
溶液として使えるのはいうまでもない、前記Si化合物
の中でS直OC2Ha )4が緻密な沈殿を形成させる
ため、好ましい。
In this case, it goes without saying that it can be used as a raw material solution without being dissolved in an organic solvent, and among the Si compounds, SOC2Ha)4 is preferred because it forms a dense precipitate.

木に可溶なふっ素(F)化合物の具体例としてはHF 
、 NH4F 、 NaHF2.  NH4HF2. 
NaF等が挙げられる。
A specific example of a fluorine (F) compound that is soluble in wood is HF.
, NH4F, NaHF2. NH4HF2.
Examples include NaF.

これらのF化合物は、Mg化合物と反応して難溶性のふ
っ素マグネシウムを形成し、またHa化合物やS1化合
物と反応して難溶性のけいふっ化ナトリウムを形成する
These F compounds react with Mg compounds to form sparingly soluble magnesium fluoride, and react with Ha compounds and S1 compounds to form sparingly soluble sodium silicofluoride.

原ネ1溶液は、前記物質及び前記F化合物を水又は有機
溶媒に常温大気圧下で溶解させて2以上調製される。こ
こで、前記物質及び前記F化合物をそれぞれ単独に含む
ように各原料溶液を調製してもよい。また〃いに反応し
て難溶性の化合物を形成しない限り、2以上の前記物質
、2以上の前記F化合物、或いは前記物質と前記F化合
物を含むように各原料溶液を調製してもよい。
Two or more raw material 1 solutions are prepared by dissolving the above substance and the above F compound in water or an organic solvent at room temperature and atmospheric pressure. Here, each raw material solution may be prepared so as to contain the above-mentioned substance and the above-mentioned F compound individually. Further, each raw material solution may be prepared to contain two or more of the above substances, two or more of the above F compounds, or the above substances and the above F compounds, as long as they do not react to form a poorly soluble compound.

2以にの原料溶液は混合したときに生じる難溶性の沈殿
物の組成が前記(1)式で示される所望のふっ青雲母系
粘土の化学組成となるように、前記物質及び前記F化合
物の種類と量が選定されて調製される。
The above-mentioned raw material solutions are mixed with each other in such a way that the composition of the hardly soluble precipitate produced when mixed has the desired chemical composition of the fluorinated mica clay represented by the above formula (1). and the amount is selected and prepared.

原料溶液を混合したときの全溶媒中に占める水分量は、
加水分解に必要最少限の水分量を含んでいなければなら
ない、この水分量があまりに多過ぎると、生成する沈殿
が水を多く含んだ粘稠なゲル状態となり、後述の沈殿分
離処理や乾燥処理において作業能率が低下するため、水
分量は極力少なくし、代わりに有機溶媒の共存、量を増
やすことが望ましい。
The amount of water in the total solvent when mixing the raw material solutions is
It must contain the minimum amount of water necessary for hydrolysis; if this water content is too large, the resulting precipitate will become a viscous gel containing a lot of water, which will require the precipitation separation process and drying process described below. Since the working efficiency decreases, it is desirable to reduce the amount of water as much as possible, and instead increase the coexistence and amount of an organic solvent.

く混合反応工程〉 k:、述のように調製した原料溶液の混合は常温大気圧
下で行われる。その混合方法は1つの原料溶液を攪拌し
ながら他の原料溶液を添加する方法でもよいし、或いは
各原料溶液中の溶媒と親和性の良好な有機溶媒を攪拌し
ながら、この有機溶媒に各原料溶液を同時に等量ずつ添
加する方法でもよい、後者の方法は前者の方法に比べ、
より均質性の高い沈殿が得られる。
Mixing reaction step> k: The raw material solutions prepared as described above are mixed at room temperature and atmospheric pressure. The mixing method may be a method of adding another raw material solution while stirring one raw material solution, or a method of adding each raw material solution to the organic solvent while stirring an organic solvent that has good affinity with the solvent in each raw material solution. It is also possible to add the solution in equal amounts at the same time, but the latter method has a lower
A more homogeneous precipitate is obtained.

また、原料溶液を混合する際に、必要ならば加水分解反
応を促進させるために、酸触媒又は塩ノ^触媒を添加し
てもよい、このための触媒としては、加熱により消散す
る酢酸、アンモニア水等が好適である。また酸触媒又は
塩基触媒は、難溶性の沈殿を生成しない限り、予め原料
溶液中に配合しておいてもよい。
In addition, when mixing the raw material solution, an acid catalyst or a salt catalyst may be added to accelerate the hydrolysis reaction if necessary. Catalysts for this include acetic acid, ammonia, etc., which dissipate by heating. Water etc. are suitable. Further, the acid catalyst or the base catalyst may be blended in advance into the raw material solution as long as it does not generate a hardly soluble precipitate.

上述の方法により原料溶液を混合すると、加水分解によ
り難溶性の水酸化物が形成され、或いは前記物質及び前
記F化合物同士の反応により難溶性の化合物が形成され
、所望のふっ青雲母系粘土を構成するに必要なX、 Y
、 Z及びFの元素を含有する沈殿物ができる。
When the raw material solutions are mixed by the above method, a sparingly soluble hydroxide is formed by hydrolysis, or a sparingly soluble compound is formed by a reaction between the substance and the F compound, thereby forming the desired fluobionite clay. X, Y required to
, a precipitate containing the elements Z and F is formed.

く乾燥工程〉 沈殿物は濾過、遠心分離等の適当な方法により?+1液
から分離される。母液中には沈殿物を形成する反応の際
に副生ずるNH4Cl等の水又は有機溶媒に可溶な塩類
を含むことがある。この場合には沈殿物を水又は水と有
機溶媒を混合した溶媒で数回洗浄することが好ましい、
但し出発原料として有機酸塩、アルコキシド等の有機化
合物、硝酸塩、或いはアンモニウム塩等を使用した場合
には、後述の加熱処理により容易に訓生物が消散するた
め特に洗浄を行う必要はない。
Drying process> Remove the precipitate by an appropriate method such as filtration or centrifugation. +1 Separated from liquid. The mother liquor may contain salts soluble in water or organic solvents, such as NH4Cl, which are by-produced during the reaction to form a precipitate. In this case, it is preferable to wash the precipitate several times with water or a mixed solvent of water and an organic solvent.
However, when an organic acid salt, an organic compound such as an alkoxide, a nitrate, or an ammonium salt is used as a starting material, there is no need to perform any particular washing because the stimulants are easily dissipated by the heat treatment described below.

沈殿物の乾燥は、減圧下又は大気圧下、100℃前後の
条件下で沈殿物の表面に付着した溶液がほぼ蒸発するま
で行われる。
The precipitate is dried under reduced pressure or atmospheric pressure at around 100° C. until the solution adhering to the surface of the precipitate is almost evaporated.

く加熱工程〉 次に、乾燥した沈殿物を大気圧下、400〜1400℃
の温度で加熱処理す条ことにより、ふっ素置母系粘土の
粉体が得られる。加熱温度が400℃未満ではふっ素置
母系粘土が生成されず、また1400℃を上回ると、上
記粉体が溶融し始め、不純物が生成され、しかもFの揮
散が激しくなり、ともに好ましくない。このように広い
温度範囲でふっ素置母系粘土の合成が可能であるが、エ
ネルギコストや生成したふっ素置母系粘土の結晶の状態
から判断すると、600〜1000℃の温度で加熱処理
することが好ましい、加熱処理時間は1−10時間程度
が適当である。しかしこの加熱温度と加熱時間は所望す
るふっ素置母系粘土の粒径によって主に決定され、加熱
温度が低いか、又は加熱時間が短い場合には比較的小さ
な粒径の粉体が得られ、加熱温度が高いか、又は加”熱
時間が長い場合には比較的大きな粒径が得られる。
Heating process> Next, the dried precipitate is heated at 400 to 1400°C under atmospheric pressure.
A powder of fluorine-based clay can be obtained by heat treatment at a temperature of . If the heating temperature is less than 400°C, fluorine matrix clay will not be produced, and if the heating temperature exceeds 1400°C, the powder will begin to melt, impurities will be produced, and moreover, the volatilization of F will become more intense, both of which are undesirable. Although it is possible to synthesize fluorine matrix clay in a wide temperature range as described above, judging from the energy cost and the state of the crystals of the produced fluorine matrix clay, it is preferable to perform heat treatment at a temperature of 600 to 1000 ° C. Appropriate heat treatment time is about 1 to 10 hours. However, this heating temperature and heating time are mainly determined by the particle size of the desired fluorinated clay, and if the heating temperature is low or the heating time is short, a powder with a relatively small particle size can be obtained; Relatively large particle sizes are obtained at high temperatures or long heating times.

加熱炉はマツフル炉でもよく、或いはトンネルキルン、
ロータリキルンのような連続式焼成炉でもよい、後者の
炉を用いれば、より効率良く大量に合成することができ
る。
The heating furnace may be a Matsufuru furnace, or a tunnel kiln.
If the latter furnace is used, which may be a continuous firing furnace such as a rotary kiln, it is possible to synthesize in large quantities more efficiently.

また、乾燥後の沈殿物を一旦300℃程度の低温で仮焼
し、沈殿物中の水分やその他の消散物を消散させた後、
加圧成型或いは造粒処理等の手段により仮焼物を圧密化
してから再度前述の温度で本焼成を行えば更に結晶性の
良いふっ素置母系粘土を得ることができる。
In addition, the dried precipitate is once calcined at a low temperature of about 300°C to dissipate water and other dissipated substances in the precipitate, and then
If the calcined product is compacted by means such as pressure molding or granulation and then main firing is performed again at the above-mentioned temperature, a fluorine matrix clay with even better crystallinity can be obtained.

[発明の効果] 以」二述べたように、従来、固体原料を使うためエネル
ギコストの高い原料混合粉砕工程や高温度での溶融処理
工程が必要であったものが、本発明によれば、固体原料
を使わずに、ふっ素置母系粘土の構成元素を含む原料溶
液同士を混合して液相反応にて形成させた難溶性の沈殿
物を母液から分離し、これを乾燥した乾燥物を加熱処理
することにより、不純物が少なく、均質性に優れたふっ
素置母系粘土を簡単な合成プロセスで、かつ少ないエネ
ルギ消費で効率よく安価に合成することができる優れた
効果がある。
[Effects of the Invention] As mentioned above, according to the present invention, the conventional method requires a raw material mixing and pulverizing process with high energy cost and a melting process at high temperature due to the use of solid raw materials. Without using solid raw materials, raw material solutions containing the constituent elements of fluorinated matrix clay are mixed together, a hardly soluble precipitate is formed in a liquid phase reaction, and the slightly soluble precipitate is separated from the mother liquor, and the dried product is heated. The treatment has the excellent effect of being able to synthesize a fluorine matrix clay with few impurities and excellent homogeneity through a simple synthesis process, with low energy consumption, efficiently and at low cost.

[実施例] 次に本発明の具体的態様を示すために、本発明を実施例
によりさらに詳しく説明するが、以下に示す例はあくま
でも一例であって、これにより本発明の技術的範囲を限
定するものではない。
[Examples] Next, in order to show specific embodiments of the present invention, the present invention will be explained in more detail using Examples, but the examples shown below are merely examples, and do not limit the technical scope of the present invention. It's not something you do.

〈実施例1〉 KMgtS i3 al 01o F2(ふっ東金雲母
)合成:Mg(No3)2 ・8H200,3モ)し及
びAl(N(h)3働8H200,1モルを常温の水−
エタノール混合溶媒(水:エタノール=  1:1)3
00mMに溶解して溶液■を調製した0次にKOHO,
1モル、NH4F 0.2モル。
<Example 1> KMgtS i3 al 01o F2 (Fudto phlogopite) synthesis: Mg(No3)2 8H200, 3 mo) and Al (N(h)3 8H200, 1 mole were added to water at room temperature.
Ethanol mixed solvent (water:ethanol = 1:1)3
0-order KOHO, which was dissolved to 00mM to prepare solution ①,
1 mole, 0.2 mole of NH4F.

及び28%アンモニア水50mJlを常温の木−エタノ
ール混合溶媒(水:エタノール=l:1)250mJZ
に溶解して溶液■を調製した。更に5iC140,4モ
ルを常温のア七トン300mJl中に溶解して溶液■を
調製した。
and 50 mJl of 28% ammonia water to 250 mJZ of wood-ethanol mixed solvent (water:ethanol = l:1) at room temperature.
A solution ① was prepared by dissolving it in . Further, 140.4 mol of 5iC was dissolved in 300 mJl of a7atone at room temperature to prepare a solution (2).

次いで、溶液■を攪拌しながら溶液■及び溶液■を約1
00m交/時の滴下速度で同時に添加したところ沈殿が
生じた。生成した沈殿物を遠心分離機により母液から分
離した後、水−エタノール混合溶媒(水:エタノール混
合溶媒)で3回洗浄し、大気圧下、80℃で乾燥した。
Next, while stirring solution ■, add solution ■ and solution ■ to about 1
When they were added simultaneously at a dropping rate of 00 m/hr, precipitation occurred. The generated precipitate was separated from the mother liquor using a centrifuge, washed three times with a water-ethanol mixed solvent (water:ethanol mixed solvent), and dried at 80° C. under atmospheric pressure.

この乾燥物を電気マツフル炉にて850℃で3時間加熱
し、ふっ東金雲母KNg3S is At Oto F
2の粉体を得た。
This dried product was heated at 850°C for 3 hours in an electric Matsufuru furnace to obtain Futo phlogopite KNg3S is At OtoF.
A powder of No. 2 was obtained.

X線回折により、底面間隔d (001)は9.6人で
あり、またふっ素金雲母以外の生成物は認められなかっ
た。電子顕微鏡による雲母粒子の粒径は8.3〜24.
0川■(平均15.3μ11)であり、均質性に優れて
いた。
X-ray diffraction revealed that the basal spacing d (001) was 9.6, and no products other than fluorine phlogopite were observed. The particle size of mica particles determined by electron microscopy is 8.3 to 24.
0 river ■ (average 15.3μ11), and the homogeneity was excellent.

このふっ東金雲母の粉体に結合剤として20重着%のり
ん酸カルシウムを添加し、アルミナボールミルにて30
分混合した後、減圧下で成型圧2000Kgf/am’
で成型し1次いで1150℃の温度で4時間焼成を行い
、厚さ約2mmの円板状の焼結体を得た。この焼結体の
相対湿度83%における体積抵抗率は3.0.X10”
0cm、絶縁破壊電圧は21.3KV/1geであり、
良好な絶縁材料となることが示された。
20% calcium phosphate was added as a binder to this Futto phlogopite powder, and 30% calcium phosphate was added in an alumina ball mill.
After mixing, molding pressure 2000Kgf/am' under reduced pressure.
The sintered body was molded and then fired at a temperature of 1150° C. for 4 hours to obtain a disk-shaped sintered body with a thickness of about 2 mm. The volume resistivity of this sintered body at a relative humidity of 83% is 3.0. X10"
0cm, the breakdown voltage is 21.3KV/1ge,
It was shown that it is a good insulating material.

〈実施例2〉 NaMg2.sSi+0toF2(ナトリウム型口けい
素ふっ素雪母)の合成: 常温のメチルアルコール400mfL中に金属マグネシ
ウム0.25モルを添加し、80℃で加熱、還流してM
g(OCH3) 2−メタノール溶液を調製した後、こ
れに5i(OC2)1s)+ 0.4モルを混合した溶
液■と、常温の水200m n中にNaHF20.1モ
ルを溶解した溶液■をそれぞれ調製した。
<Example 2> NaMg2. Synthesis of sSi+0toF2 (sodium-type silicon fluorine snow powder): Add 0.25 mol of metallic magnesium to 400 mfL of methyl alcohol at room temperature, heat at 80°C and reflux to form M
After preparing g(OCH3) 2-methanol solution, a solution (■) in which 5i(OC2)1s) + 0.4 mol was mixed with it and a solution (■) in which 20.1 mol of NaHF was dissolved in 200 mn of water at room temperature were added. Each was prepared.

別に用意したメタノール300m1を攪拌しながら溶液
■を約 100m l 7時の滴下速度で、また溶液■
を約50m交/時の滴下速度で、同時に添加したところ
沈殿が生じた。生成した沈殿物を遠心分#機により母液
から分離した後、そのまま大気圧下、80℃で乾燥した
。この乾燥物を電気マツフル炉にて一旦300℃で2時
間仮焼した後、仮焼物を常圧下、1000 Kgf/ 
clで加圧成型を行い、ベレット状とした0次いで80
0℃で3時間本焼成を行い、ナトリウム型口けい素ふっ
青雲母 N a M g 2JSi401oF2を得た
While stirring 300 ml of methanol prepared separately, add about 100 ml of solution ■ at a dropping rate of 7 o'clock, and add solution ■.
were added at the same time at a dropping rate of about 50 meters per hour, resulting in precipitation. The generated precipitate was separated from the mother liquor using a centrifuge and then dried at 80° C. under atmospheric pressure. This dried product was once calcined at 300°C for 2 hours in an electric Matsufuru furnace, and then the calcined product was heated at 1000 Kgf/ under normal pressure.
Pressure molded with cl and made into a pellet shape.
Main firing was performed at 0° C. for 3 hours to obtain sodium type silicon fluorine mica Na M g 2JSi401oF2.

この焼成後のベレットを水中に投入すると、膨潤してゾ
ル状態となった。このときゾル化した雲母の割合は、全
体の955重量%であり、不純物の生成が少ないことが
示された。このゾルを40℃で乾燥した。乾燥物は、X
線回折により底面間隔d (001)は12.3人であ
り、−水層型となっていることが確認された。また電子
WJ微鏡による上記雲ハI粒子の粒径は4.8〜?、l
3gm (平均8.4gm )であり、均質性に優れて
いた。
When this fired pellet was put into water, it swelled and became a sol. The proportion of mica solized at this time was 955% by weight of the total, indicating that little impurity was produced. This sol was dried at 40°C. The dry matter is
Linear diffraction confirmed that the base spacing d (001) was 12.3, indicating that it was of a -water layer type. Also, the particle size of the above Kumoha I particles measured using an electronic WJ microscope is 4.8~? ,l
3 gm (average 8.4 gm), and had excellent homogeneity.

更に上記雲母5.0gを 0.1NのN1Ch水溶液1
000m文中に添加し、室温で20時間攪拌してから、
遠心分#機により母液から分離し、次いで5回洗浄した
後、大気圧下、80℃で乾燥した。乾燥物は化学分析に
より 4.3重量%のNiが含まれている他、X !!
 回折ニヨル底面間隔d(0’01)は14,7人に拡
がっており、イオン交換性があることが示された。
Furthermore, 5.0 g of the above mica was added to 0.1N N1Ch aqueous solution 1
After stirring at room temperature for 20 hours,
It was separated from the mother liquor using a centrifuge, washed five times, and then dried at 80° C. under atmospheric pressure. Chemical analysis of the dried material revealed that it contained 4.3% by weight of Ni, as well as X! !
The diffraction nior base distance d (0'01) was widened to 14.7, indicating that it had ion exchange properties.

〈実施例3〉 Li、zx Mgazs Litz3Si4o 1゜F
2 (リチウムへクトライト)の合成: Mg(CHx C00) 2・4H202,87モルを
常温の水−エタノール混合溶媒(水:エタノール= 1
: 1 ) 2000m1に溶解して溶液■を調製した
。またN)14)IF2モルを常温の水−エタノール混
合溶媒(水:エタノール−1: 1 ) 1000mM
に溶解して溶液■を調製した。次いでLiOH0,87
モル及び28%アンモニア水350m文を常温のメタノ
ール850m lに溶解して溶液■を調製した。更に5
i(OC28s )44モルと常温のメタノール200
mJLの混合溶液■を調製した。
<Example 3> Li, zx Mgazs Litz3Si4o 1°F
Synthesis of 2 (lithium hectorite): Mg(CHx C00) 2.4H202,87 mol was added to a room temperature water-ethanol mixed solvent (water:ethanol = 1
: 1) A solution (■) was prepared by dissolving in 2000ml. Also, N) 14) 2 moles of IF was added to a room temperature water-ethanol mixed solvent (water:ethanol-1:1) 1000mM
A solution ① was prepared by dissolving it in . Then LiOH0,87
A solution (2) was prepared by dissolving 350 ml of mol and 28% ammonia water in 850 ml of methanol at room temperature. 5 more
i(OC28s) 44 mol and room temperature methanol 200
A mixed solution (■) of mJL was prepared.

溶液■を攪拌しながら、溶液■、■、及び■をそれぞれ
100m fL/時の滴下速度で同時に添加したところ
沈殿が生じた。生成した沈殿物をフィルタプレスにより
大部分の母液を除去してケーキ状とした後、そのまま大
気圧下、80℃で乾燥した。
While stirring solution (1), solutions (2), (2), and (2) were simultaneously added at a dropwise rate of 100 mfL/hour, respectively, and precipitation occurred. Most of the mother liquor was removed from the resulting precipitate using a filter press to form a cake, which was then dried at 80° C. under atmospheric pressure.

この乾燥物を500℃の温度ゾーンが2m、続いて90
0℃の温度ゾーンが4mに設定されたトンネルキルンの
中に 1m/時の速度で連続的に通して加熱することに
より、リチウムへクトライト L i wMgezxL
i1zsSi40 Ill F2を得た。
This dried material was heated to a temperature zone of 2 m at 500°C, then
Lithium hectorite was heated by passing it continuously through a tunnel kiln with a temperature zone of 0°C set at 4 m at a speed of 1 m/hour.
i1zsSi40 Ill F2 was obtained.

このリチウムヘクトライトは、水中に投入すると、懸濁
してゾル状態となり膨III性が示された。
When this lithium hectorite was put into water, it became suspended in a sol state and exhibited swelling III properties.

このゾルをエバポレータにて50°Cで減圧ewUして
約5%のゾルとした後、ドクタブレード法にて表面が平
滑なガラス板上に展延して自然乾燥させることにより、
厚さ約1110gmのシートを作製した。
This sol was reduced to about 5% sol using an evaporator at 50°C, and then spread on a glass plate with a smooth surface using the doctor blade method and allowed to dry naturally.
A sheet with a thickness of about 1110 gm was produced.

このシートの波長580nmにおける光透過率を分光光
度計にて測定したところ、 I/ Io −78%であ
った。比較のために溶融法で合成した重版のリチウムへ
クトライトについて同様なシート化処理を施し、光透過
率を測定したところ、 I/ Io = 48%であっ
た。すなわち本発明により合成したふっ東雲母系粘土は
均質性、緻密性に優れているため。
The light transmittance of this sheet at a wavelength of 580 nm was measured with a spectrophotometer and was found to be I/Io -78%. For comparison, a reprinted lithium hectorite synthesized by a melting method was subjected to the same sheeting treatment and the light transmittance was measured, and it was found that I/Io = 48%. That is, the fudonite clay synthesized according to the present invention has excellent homogeneity and compactness.

シート化した場合に良好な透明性が付与されるといえる
It can be said that good transparency is imparted when formed into a sheet.

’y、’、: ;【’、’、;・ 1.1\シ −=y−続ネ市正”:p’i (t1ゲ)昭和62年3
月7日 特許庁長官 黒 11  明 雄 殿 3、補正をする者 ・19件との関係  特許出願人 住 所  東京都千代田区丸の内1丁目5番1号名 称
  三菱鉱業セメント株式会社 4、代理人 7、補正の内容 (1)明細書第7頁第19行目 「上記X、 Y、及びZの組合せを変えることにより」
とあるのを 「L記X、 Y及びZにおける各イオンの組合せを変え
ることにより」と補正する。
'y,',: ;[',',;・ 1.1\C=y-continued Ichimasa": p'i (t1 game) 19863
July 7th Director of the Patent Office Kuro 11 Akio 3 Person making the amendment/Relationship with 19 cases Patent applicant Address 1-5-1 Marunouchi, Chiyoda-ku, Tokyo Name Mitsubishi Mining and Cement Co., Ltd. 4 Agent 7. Contents of the amendment (1) Page 7, line 19 of the specification “By changing the combination of the above X, Y, and Z”
The statement "by changing the combination of each ion in X, Y, and Z of L" is corrected.

(2)明細書第1頁第11行目〜回頁第12行目「・・
・、NaMgLi5iJ to F2 (ナトリウムテ
ニオライト)」とあるのを [・・・、 NaMgz LiSi+010 F2 (
ナトリウムテニオライト)」と補正する。
(2) Specification page 1, line 11 to page 12, line ``...
・, NaMgLi5iJ to F2 (sodium taeniolite)" is replaced with [..., NaMgz LiSi+010 F2 (
Sodium taeniolite)” is corrected.

(3)明細書第16頁第1行目 「大きな粒径が得られる。」とあるのを「大きな粒径の
粉体が得られる。」と補正する。
(3) In the first line of page 16 of the specification, the phrase "large particle size can be obtained" is corrected to "large particle size powder can be obtained."

(4)明細書第18頁第8行目 「・・・は3.6人で」とあるのを [・・・は8.8人で」と補正する。(4) Page 18, line 8 of the specification It says "...is 3.6 people" [… is 8.8 people]” is corrected.

Claims (1)

【特許請求の範囲】 1)水又は有機溶媒に可溶であってかつアルカリ金属、
アルカリ土類金属、Al、Fe、Co、Ni、Mn、Z
n、Cu、Cr、Si、Ge又はBから選ばれた元素を
1又は2以上含む1又は2以上の物質と、水又は有機溶
媒に可溶な1又は2以上のF化合物とを水又は有機溶媒
に溶解して2以上の原料溶液を調製する調製工程と; 前記原料溶液を混合かつ反応させて難溶性の沈殿物を生
成する混合反応工程と; 前記沈殿物を前記原料溶液から分離して乾燥する乾燥工
程と; 乾燥した沈殿物を400℃〜1400℃の温度で加熱す
ることにより X_0_._3_〜_1_._0Y_2_〜_3_Z_
4O_1_0F_2なるふっ素雲母系粘土を得る加熱工
程と を含むふっ素雲母系粘土の合成方法。 但し、Xはアルカリ金属又はアルカリ土類金属の中から
選ばれた1又は2以上の金属陽イオン;YはMg、Al
、Fe、Co、Ni、Mn、Zn、Cu、Cr、又はL
iから選ばれた1又は2以上の金属陽イオン;ZはSi
もしくはGeの陽イオン、又はSiもしくはGeの一部
をAl、Fe、又はBで置換した陽イオンであり;Xは
配位数12、Yは配位数6、Zは配位数4である。 2)前記物質及び前記F化合物は、混合反応工程で加水
分解して難溶性の水酸化物を形成する特許請求の範囲第
1項に記載のふっ素雲母系粘土の合成方法。 3)前記物質及び前記F化合物は、混合反応工程で互い
に反応して難溶性の化合物を形成する特許請求の範囲第
1項に記載のふっ素雲母系粘土の合成方法。
[Claims] 1) an alkali metal that is soluble in water or an organic solvent;
Alkaline earth metals, Al, Fe, Co, Ni, Mn, Z
One or more substances containing one or more elements selected from n, Cu, Cr, Si, Ge, or B and one or more F compounds soluble in water or an organic solvent are combined in water or an organic solvent. a preparation step of preparing two or more raw material solutions by dissolving them in a solvent; a mixing reaction step of mixing and reacting the raw material solutions to produce a hardly soluble precipitate; and separating the precipitate from the raw material solution. A drying step of drying; X_0_. by heating the dried precipitate at a temperature of 400°C to 1400°C. _3_~_1_. _0Y_2_~_3_Z_
4O_1_0F_2 A method for synthesizing fluoromica-based clay including a heating step to obtain fluoromica-based clay. However, X is one or more metal cations selected from alkali metals or alkaline earth metals; Y is Mg, Al
, Fe, Co, Ni, Mn, Zn, Cu, Cr, or L
One or more metal cations selected from i; Z is Si
or a Ge cation, or a cation in which a part of Si or Ge is replaced with Al, Fe, or B; X has a coordination number of 12, Y has a coordination number of 6, and Z has a coordination number of 4. . 2) The method for synthesizing fluoromica-based clay according to claim 1, wherein the substance and the F compound are hydrolyzed in a mixing reaction step to form a hardly soluble hydroxide. 3) The method for synthesizing fluoromica-based clay according to claim 1, wherein the substance and the F compound react with each other in a mixing reaction step to form a poorly soluble compound.
JP2596587A 1987-02-06 1987-02-06 Method for synthesizing fluoromica clay Expired - Lifetime JPH0639324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2596587A JPH0639324B2 (en) 1987-02-06 1987-02-06 Method for synthesizing fluoromica clay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2596587A JPH0639324B2 (en) 1987-02-06 1987-02-06 Method for synthesizing fluoromica clay

Publications (2)

Publication Number Publication Date
JPS63195111A true JPS63195111A (en) 1988-08-12
JPH0639324B2 JPH0639324B2 (en) 1994-05-25

Family

ID=12180444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2596587A Expired - Lifetime JPH0639324B2 (en) 1987-02-06 1987-02-06 Method for synthesizing fluoromica clay

Country Status (1)

Country Link
JP (1) JPH0639324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530810A2 (en) * 1991-09-04 1993-03-10 Topy Industries Limited Ultraviolet ray screening agent
CN109694078A (en) * 2018-12-18 2019-04-30 长春市泰元氟金云母有限公司 A kind of preparation method of Fluororystal mica and its application in two dimensional crystal preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530810A2 (en) * 1991-09-04 1993-03-10 Topy Industries Limited Ultraviolet ray screening agent
EP0665273A1 (en) * 1991-09-04 1995-08-02 Topy Industries, Limited New red synthetic mica and ultraviolet ray screening agent comprising the same
CN109694078A (en) * 2018-12-18 2019-04-30 长春市泰元氟金云母有限公司 A kind of preparation method of Fluororystal mica and its application in two dimensional crystal preparation
CN109694078B (en) * 2018-12-18 2022-05-20 长春市泰元氟金云母有限公司 Preparation method of fluorine crystal mica and application of fluorine crystal mica in preparation of two-dimensional crystal

Also Published As

Publication number Publication date
JPH0639324B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
Li et al. Effects of Ni2+ substitution on the crystal structure, bond valence, and microwave dielectric properties of BaAl2–2xNi2xSi2O8–x ceramics
US4152281A (en) Molten salt synthesis of lead zirconate titanate solid solution powder
JPH10203807A (en) Boron nitride powder of turbostratic structure and its production
TWI237620B (en) Crystalline calcium hexaborate tetrahydrate or amorphous calcium hexaborate
CN103415486A (en) Process for producing sintered magnesium oxide material
JPH059017A (en) Method for production of ceramic material
JPS63195111A (en) Synthesis of fluorine mica clay
JP2010285334A (en) Method for producing composite oxide fine particle
Reynaud et al. A new solution route to silicates. Part 3: Aqueous sol-gel synthesis of willemite and potassium antimony silicate
JP3624244B2 (en) Rare earth borosilicate and method for producing the same
JPS6217005A (en) Preparation of mullite powder having high purity
EP0265667B1 (en) Method of producing microsized amorphous particles of metal phosphate
JPS6251209B2 (en)
JPH0476356B2 (en)
JPH0621026B2 (en) Fluorine mica production method
JPS6086022A (en) Production of titanic acid salt
JPS58199717A (en) Manufacture of germanate
JP5531595B2 (en) Method for producing niobic acid compound fine particles
JPH0244765B2 (en) KINZOKUFUKUSANKABUTSUNOSEIZOHOHO
CN112759265B (en) Multifunctional glass ceramic with high transmittance and high energy storage density and preparation and application thereof
US4946976A (en) Cordierite composition and method of production
JP2000281340A (en) LAMINAR BaTiO3 PARTICLE AND ITS PRODUCTION
JPS58199724A (en) Manufacture of ferrite
JPH11199222A (en) Swellable synthetic fluorine mica
JPH0476954B2 (en)