JPH04136664A - Reverse starling cycle device - Google Patents

Reverse starling cycle device

Info

Publication number
JPH04136664A
JPH04136664A JP25426490A JP25426490A JPH04136664A JP H04136664 A JPH04136664 A JP H04136664A JP 25426490 A JP25426490 A JP 25426490A JP 25426490 A JP25426490 A JP 25426490A JP H04136664 A JPH04136664 A JP H04136664A
Authority
JP
Japan
Prior art keywords
compression chamber
buffer
back pressure
pressure section
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25426490A
Other languages
Japanese (ja)
Inventor
Keisuke Kawai
啓介 川合
Nobuaki Okumura
暢朗 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP25426490A priority Critical patent/JPH04136664A/en
Publication of JPH04136664A publication Critical patent/JPH04136664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To retain performance of a device at a desired target value by a method wherein check valves provided between a compressor room and a buffer, and the buffer and a compressor room back pressure part are opened or closed selectively so that operation fluid compressed to have high pressure is accumulated in the buffer, whereby operation fluid volume in a reverse Starling cycle constituting part is increased. CONSTITUTION:During normal operation, if only a check valve 13 is opened from a state in which both check valves 13 and 14 are closed, operation gas which is compressed to have high pressure is accumulated in a buffer 15 through a one-way valve 12. As a result, pressure of the operation gas in a freezing circuit drops down, reaching temperature of a cold head rises up and freezing performance can be restricted. If the check valve 13 is closed and the check valve 14 is opened, the operation gas in the buffer 15 flows into a compressor room back pressure part 11 which is low pressure side and the pressure in the compressor room back pressure part 11 rises up, and therefore, the operation gas enters again the freezing circuit through another one-way valve 16 and gas volume in the freezing circuit returns to its original value, whereby the reaching temperature of the cold head 17 drops down, while freezing performance rises up.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、逆スターリングサイクル装置、特に性能を制
御する手段を備えた装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an inverted Stirling cycle device, and in particular to a device provided with means for controlling performance.

(従来技術) 逆スターリングサイクルを利用した装置、例えば、逆ス
ターリング冷凍機では、モータ等の駆動源によりクラン
クシ中フトを回転させ、ロンドを介して膨脹ピストン及
び圧縮ピストンを往復駆動させて、シリンダ内の流体を
圧縮膨脹させ、冷熱を発生させ、冷熱を取出して利用す
る。
(Prior art) In a device that uses a reverse Stirling cycle, for example, a reverse Stirling refrigerator, a drive source such as a motor rotates a crankshaft, and an expansion piston and a compression piston are reciprocated via a rond to move the inside of the cylinder. The fluid is compressed and expanded to generate cold heat, and the cold heat is extracted and used.

ところで、従来の逆スターリングサイクル装置では、逆
スターリングサイクル構成部、例えば逆スターリング冷
凍機では冷凍回路内の作動ガス封入量は、冷却後は一定
であり、冷凍性能はそれにより決っていた。
By the way, in a conventional reverse Stirling cycle device, the amount of working gas sealed in the refrigeration circuit of a reverse Stirling cycle component, such as a reverse Stirling refrigerator, is constant after cooling, and the refrigeration performance is determined by this.

このことを、実際の装置について図面に基づき、更に詳
しく説明する。
This will be explained in more detail with reference to the drawings regarding an actual device.

第2図は、逆スターリング冷凍機の従来の構成の一例を
示す図である。図に示すように、圧縮シリンダ1と圧縮
ピストン2とによって形成される圧縮室3は、ヘリウム
冷却器4、蓄冷器(再生器)5、コールドヘッド17を
経て膨脹室6に連通している。膨脹室6は、膨脹シリン
ダ7と膨脹ピストン8とにより画成されている。圧縮ピ
ストン2及び膨脹ピストン8には作動ガスが漏洩しない
ように、シール9.10が装着されている。圧縮ピスト
ン2の上下に形成される圧縮室3と、圧縮室背圧部11
は、圧縮室背圧部11から圧縮室3に向う方向にのみ流
体を流すことができる一方向逆止弁16を介して連結さ
れている。
FIG. 2 is a diagram showing an example of a conventional configuration of an inverted Stirling refrigerator. As shown in the figure, a compression chamber 3 formed by a compression cylinder 1 and a compression piston 2 communicates with an expansion chamber 6 via a helium cooler 4, a regenerator 5, and a cold head 17. The expansion chamber 6 is defined by an expansion cylinder 7 and an expansion piston 8. The compression piston 2 and the expansion piston 8 are fitted with seals 9.10 to prevent leakage of working gas. A compression chamber 3 formed above and below the compression piston 2 and a compression chamber back pressure section 11
are connected via a one-way check valve 16 that allows fluid to flow only in the direction from the compression chamber back pressure section 11 to the compression chamber 3.

以上の構成で、圧縮ピストン2、膨脹ピストン8を所定
の位相差で往復運動させることにより、極低温を得るこ
とができる。冷却途中で一方向逆止弁16を介して、圧
縮室背圧部11から冷凍回路内に作動ガスが補充される
が、定常となった後は、冷凍回路内の作動ガス量は一定
となり、冷凍性能を変化させることはできない。また、
冷凍回路内の作動ガス圧力は高いままなので、シールリ
ング9.10等の寿命が短かい。
With the above configuration, a cryogenic temperature can be obtained by reciprocating the compression piston 2 and the expansion piston 8 with a predetermined phase difference. During cooling, working gas is replenished into the refrigeration circuit from the compression chamber back pressure section 11 via the one-way check valve 16, but after the situation becomes steady, the amount of working gas in the refrigeration circuit remains constant. Refrigeration performance cannot be changed. Also,
Since the working gas pressure in the refrigeration circuit remains high, the lifespan of seal rings 9, 10, etc. is short.

尤も、インバータを利用した可変速により、冷凍性能を
制御することはでき、シールリング等の寿命を延すこと
もできないことはないが、コスト高につく難点がある。
Although it is possible to control the refrigeration performance and extend the life of seal rings and the like by variable speed using an inverter, it has the drawback of high costs.

(発明が解決しようとする課題) 本発明は、従来の逆スターリングサイクル装置、例えば
逆スターリング冷凍機の上記の問題点にかんがみ、装置
の性能を制御することが可能な逆スターリングサイクル
装置を提供することを課題とする。
(Problems to be Solved by the Invention) The present invention provides a reverse Stirling cycle device capable of controlling the performance of the device in view of the above-mentioned problems of conventional reverse Stirling cycle devices, such as reverse Stirling refrigerators. That is the issue.

(課題解決のための手段) 本発明は、上記の課題を解決させるため、上に例示した
ような逆スターリングサイクル装置において、圧縮ピス
トンにより画定される圧縮室と圧縮室背圧部との間にバ
ッファを設け、圧縮室とバッファとの間を、圧縮室から
バッファに向う方向にのみ流体を流すことのできる一方
向弁及び止め弁を設けた配管で接続し、バッファと圧縮
室背圧部との間−を止め弁を設けた配管で接続し、圧縮
室背圧部と圧縮室とを圧縮室背圧部から圧縮室に向う方
向にのみ流体を流すことのできる一方向弁を設けた管路
で接続し、制御目標値に応じて、上記2つの止め弁を制
御する制御手段を設ける手段を採用する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a reverse Stirling cycle device as exemplified above, between a compression chamber defined by a compression piston and a compression chamber back pressure section. A buffer is provided, and the compression chamber and the buffer are connected by piping equipped with a one-way valve and a stop valve that allow fluid to flow only in the direction from the compression chamber to the buffer, and the buffer and the compression chamber back pressure section are connected. A pipe equipped with a one-way valve that allows fluid to flow between the compression chamber back pressure section and the compression chamber only in the direction from the compression chamber back pressure section to the compression chamber. A method is adopted in which a control means is provided which connects the two stop valves by a line and controls the two stop valves according to the control target value.

(作用) 本発明の逆スターリングサイクル装置は上記の如く構成
されているので、圧縮室とバッファ、バッファと圧縮室
背圧部の間に設けられた止め弁を選択的に開閉すること
により、圧縮されて高圧となった作動流体をバッファに
溜め込んだり、バッファから圧縮室背圧部、一方向弁を
経て再び圧縮室に戻し、逆スターリングサイクル構成部
の作動流体量を増加させることができる。その結実装置
の性能を所望の目標値に保持することが可能となる。
(Function) Since the reverse Stirling cycle device of the present invention is configured as described above, the compression chamber and the buffer, and the buffer and the compression chamber back pressure section are selectively opened and closed to open and close the stop valves. The amount of working fluid in the reverse Stirling cycle component can be increased by storing the high-pressure working fluid in the buffer or returning it from the buffer to the compression chamber via the compression chamber back pressure section and the one-way valve. It becomes possible to maintain the performance of the fruiting device at a desired target value.

(実施例) 以下に本発明の実施例を、図面に基づいて詳細に説明す
る。
(Example) Examples of the present invention will be described in detail below based on the drawings.

第1図は、先に第2図で説明した逆スターリング冷凍機
に本発明を適用した実施例を示す図である。したがって
、第2図と同一の機能を有する部材には同一の符号を付
し、異る点に重点を置いて説明する。
FIG. 1 is a diagram showing an embodiment in which the present invention is applied to the inverted Stirling refrigerator previously explained in FIG. 2. Therefore, members having the same functions as those in FIG. 2 are designated by the same reference numerals, and the explanation will focus on the differences.

本実施例の冷凍機では、圧縮ピストン2の上下に形成さ
れる圧縮室3と圧縮室背圧部11との間にバッファ15
が設けられ、圧縮室3とバッファ15の間は圧縮室3か
らバッファ15に向う方向にのみ流体を流す一方向弁1
2及び止め弁13を直列に設けた管路で連結され、バッ
ファ15と圧縮室背圧部11とは、止め弁14を設けた
管路で連結されている。その他の構成は、第2図で説明
した従来の冷凍機と同様である。
In the refrigerator of this embodiment, a buffer 15 is provided between the compression chamber 3 formed above and below the compression piston 2 and the compression chamber back pressure section 11.
A one-way valve 1 is provided between the compression chamber 3 and the buffer 15 to allow fluid to flow only in the direction from the compression chamber 3 to the buffer 15.
2 and a stop valve 13 are connected in series, and the buffer 15 and the compression chamber back pressure section 11 are connected through a pipe line provided with a stop valve 14. The other configurations are similar to the conventional refrigerator described in FIG. 2.

本実施例の装置は以上の如(構成されているので、圧縮
ピストン2、膨脹ピストン8を所定の位相差で往復動さ
せることにより逆スターリングサイクルが行なわれ、コ
ールドヘッド17が冷却され極低温を得ることができる
ことは、先に述べたところであるが、冷却過程で作動ガ
スが次第に低温になるにしたがって、冷凍回路内の圧力
が次第に低下する。この間、圧縮機背圧部との圧力差分
の作動ガスは一方向弁16を通り冷凍回路内に補充され
る。コールドへラド17が所定の温度に到達し、定常に
なると、冷凍回路の圧力減少はなくなり、一方向弁16
からの補充も止るので、冷凍回路内の作動ガス量は一定
となる。
Since the apparatus of this embodiment is constructed as described above, a reverse Stirling cycle is performed by reciprocating the compression piston 2 and the expansion piston 8 with a predetermined phase difference, and the cold head 17 is cooled to a cryogenic temperature. What can be obtained is as mentioned above, as the working gas gradually becomes lower in temperature during the cooling process, the pressure in the refrigeration circuit gradually decreases.During this period, the pressure difference with the compressor back pressure section The gas is replenished into the refrigeration circuit through the one-way valve 16. When the cold rad 17 reaches a predetermined temperature and becomes steady, the pressure in the refrigeration circuit no longer decreases, and the one-way valve 16
The amount of working gas in the refrigeration circuit remains constant since replenishment from the refrigeration circuit also stops.

従来の冷凍機では、この後、到達温度等の冷凍性能を変
えることはできなかったが、本発明による本実施例の冷
凍機では、後述する如(、冷凍回路内の圧力を可変とす
ることにより、冷凍性能を制御することが可能となる。
In conventional refrigerators, it was not possible to change the refrigeration performance such as the reached temperature after this, but in the refrigerator of this embodiment according to the present invention, as will be described later, the pressure in the refrigeration circuit can be made variable. This makes it possible to control refrigeration performance.

すなわち、定常運転中、止め弁13.14を閉鎖した状
態から止め弁13を開くと、圧縮され高圧となった作動
ガスが一方向弁12を通りバッファ15に溜め込まれる
。その結果、冷凍回路内の作動ガスの圧力が減少し、コ
ールドヘッドの到達温度が上り、冷凍性能を抑えること
ができる。バッファ15内への作動ガス溜め込み量を調
整することにより、コールドヘッド17の到達温度を任
意に制御することができる。
That is, during steady operation, when the stop valves 13 and 14 are opened from the closed state, compressed high-pressure working gas passes through the one-way valve 12 and is stored in the buffer 15. As a result, the pressure of the working gas in the refrigeration circuit decreases, the temperature reached by the cold head increases, and refrigeration performance can be suppressed. By adjusting the amount of working gas stored in the buffer 15, the temperature reached by the cold head 17 can be arbitrarily controlled.

止め弁13を閉鎖し、止め弁14を開放すると、バッフ
ァ15内の作動ガスは、低圧側である圧縮室背圧部11
に流入し、圧縮室背圧部11の圧力が最低サイクル圧よ
り上昇するので、その中の作動ガスは、一方向弁16を
通り再び冷凍回路内に入り、冷凍回路内のガス量は元に
戻り、コールドヘッド17の到達温度は低下し、冷凍性
能が上昇する。
When the stop valve 13 is closed and the stop valve 14 is opened, the working gas in the buffer 15 is transferred to the compression chamber back pressure section 11 which is the low pressure side.
As the pressure in the compression chamber back pressure section 11 rises above the lowest cycle pressure, the working gas therein passes through the one-way valve 16 and enters the refrigeration circuit again, reducing the amount of gas in the refrigeration circuit to its original level. The temperature reached by the cold head 17 decreases, and the refrigeration performance increases.

したがって、負荷変動に応じて、作動ガスをバッファ1
5内に溜め込み、冷凍回路内の圧力を低くしてやること
により冷凍回路内の部品、例えばシールリング9.10
等の耐久性を向上させることができる。
Therefore, depending on the load fluctuation, the working gas is
Parts in the refrigeration circuit, such as the seal ring 9.10, are stored in the refrigeration circuit and the pressure in the refrigeration circuit is lowered.
It is possible to improve the durability of

例えば、上記冷凍機をクライオポンプとして使用した場
合、コールドヘッド17の温度が20にであれば充分で
あるが、それ以下の温度、例えば14に程度に冷えてい
る場合が多い。このような時に、作動ガスをバッファ1
5に溜め込むことにより、クライオポンプとしての所要
性能を維持しながら、クライオポンプの寿命を向上させ
ることができる。これを第3図のフローチャートを用い
て説明する。TIを14に程度、T2を17にとすると
、コールドヘッド17の温度がT1以下の時、止め弁1
3を開及び止め弁14を閉とし、作動空間のガス圧を下
げ、コールドヘッド17の温度を、先ずは、T1に戻す
。温度TIになると、止め弁13を閉じて、作動ガス圧
を下げた状態で、−旦、コールドヘッド17の温度を1
2以上にさせる。
For example, when the above-mentioned refrigerator is used as a cryopump, it is sufficient if the temperature of the cold head 17 is 20 degrees, but in many cases the temperature is lower than that, for example, about 14 degrees. At such times, the working gas is transferred to buffer 1.
5, it is possible to improve the life of the cryopump while maintaining the required performance of the cryopump. This will be explained using the flowchart in FIG. When TI is about 14 and T2 is about 17, when the temperature of the cold head 17 is below T1, the stop valve 1
3 is opened and the stop valve 14 is closed, the gas pressure in the working space is lowered, and the temperature of the cold head 17 is first returned to T1. When the temperature reaches TI, the stop valve 13 is closed, the working gas pressure is lowered, and the temperature of the cold head 17 is lowered to 1.
Make it 2 or more.

温度を12以上を確認して、止め弁14を開き、圧縮室
背圧部11の圧を上昇させ、一方向弁16を介して、最
低サイクル圧を上げる。コールドへラド17の温度T1
以下を確認する迄止め弁14を開とする。温度TI以下
を確認すると止め弁14を閉じ、前述した操作を繰り返
す。
After confirming that the temperature is 12 or above, the stop valve 14 is opened, the pressure in the compression chamber back pressure section 11 is increased, and the lowest cycle pressure is increased via the one-way valve 16. Temperature T1 of Coldherad 17
Keep the stop valve 14 open until the following is confirmed. When it is confirmed that the temperature is below TI, the stop valve 14 is closed and the above-described operation is repeated.

以上、本発明を逆スターリングサイクル冷凍機に通用し
た実施例を例にとって説明したが、本発明は冷凍機に限
らず、逆スターリングサイクルを利用した他の装置にも
適用可能である。
Although the present invention has been described above using an example of an embodiment in which the present invention is applied to a reverse Stirling cycle refrigerator, the present invention is not limited to refrigerators, but is applicable to other devices that utilize a reverse Stirling cycle.

(効果) 以上の如く、本発明によれば、逆スターリングサイクル
を利用した装置の性能を負荷変動、使用条件に応じて簡
単に制御することが可能となり、作動流体の圧力を必要
な限度で低くすることにより、部品の寿命の向上及び消
費電力の節約に効果が得られる。
(Effects) As described above, according to the present invention, it is possible to easily control the performance of a device using a reverse Stirling cycle according to load fluctuations and usage conditions, and to lower the pressure of the working fluid to the necessary limit. By doing so, it is possible to improve the life of parts and save power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を逆スターリングサイクル冷凍機に適用
した実施例の断面図、第2図はこれに対応する従来の装
置の断面図、第3図は本発明の一例の温度制御を示すフ
ローチャート図である。 1−圧縮シリンダ、   2−圧縮ピストン、3−圧縮
室、      6−膨脹室、7−膨脹シリンダ、  
 8−膨脹ピストン、11−圧縮室背圧部、  12.
16−−−一方向弁、13.14・−止め弁、 15−
バッファ。
Fig. 1 is a sectional view of an embodiment in which the present invention is applied to a reverse Stirling cycle refrigerator, Fig. 2 is a sectional view of a conventional device corresponding thereto, and Fig. 3 is a flowchart showing temperature control in an example of the present invention. It is a diagram. 1-compression cylinder, 2-compression piston, 3-compression chamber, 6-expansion chamber, 7-expansion cylinder,
8-expansion piston, 11-compression chamber back pressure section, 12.
16----One-way valve, 13.14・-Stop valve, 15-
buffer.

Claims (2)

【特許請求の範囲】[Claims] (1) シリンダ内を往復駆動され、流体を圧縮・膨脹
させるピストンを有し、上記シリンダ内の圧縮用ピスト
ンの往復動方向側に圧縮室と圧縮室背圧部とが形成され
る逆スターリングサイクル装置において、 上記の圧縮室と圧縮室背圧部との間に設けたバッファと
、 圧縮室とバッファとの間を接続し且つ圧縮室からバッフ
ァに向う方向にのみ流体を流す一方向弁及び止め弁を設
けた配管と、 バッファと圧縮室背圧部との間を接続し且つ止め弁を設
けた配管と、 圧縮室背圧部と圧縮室とを接続し且つ圧縮室背圧部から
圧縮室に向う方向にのみ流体を流す一方向弁を設けた管
路と、および 制御目標値に応じて、上記2つの止め弁を制御する制御
手段を有することを特徴とする逆スターリングサイクル
装置。
(1) A reverse Stirling cycle in which a piston is driven reciprocally within a cylinder to compress and expand fluid, and a compression chamber and a compression chamber back pressure section are formed on the side in the reciprocating direction of the compression piston within the cylinder. In the device, a buffer provided between the compression chamber and the compression chamber back pressure section, and a one-way valve and stop that connect the compression chamber and the buffer and allow fluid to flow only in the direction from the compression chamber to the buffer. A pipe provided with a valve, a pipe connected between the buffer and the compression chamber back pressure section and provided with a stop valve, and a pipe connected between the compression chamber back pressure section and the compression chamber and connected from the compression chamber back pressure section to the compression chamber. 1. A reverse Stirling cycle device comprising: a conduit provided with a one-way valve that allows fluid to flow only in a direction toward the stop valve; and a control means for controlling the two stop valves according to a control target value.
(2) 上記の逆スターリングサイクル装置が冷凍機で
あり、上記の制御の目標値が所望の取出し温度であるこ
とを特徴とする請求項1に記載の装置。
(2) The device according to claim 1, wherein the reverse Stirling cycle device is a refrigerator, and the target value of the control is a desired take-out temperature.
JP25426490A 1990-09-26 1990-09-26 Reverse starling cycle device Pending JPH04136664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25426490A JPH04136664A (en) 1990-09-26 1990-09-26 Reverse starling cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25426490A JPH04136664A (en) 1990-09-26 1990-09-26 Reverse starling cycle device

Publications (1)

Publication Number Publication Date
JPH04136664A true JPH04136664A (en) 1992-05-11

Family

ID=17262562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25426490A Pending JPH04136664A (en) 1990-09-26 1990-09-26 Reverse starling cycle device

Country Status (1)

Country Link
JP (1) JPH04136664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530237B2 (en) 2001-04-02 2003-03-11 Helix Technology Corporation Refrigeration system pressure control using a gas volume

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530237B2 (en) 2001-04-02 2003-03-11 Helix Technology Corporation Refrigeration system pressure control using a gas volume

Similar Documents

Publication Publication Date Title
JP3624542B2 (en) Pulse tube refrigerator
US5642623A (en) Gas cycle refrigerator
JP2824365B2 (en) Cool storage type refrigerator
US5487272A (en) Cryogenic refrigerator
JPH04136664A (en) Reverse starling cycle device
JP2000121186A (en) Cold storage refrigerating machine
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
JPH031053A (en) Refrigerating machine
JPH10132405A (en) Cold storage freezer and its operating method
JP2995883B2 (en) Stirling cycle device
JP2005283026A (en) Cold storage type refrigerating machine
JP2000018741A (en) Pulse tube refrigerating machine
JP2771721B2 (en) Cryogenic refrigerator
JPH0728532Y2 (en) Stirling cycle refrigerator
JPH07234030A (en) Method and apparatus for refrigerating and liquefying by cold thermal storage type refrigerator
JP2780934B2 (en) Pulse tube refrigerator
JPH0375457A (en) Cryogenic refrigerating apparatus
JPS63194164A (en) Gas cycle refrigerator
JPH0136029B2 (en)
JPH0240454Y2 (en)
JPH08128743A (en) Pulse pipe refrigerating machine
JPH01159473A (en) Free piston type compressor
JPH0842932A (en) Freezer
JPH06323655A (en) Refrigerator
JPH0250384B2 (en)