JPS63194164A - Gas cycle refrigerator - Google Patents

Gas cycle refrigerator

Info

Publication number
JPS63194164A
JPS63194164A JP62026584A JP2658487A JPS63194164A JP S63194164 A JPS63194164 A JP S63194164A JP 62026584 A JP62026584 A JP 62026584A JP 2658487 A JP2658487 A JP 2658487A JP S63194164 A JPS63194164 A JP S63194164A
Authority
JP
Japan
Prior art keywords
expansion chamber
pressure
volume
chamber
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62026584A
Other languages
Japanese (ja)
Other versions
JPH076703B2 (en
Inventor
長尾 政志
吉村 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62026584A priority Critical patent/JPH076703B2/en
Publication of JPS63194164A publication Critical patent/JPS63194164A/en
Publication of JPH076703B2 publication Critical patent/JPH076703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば極低温での冷凍に用いられるような
ガスサイクル冷凍機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a gas cycle refrigerator used, for example, in cryogenic refrigeration.

〔従来の技術〕[Conventional technology]

第1図は例えば特公昭46−10255号公報(アメリ
カ特許629271 )に示された従来のガスサイクル
冷凍機を示す構成図であシ、図において、(1)は気体
を吸入する吸気バルブ、(2)は気体を排出する排気バ
ルブである。(3)は往復運動して気体を移動させるデ
ィスプレーサ−である。(4)は膨張室、(5)はつり
合い室である。(6)は気体の寒冷を蓄冷する蓄冷器す
なわち蓄熱器である。(8)は蓄冷器(6)と膨張室(
4)とを結ぶ低温部連通管であフ、(9)は蓄冷器(6
)とつり合い室(5)を結ぶ高温部連通管である。(7
)は圧縮機であシ低圧管(6)からガヌを吸入し高圧管
QGに高圧を削るものである。高圧と低圧とは自動弁a
カによってほぼ一定の圧力に保持される。(2)はディ
スプレーサー(3)にモータ(至)からの駆動力を伝え
る駆動軸、Qlはモータ(至)の回転運動を直線運動に
変換するクランクシャフトである。(至)はロッドシー
ル、α尋はディスプレーサ−シール、(2)は高圧側の
圧力変動を小さくする高圧バッファタンク、α0は低圧
側の圧力変動を小さくする低圧バッファタンクである。
FIG. 1 is a block diagram showing a conventional gas cycle refrigerator shown in, for example, Japanese Patent Publication No. 46-10255 (US Pat. No. 629271). In the figure, (1) is an intake valve for sucking gas; 2) is an exhaust valve that exhausts gas. (3) is a displacer that moves gas by reciprocating motion. (4) is an expansion chamber, and (5) is a balance chamber. (6) is a regenerator or heat accumulator that stores cold gas. (8) is the regenerator (6) and the expansion chamber (
(9) is the low temperature section communication pipe connecting the regenerator (6).
) and the balance chamber (5). (7
) is a compressor that sucks gas from the low pressure pipe (6) and reduces high pressure to the high pressure pipe QG. High pressure and low pressure are automatic valve a
The pressure is maintained at a nearly constant level by the force. (2) is a drive shaft that transmits the driving force from the motor to the displacer (3), and Ql is a crankshaft that converts the rotational motion of the motor to linear motion. (to) is a rod seal, α is a displacer seal, (2) is a high-pressure buffer tank that reduces pressure fluctuations on the high-pressure side, and α0 is a low-pressure buffer tank that reduces pressure fluctuations on the low-pressure side.

次に動作について説明する。第8図は膨張室(4)のP
−V線図である。縦軸は膨張室(4)の圧力、横軸は同
じく容積である。まず、第8図におけるlの状態では、
ディスプレーサ−(3)は最下端にあシ、また吸気バル
ブ(1)が開き排気バルブ(2)は閉じていて、膨張室
(4)の圧力は高圧になっている。次にl→2ではディ
スプレーサ−(3)が上に動き、それに伴い高圧気体が
蓄冷器(6)を通って膨張室(4)に導入される。この
開缶バルブ(1) t (2)は動かない。2は膨張室
の容積が最大になった状態であシ、2の状態になると吸
気バルブ(1)は閉じて排気パルプ(2)は開く、この
時高圧ガスが低圧ガスに膨張して冷凍が発生し、8の状
態になる。8→4ではディスプレーサ−(3)が下方に
移動する。このとき各バルブ(1) 、 (23は動か
ない。4は膨張室の容積が最少になった状態でこの時排
気バルブ(2)は閉じ吸気バルブ(1)は開き膨張室(
4)の圧力は低圧から高圧になって1の状態に戻る。こ
のサイクルではすべての過程で理想的にはつり合い室(
5)と蓄冷器(6)と膨張室(4)の圧力が同圧である
ので、駆動軸@に加わる力は小さく、また、ディスプレ
ーサ−シールへ→も簡単なものでよい。
Next, the operation will be explained. Figure 8 shows P of the expansion chamber (4)
-V diagram. The vertical axis is the pressure of the expansion chamber (4), and the horizontal axis is the volume. First, in the state l in Figure 8,
The displacer (3) is located at the lowest end, the intake valve (1) is open and the exhaust valve (2) is closed, and the pressure in the expansion chamber (4) is high. Next, at l→2, the displacer (3) moves upward, and high pressure gas is introduced into the expansion chamber (4) through the regenerator (6). This can opening valve (1) t (2) does not move. 2 is the state in which the volume of the expansion chamber is at its maximum. When state 2 is reached, the intake valve (1) closes and the exhaust pulp (2) opens. At this time, high pressure gas expands into low pressure gas and refrigeration occurs. occurs and becomes state 8. At 8→4, the displacer (3) moves downward. At this time, each valve (1), (23 does not move. 4 is a state in which the volume of the expansion chamber has become the minimum. At this time, the exhaust valve (2) is closed and the intake valve (1) is opened and the expansion chamber (23) is not moved.
The pressure in 4) changes from low pressure to high pressure and returns to state 1. Ideally, the balance chamber (
5), the regenerator (6), and the expansion chamber (4) have the same pressure, so the force applied to the drive shaft is small, and the displacer seal can be easily attached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のガスサイクル冷凍機は以上のようにディスプレー
サー(3)と吸気バルブ(1)、排気バルブ(2)の同
期がとられていたので、4→1,2→3の過程では不可
逆過程になカ、効率が減少する問題があった。また、2
→8の過程では高圧気体が瞬時に膨張室(4)から流出
して蓄冷器での圧力損失が生じ、このため、本来同圧で
あるべきつり合い室(5)と膨張室(4)での圧力差が
できて、駆動軸等駆動系に過大な力を与え、極端な場合
は駆動系を損傷し、またデイヌプレーサーシールα4か
らの漏れが生じて効率を減少させる等の問題があった。
In conventional gas cycle refrigerators, the displacer (3), intake valve (1), and exhaust valve (2) are synchronized as described above, so the steps 4→1 and 2→3 are irreversible. However, there was a problem that efficiency decreased. Also, 2
→ In the process of 8, high-pressure gas instantly flows out of the expansion chamber (4), causing a pressure loss in the regenerator, which causes the balance chamber (5) and expansion chamber (4), which should originally have the same pressure, to There were problems such as a pressure difference, applying excessive force to the drive shaft and other drive systems, and in extreme cases damaging the drive system, as well as leakage from the Dayne Placer Seal α4, reducing efficiency. .

この発明は上記のような問題点を解消するためになされ
たもので、瞬時の高圧ガスの移動を防止して、駆動系に
過大な力が加わったシシールが漏れたシするのを防止で
きると共に、効率の良いガスサイクル冷凍機を提供する
ことを目的とする。
This invention was made to solve the above-mentioned problems, and it can prevent the instantaneous movement of high-pressure gas and prevent the seal from leaking when excessive force is applied to the drive system. The purpose is to provide an efficient gas cycle refrigerator.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガスサイクル冷凍機は、シリンダ内で往
復運動するディスプレーサ−によつ容積が変化するつり
合い室および膨張室、これらつり合い室と膨張室とを連
通ずる蓄熱器、°並びに吸気弁および排気弁によってそ
れぞれ上記つり合い室に連結される高圧流体源および低
圧流体源を備え、上記膨張室の容積が最少の時に上記吸
気弁を開いて排気弁を閉じ、上記膨張室の容積が増大さ
れつつある中間時に上記吸気弁を閉じて上記膨張室の容
積が最大となった時の上記膨張室の圧力と上記低圧流体
源の圧力・とを一致さた後、上記排気弁を開き、上記膨
張室の容積が減少されつつある中間時に上記排気弁を閉
じて6上記膨張室の容積が最少となった時の上記膨張室
の圧力と上記高圧流体源の圧力とを一致させた後、上記
吸気弁を開くように上記吸気弁および排気弁の開閉を調
節してエリクソンサイクルを構成するようにしたもので
ある。
The gas cycle refrigerator according to the present invention includes a balance chamber and an expansion chamber whose volumes are changed by a displacer that reciprocates within a cylinder, a heat storage device that communicates the balance chamber and the expansion chamber, an intake valve, and an exhaust chamber. a source of high pressure fluid and a source of low pressure fluid respectively connected to the balance chamber by a valve, the intake valve being opened and the exhaust valve being closed when the volume of the expansion chamber is at a minimum, the volume of the expansion chamber being being increased; At an intermediate time, the intake valve is closed to match the pressure in the expansion chamber when the volume of the expansion chamber reaches its maximum with the pressure in the low-pressure fluid source, and then the exhaust valve is opened to increase the volume of the expansion chamber. 6. Close the exhaust valve at an intermediate point when the volume is being reduced to match the pressure in the expansion chamber when the volume of the expansion chamber is at its minimum with the pressure of the high-pressure fluid source, and then close the intake valve. The Ericsson cycle is configured by adjusting the opening and closing of the intake valve and exhaust valve so that they are open.

〔作用〕[Effect]

この発明においては4→1,2→8の過程を可逆過程で
ある等温過程としたので効率は理想的にはカルノー効率
となり、また2→8の過程での瞬時のガスの移動がな(
なるので駆動系に過大な力が加わらず、また、シールの
漏れも防止できる。
In this invention, the processes 4→1 and 2→8 are reversible isothermal processes, so the efficiency is ideally Carnot efficiency, and there is no instantaneous gas movement in the process 2→8 (
This prevents excessive force from being applied to the drive system and prevents seal leaks.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。この
発明の一実施例によるガスサイクル冷凍機の構成は第1
図に示す従来のものと全く同一である。
An embodiment of the present invention will be described below with reference to the drawings. The configuration of a gas cycle refrigerator according to an embodiment of the present invention is as follows:
This is exactly the same as the conventional one shown in the figure.

次に動作について説明する。第2図は本発明に係る膨張
室(4)のエリクソンサイクルによるP−■線図である
。第2図において1の状態ではディスプレーサ−(3)
は最下端にあフ、また吸気バルブ(1)が開き排気バル
ブ(2)は閉じており、膨張室(4)の体積は最少で圧
力は高圧になっている。次に1→2ではディスプレーサ
−(3)が上に動き、それに伴い高圧気体が蓄冷器(6
)を通って膨張室(4)に導入される。次に膨張室(4
)の容積が増大されつつあるこの状態で排気バルブ(2
)と吸気バルブ(1)を両方閉じる。
Next, the operation will be explained. FIG. 2 is a P-■ diagram according to the Ericsson cycle of the expansion chamber (4) according to the present invention. In the state of 1 in Fig. 2, the displacer (3)
is at the lowest end, the intake valve (1) is open and the exhaust valve (2) is closed, and the volume of the expansion chamber (4) is the minimum and the pressure is high. Next, from 1 to 2, the displacer (3) moves upwards, and high pressure gas flows into the regenerator (6).
) into the expansion chamber (4). Next, the expansion chamber (4
) in this state where the volume of the exhaust valve (2) is increasing.
) and intake valve (1).

2の状態は2→8でディスプレーサ−(3)を上方に動
かし膨張室(4)の体積が最大になった時膨張室(4)
の圧力が低圧流体源すなわち低圧バッファタンク00の
圧力に等しくなるよう決定される。2→8では排気バル
ブ(2)と吸気バルブ(1)は閉じたままで気体はつり
合い室(5)から蓄冷器(6)を通シ膨張室(4)に導
入される。この時、つり合い室(5)と膨張室(4)に
温度差があり、膨張室(4)の温度が低いので低温の気
体の量が多くなり、ボイルシャルルの法則に従って圧力
が低下する。この過程は可逆な等温過程であシ、前述の
ように膨張室(4)の容積が最大になった時の膨張室(
4)の圧力は低圧流体源の圧力と等しくなり、8の状態
になる。8の状態で、吸気バルブ(1)は閉じたままで
排気バルブ(2)を開ける。8→4では各バルブ(t)
 、 (2)は8の状態のままである。
In state 2, when the displacer (3) is moved upward from 2 to 8 and the volume of the expansion chamber (4) reaches its maximum, the expansion chamber (4)
is determined to be equal to the pressure of the low pressure fluid source, ie, the low pressure buffer tank 00. At step 2→8, the exhaust valve (2) and the intake valve (1) remain closed, and gas is introduced from the balance chamber (5) through the regenerator (6) into the expansion chamber (4). At this time, there is a temperature difference between the balance chamber (5) and the expansion chamber (4), and since the temperature of the expansion chamber (4) is low, the amount of low-temperature gas increases, and the pressure decreases according to Boyle-Charles' law. This process is a reversible isothermal process, and as mentioned above, when the volume of the expansion chamber (4) reaches its maximum (
The pressure in 4) becomes equal to the pressure of the low pressure fluid source, resulting in state 8. In state 8, the intake valve (1) remains closed and the exhaust valve (2) is opened. For 8→4, each valve (t)
, (2) remains in the state of 8.

次に膨張室(4)の容積が増大されつつある4の状態で
排気バルブ(2)と吸気バルブ(1)を両方閉じる。4
の状態は、4→1でディスプレーサ−(3)を下方に動
かし膨張室(4)の容積が最少になった時に膨張室(4
)の圧力が高圧流体源すなわち高圧バッファタンク(至
)の圧力に等しくなるように決定される。4→lでは各
バルブ(1) 、 (2)は閉じたままで、気体は膨張
室(4)から蓄冷器(6)を通ってつ夛合い室(5)に
導入される。この時、っシ合い室(5)の温度が膨張室
(4)の温度よ勺高いので、高温の気体の量が多くな夛
、ボイルシャルルの法則に従って圧力が上昇し、前述の
ように膨張室(4)の容積が最少になった時の膨張室(
4)の圧力が高圧流体源の圧力に等しくなシ、lの状態
に戻る。この4→1の過程は可逆な等温過程である。
Next, both the exhaust valve (2) and the intake valve (1) are closed in the state 4 in which the volume of the expansion chamber (4) is being increased. 4
In this state, when the displacer (3) is moved downward from 4 to 1 and the volume of the expansion chamber (4) becomes the minimum, the expansion chamber (4) is closed.
) is determined to be equal to the pressure of the high pressure fluid source, i.e. the high pressure buffer tank (to). At 4→l, each valve (1), (2) remains closed, and gas is introduced from the expansion chamber (4) through the regenerator (6) into the combination chamber (5). At this time, the temperature in the gas chamber (5) is much higher than the temperature in the expansion chamber (4), so the pressure increases according to Boyle-Charles' law and the gas expands as described above. Expansion chamber when the volume of chamber (4) becomes minimum (
4) Returns to state 1, where the pressure is equal to the pressure of the high-pressure fluid source. This 4→1 process is a reversible isothermal process.

このように、新しいガスサイクル冷凍機では、従来のガ
スサイクル冷凍機のように2→8および4→lでの不可
逆で急激な気体の移動が無いので効率が高く、駆動軸に
加わる力が小さく、しかもシールの漏れも少なくなるこ
とが期待される。
In this way, new gas cycle refrigerators have high efficiency because there is no irreversible and sudden gas movement in 2→8 and 4→l unlike conventional gas cycle refrigerators, and the force applied to the drive shaft is small. Moreover, it is expected that seal leakage will be reduced.

以上のことから、高効率で信頼性の高いガスサイクル冷
凍機を実現できる。
From the above, a highly efficient and reliable gas cycle refrigerator can be realized.

なお、上記実施例ではディスプレーサー(3)の駆動に
クフンクシャフ) 01を用いた冷凍機について示した
が、これに限るものではなく、例えば、スコッチョーク
駆動や気体刃駆動等の他のガスサイクル冷凍機にも適用
でき、上記実施例と同様の効果が得られる。
In addition, although the above embodiment shows a refrigerator using a Kufunkushafu) 01 to drive the displacer (3), it is not limited to this, and other gas cycle refrigerators such as Scotchoke drive or gas blade drive may be used. The present invention can also be applied to a machine, and the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、シリンダ内で往復運
動するディスプレーサ−によつ容積が変化するつり合い
室および膨張室、これらつり合い室と膨張室とを連通ず
る蓄熱器、並びに吸気弁および排気弁によってそれぞれ
上記つり合い室に連結される高圧流体源および低圧流体
源を備え、上記膨張室の容積が最少の時に上記吸気弁を
開いて排気弁を閉じ、上記膨張室の容積が増大されつつ
ある中間時に上記吸気弁を閉じて上記膨張室の容積が最
大となった時の上記膨張室の圧力と上記低圧流体源の圧
力とを一致さた後、上記排気弁を開き、上記膨張室の容
積が減少されつつある中間時に上記排気弁を閉じて上記
膨張室の容積が最少となった時の上記膨張室の圧力と上
記高圧流体源の圧力とを一致させた後、上記吸気弁を開
くように上記吸気弁および排気弁の開閉を調節してエリ
クソンサイ・クルを構成するようにしたので、駆動系に
過大な力が加わったりシールが漏れたシするのを防止で
きると共に、効率の良いガスサイクル冷凍機が得られる
効果がある。
As described above, according to the present invention, there is provided a balance chamber and an expansion chamber whose volumes are changed by a displacer that reciprocates within the cylinder, a heat storage device that communicates the balance chamber and the expansion chamber, an intake valve, and an exhaust chamber. a source of high pressure fluid and a source of low pressure fluid respectively connected to the balance chamber by a valve, the intake valve being opened and the exhaust valve being closed when the volume of the expansion chamber is at a minimum, the volume of the expansion chamber being being increased; At an intermediate time, the intake valve is closed to match the pressure in the expansion chamber when the volume of the expansion chamber reaches its maximum with the pressure of the low-pressure fluid source, and then the exhaust valve is opened to increase the volume of the expansion chamber. When the volume of the expansion chamber is at a minimum, the exhaust valve is closed to match the pressure of the high-pressure fluid source with the pressure of the high-pressure fluid source when the volume of the expansion chamber is at its minimum, and then the intake valve is opened. By adjusting the opening and closing of the intake and exhaust valves to form an Ericsson cycle, it is possible to prevent excessive force from being applied to the drive system and leakage of seals, and to ensure efficient gas flow. This has the effect of providing a cycle refrigerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例および従来 ガスサイクル
冷凍機を示す構成図、第2図はこの発明の−!!施例に
係る膨張室のエリクソンサイクルによるP−V線図、第
8図は従来の膨張室のP−V線図である。 図において、(1)は吸気バルブ、(2)は排気バルブ
、(3)はディスプレーサ−1(4)は膨張室、(5)
はっ夛合い室、(6)は蓄冷器、(7)は圧縮機、@は
駆動軸、α尋はディスプレーサ−シール、(ト)は高圧
バッファタンク、α・は低圧バッファタンク、(至)は
駆動モータである。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
Fig. 1 is a configuration diagram showing an embodiment of the present invention and a conventional gas cycle refrigerator, and Fig. 2 is a configuration diagram showing an embodiment of the present invention and a conventional gas cycle refrigerator. ! A PV diagram of the expansion chamber according to the example according to the Ericsson cycle, and FIG. 8 is a PV diagram of the conventional expansion chamber. In the figure, (1) is the intake valve, (2) is the exhaust valve, (3) is the displacer 1, (4) is the expansion chamber, (5) is the
Interaction chamber, (6) is the regenerator, (7) is the compressor, @ is the drive shaft, α is the displacer seal, (g) is the high pressure buffer tank, α is the low pressure buffer tank, (to) is the drive motor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  シリンダ内で往復運動するディスプレーサーによつ容
積が変化するつり合い室および膨張室、これらつり合い
室と膨張室とを連通する蓄熱器、並びに吸気弁および排
気弁によつてそれぞれ上記つり合い室に連結される高圧
流体源および低圧流体源を備え、上記膨張室の容積が最
少の時に上記吸気弁を開いて排気弁を閉じ、上記膨張室
の容積が増大されつつある中間時に上記吸気弁を閉じて
上記膨張室の容積が最大となつた時の上記膨張室の圧力
と上記低圧流体源の圧力とを一致さた後、上記排気弁を
開き、上記膨張室の容積が減少されつつある中間時に上
記排気弁を閉じて上記膨張室の容積が最少となつた時の
上記膨張室の圧力と上記高圧流体源の圧力とを一致させ
た後、上記吸気弁を開くように上記吸気弁および排気弁
の開閉を調節してエリクソンサイクルを構成するように
したガスサイクル冷凍機。
A balance chamber and an expansion chamber whose volumes change due to a displacer reciprocating within the cylinder, a heat storage device communicating between the balance chamber and the expansion chamber, and an intake valve and an exhaust valve connected to the balance chamber, respectively. a high-pressure fluid source and a low-pressure fluid source, the intake valve is opened and the exhaust valve is closed when the volume of the expansion chamber is at a minimum, and the intake valve is closed at an intermediate time when the volume of the expansion chamber is being increased. After matching the pressure of the expansion chamber when the volume of the expansion chamber reaches its maximum with the pressure of the low-pressure fluid source, the exhaust valve is opened, and the exhaust valve is opened at an intermediate point when the volume of the expansion chamber is being reduced. After the pressure in the expansion chamber is made equal to the pressure in the high-pressure fluid source when the valve is closed and the volume of the expansion chamber is at its minimum, the intake valve and the exhaust valve are opened and closed so as to open the intake valve. A gas cycle refrigerator configured to form an Ericsson cycle by adjusting the
JP62026584A 1987-02-05 1987-02-05 Gas cycle refrigerator and gas cycle refrigeration method Expired - Lifetime JPH076703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026584A JPH076703B2 (en) 1987-02-05 1987-02-05 Gas cycle refrigerator and gas cycle refrigeration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026584A JPH076703B2 (en) 1987-02-05 1987-02-05 Gas cycle refrigerator and gas cycle refrigeration method

Publications (2)

Publication Number Publication Date
JPS63194164A true JPS63194164A (en) 1988-08-11
JPH076703B2 JPH076703B2 (en) 1995-01-30

Family

ID=12197594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026584A Expired - Lifetime JPH076703B2 (en) 1987-02-05 1987-02-05 Gas cycle refrigerator and gas cycle refrigeration method

Country Status (1)

Country Link
JP (1) JPH076703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274566A (en) * 2001-03-14 2002-09-25 Toto Kogyo Co Ltd Storage tool and device for wiry fittings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719310A (en) * 1971-02-18 1972-09-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4719310A (en) * 1971-02-18 1972-09-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274566A (en) * 2001-03-14 2002-09-25 Toto Kogyo Co Ltd Storage tool and device for wiry fittings

Also Published As

Publication number Publication date
JPH076703B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US6701721B1 (en) Stirling engine driven heat pump with fluid interconnection
KR101289395B1 (en) Gas balanced cryogenic expansion engine
KR101422439B1 (en) Gas balanced cryogenic expansion engine
US5642623A (en) Gas cycle refrigerator
JPH0460351A (en) Freezer
KR100457460B1 (en) Centering apparatus for free piston machine
CN2881123Y (en) Motor having two-regenerator
US4090859A (en) Dual-displacer two-stage split cycle cooler
US20050115247A1 (en) Fast warm up pulse tube
CN1991155A (en) Hot-air engine device and its manufacturing method
JPS63194164A (en) Gas cycle refrigerator
US4270351A (en) Heat engine and thermodynamic cycle
US4471625A (en) Gas cycle refrigerator
CN104006565B (en) Ultra-low temperature refrigerating device
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JP2005098271A (en) Hot air type rotary external combustion engine
JPH04136664A (en) Reverse starling cycle device
JPH0240454Y2 (en)
JPH1062024A (en) Vuilleumier heat pump
JPS6224619B2 (en)
JPS62206352A (en) Stirling refrigerator
SU1089366A1 (en) Gaseous refrigerating machine
JPH01142278A (en) Compressor
RU1802193C (en) Method for operating thermal engine
JP2771721B2 (en) Cryogenic refrigerator