JPS6319406A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPS6319406A
JPS6319406A JP16446386A JP16446386A JPS6319406A JP S6319406 A JPS6319406 A JP S6319406A JP 16446386 A JP16446386 A JP 16446386A JP 16446386 A JP16446386 A JP 16446386A JP S6319406 A JPS6319406 A JP S6319406A
Authority
JP
Japan
Prior art keywords
valve
oil chamber
small diameter
diameter hole
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16446386A
Other languages
Japanese (ja)
Other versions
JPH0557444B2 (en
Inventor
Masaru Sugiyama
優 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP16446386A priority Critical patent/JPS6319406A/en
Publication of JPS6319406A publication Critical patent/JPS6319406A/en
Publication of JPH0557444B2 publication Critical patent/JPH0557444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)

Abstract

PURPOSE:To reduce the influence of flow force by constituting a variable throttle part by the opening provided on the outer circumference at the lower end of a spool part, the inner wall of a large diameter hole, and a ring-shaped groove. CONSTITUTION:On the outer circumference at the lower end of the spool part 42b of a valve body 42, an opening 42b1 is formed, and by the opening 42b1, the inner wall 41a1 of a large diameter hole, and a ring-shaped groove 41e, a variable throttle part A whose flow passage area is always smaller than that formed between the taper surface 42c1 of a poppet valve part 42c and its valve seat 41d is constituted. Thus, since the flow force caused by the pressure oil flowing in the flow passage formed between the taper surface 42c1 of the poppet valve part 42c and its valve seat 41d can be almost eliminated, the influence of flow force can be reduced. Further, since the shape of the opening 42b1 provided on the spool part 42b can be suitably determined without being restricted by the others, the setting of the flow passage area at the variable throttle part can be facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流量制御弁に係り、特に、本願出願人の先願(
特願昭61−11709号、特願昭61−11710号
、特願昭61−31699号、特願昭61’−3170
0号)に係る各装置の主弁として最適に採用し得る流量
制御弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flow rate control valve, and in particular, the present invention relates to a flow control valve, and in particular, the present invention relates to a flow control valve.
Japanese Patent Application No. 61-11709, Japanese Patent Application No. 11710, Japanese Patent Application No. 61-31699, Japanese Patent Application No. 61-3170
The present invention relates to a flow control valve that can be optimally adopted as the main valve of each device related to No. 0).

〔先願の技術〕[Technology of prior application]

本願出願人は、上記した先願、例えば特願昭61−11
709号にて、第4図に例示する装置を提案した。
The applicant of this application has filed the above-mentioned earlier application, for example, Japanese Patent Application No. 1986-11.
In No. 709, a device illustrated in FIG. 4 was proposed.

第4図に示す装置は、主弁10.第1パイロツト弁20
及び第2パイロ−/ ト弁30によって構成されている
流量制御装置であり、主弁10は弁本体11と、この弁
本体11内に上下方向(軸方向)へ摺動自在に嵌挿した
弁体12と、この弁体12を下方へ付勢するばね13を
主要構成部材としている。弁本体11は、大径孔11a
の上下両側に同一径の小径孔11b、IICをそれぞれ
同軸的に設けてなり下方の連設段部に弁座lidを形成
してなる段付内孔を有するとともに、流入路P1が連通
ずる環状溝11eや流出路P2が連通ずる環状溝11f
を有している。
The device shown in FIG. 4 includes a main valve 10. First pilot valve 20
The main valve 10 includes a valve body 11 and a valve fitted into the valve body 11 so as to be slidable vertically (axially). The main components are a body 12 and a spring 13 that biases the valve body 12 downward. The valve body 11 has a large diameter hole 11a.
The small diameter hole 11b and IIC of the same diameter are provided coaxially on both the upper and lower sides of the annular pipe, which has a stepped inner hole with a valve seat lid formed in the lower continuous step part, and has an annular shape with which the inflow passage P1 communicates. An annular groove 11f through which the groove 11e and the outflow path P2 communicate.
have.

弁体12は、大径孔11a内に圧力バランスされた状態
(上下両端部に作用する流入路Pl内の圧力が常に相殺
される状態)にて摺動自在に嵌挿されてテーバ面12a
1にて弁座11dに着座したり離脱して流入路P1と流
出路22間を連通遮断するポペット弁部12aと、同ポ
ペット弁部12aの下側に設けられて下方の小径孔11
b内に延び同小径孔11bとの間に流出路P2が常時連
通する油室R1を形成する連結部12bと、同連結部1
2bの下側に設けられて下方の小径孔11bに摺動自在
に嵌挿され同小径孔11b端に油室R2を形成するピス
トン部12Cを一体的に備えるとともに、ポペット弁部
12aの上側に設けられて上方の小径孔11Cに摺動自
在に嵌挿され同小径孔11C端に油室R3を形成する小
径筒部12dを一体的に備えている。しかして、油室R
2は第1パイロツト弁20に接続されるとともに第2パ
イロット弁30の第1切換弁31に接続され、また油室
R3は絞り14を介して流入路P1に接続されるととも
に、第2パイロット弁30の第2切換弁32に接続され
ている。
The valve body 12 is slidably inserted into the large-diameter hole 11a in a pressure-balanced state (a state in which the pressure in the inflow path Pl acting on both the upper and lower ends is always canceled out), and is inserted into the tapered surface 12a.
1, a poppet valve part 12a seats on and leaves the valve seat 11d to block communication between the inflow passage P1 and the outflow passage 22; and a lower small diameter hole 11 provided on the lower side of the poppet valve part 12a.
a connecting portion 12b that extends into the small diameter hole 11b and forms an oil chamber R1 between which the outflow passage P2 is always in communication;
A piston part 12C is provided on the lower side of the poppet valve part 12b, and is integrally provided with a piston part 12C that is slidably inserted into the lower small diameter hole 11b and forms an oil chamber R2 at the end of the small diameter hole 11b. It is integrally provided with a small diameter cylindrical portion 12d that is slidably inserted into the upper small diameter hole 11C and forms an oil chamber R3 at the end of the small diameter hole 11C. However, oil chamber R
2 is connected to the first pilot valve 20 and to the first switching valve 31 of the second pilot valve 30, and the oil chamber R3 is connected to the inflow passage P1 via the throttle 14, and 30 second switching valves 32.

第1パイロツト弁20は、供給路P“3を通して導入さ
れた圧油を所定値に減圧する減圧弁21と、この減圧弁
21から絞り22を通して油室R2に付与されるパイロ
ット圧を電流付与値に応じて比例制御する電流制御リリ
ーフ弁23によって構成されている。第2パイロット弁
30は、油室R2に付与されるパイロット圧により作動
を制御される第1切換弁31と、この第1切換弁31に
よって作動を制御される第2切換弁32によって構成さ
れている。第1切換弁31は、油室R2から通路P4を
通して付与されるパイロット圧が設定値未満であるとき
図示のように非作動状態にあって供給路P3と第2切換
弁32の接続を断ちまたパイロット圧が設定値以上であ
るとき作動状態となって供給路P3を第2切換弁32に
接続させる。
The first pilot valve 20 includes a pressure reducing valve 21 that reduces the pressure of the pressure oil introduced through the supply path P"3 to a predetermined value, and a pilot pressure applied from the pressure reducing valve 21 to the oil chamber R2 through the throttle 22 to a current applied value. The second pilot valve 30 includes a first switching valve 31 whose operation is controlled by pilot pressure applied to the oil chamber R2, and a current control relief valve 23 that performs proportional control according to the pressure applied to the oil chamber R2. It is constituted by a second switching valve 32 whose operation is controlled by a valve 31.The first switching valve 31 is set to a non-operating state as shown in the figure when the pilot pressure applied from the oil chamber R2 through the passage P4 is less than a set value. When in the operating state, the connection between the supply passage P3 and the second switching valve 32 is cut off, and when the pilot pressure is equal to or higher than the set value, it becomes the operating state and connects the supply passage P3 to the second switching valve 32.

第2切換弁32は、第1切換弁31によって供給路P3
に接続されたとき作動して油室R3に連通する通路P5
とリザーバTに連通ずる戻り路P6を連通させ、また第
1切換弁31によって供給路P3との接続を断たれて戻
り路P6に接続されたとき図示のように非作動となって
油室R3に連通する通路P5と戻り路P6の連通を遮断
する。
The second switching valve 32 is connected to the supply path P3 by the first switching valve 31.
A passage P5 that operates when connected to the oil chamber R3 and communicates with the oil chamber R3.
When the first switching valve 31 disconnects the supply path P3 and connects it to the return path P6, the oil chamber R3 becomes inactive as shown in the figure. The communication between the passage P5 communicating with the return passage P6 is cut off.

上記のように構成した流量制御装置においては、主弁1
0の弁体12におけるポペット弁部12aに流入路P1
内圧力が常に相殺されるように作用し、また同ポペット
弁部12aとピストン部12Cに流出路P2内圧力が常
に相殺されるように作用するため、如何なる状態におい
ても流入路P1内圧力や流出路P2内圧力の変動によっ
て主弁10の弁体12が軸方向へ押動されることはない
In the flow control device configured as described above, the main valve 1
The inflow path P1 is connected to the poppet valve portion 12a of the valve body 12 of No.
The internal pressure always acts to cancel each other out, and the pressure inside the outflow path P2 acts on the poppet valve portion 12a and the piston portion 12C so as to always cancel each other out, so that the pressure inside the inflow path P1 and the outflow The valve body 12 of the main valve 10 is not pushed in the axial direction due to fluctuations in the pressure inside the passage P2.

また第1パイロット弁20におけるリリーフ弁23への
電流付与値が設定値未満であって油室R2に付与される
パイロット圧が設定値未満である場合には、図示のごと
く、第2パイロツト弁30における第1切換弁31が非
作動状態にあって供給路P3と第2切換弁32の接続を
断っており、第2切換弁32が非作動状態にあって油室
R3と戻り路P6の連通を遮断している。このため、主
弁10の弁体12は流入路P1から校り14を通して油
室R3に付与される油圧及びばね13の作用によりポペ
ット弁部12aを弁座lidに着座させており、流入路
P1と流出路P2の連通が通確に遮断されている。
Further, when the current applied to the relief valve 23 in the first pilot valve 20 is less than the set value and the pilot pressure applied to the oil chamber R2 is less than the set value, as shown in the figure, the second pilot valve 30 The first switching valve 31 is in an inoperative state, cutting off the connection between the supply path P3 and the second switching valve 32, and the second switching valve 32 is in an inactive state, and the oil chamber R3 and the return path P6 are communicated with each other. is blocking. For this reason, the valve body 12 of the main valve 10 seats the poppet valve portion 12a on the valve seat lid by the action of the oil pressure and the spring 13 applied to the oil chamber R3 from the inflow path P1 through the proof 14, and the inflow path P1 The communication between the outflow path P2 and the outflow path P2 is clearly blocked.

しかして、第1パイロット弁20におけるリリーフ弁2
3への電流付与値を設定値以上として油室R2に付与さ
れるパイロット圧を設定値以上とすると、第2パイロツ
ト弁30における第1切換弁31が作動して供給路P3
を第2切換弁32に接続するため、第2切換弁32が作
動して油室R3を戻り路P6に連通させる。このため、
油室R3内の油圧は略ゼロとなり、主弁10の弁体12
は油室R2内のパイロット圧(第1パイロツト弁20に
よって設定値以上の成る値に設定されている)による押
圧力とばね13の作用力がバランスする位置にて保持さ
れ流入路P1から流出路P2へ流れる流量が規定される
。したがって、第1パイロツト弁20におけるリリーフ
弁23への電流付与値を変えて油室R2に付与されるパ
イロ−/ )圧を変えることにより、主弁10の弁体1
2の位置を調整でき、流入路P1から流出路P2へ流れ
る流量を8周整することができる。
Therefore, the relief valve 2 in the first pilot valve 20
When the pilot pressure applied to the oil chamber R2 is equal to or higher than the set value by setting the value of current applied to P3 to the set value or more, the first switching valve 31 in the second pilot valve 30 is activated to switch the supply path P3.
Since the oil chamber R3 is connected to the second switching valve 32, the second switching valve 32 is operated to communicate the oil chamber R3 with the return path P6. For this reason,
The oil pressure in the oil chamber R3 becomes almost zero, and the valve body 12 of the main valve 10
is maintained at a position where the pressing force due to the pilot pressure in the oil chamber R2 (set to a value equal to or higher than the set value by the first pilot valve 20) and the acting force of the spring 13 are balanced, and the flow from the inflow path P1 to the outflow path is maintained. The flow rate flowing to P2 is defined. Therefore, by changing the value of current applied to the relief valve 23 in the first pilot valve 20 and changing the pyropressure applied to the oil chamber R2, the valve body 1 of the main valve 10
2 can be adjusted, and the flow rate flowing from the inflow path P1 to the outflow path P2 can be adjusted eight times.

以上の説明から明らかなように、上記した流量制御装置
の主弁10は、ポペット弁としての機能、すなわち流入
路P1と流出路22間の連通を適確に遮断する(洩れな
(遮断する)機能を備えながら、油室R2に付与される
パイロット正に応じて流入路P1から流出路P2に流れ
る流量を容易かつ正確に調整できる利点を備えている。
As is clear from the above description, the main valve 10 of the above-described flow rate control device functions as a poppet valve, that is, appropriately blocks communication between the inflow path P1 and the outflow path 22 (prevents leakage). While having this function, it has the advantage that the flow rate flowing from the inflow path P1 to the outflow path P2 can be easily and accurately adjusted in accordance with the pilot force applied to the oil chamber R2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した流量制御装置の主弁10においては
、弁体12のポペット弁部12aにおけるテーパ面12
a1の頂角θが弁座1゛1dへの適確なシート性を確保
する必要性から所定角(通常40〜60度)に限定され
るため、ポペット弁部12aの軸方向ストロークに対す
る可変絞り部の流路面積(当該弁の流量を規定する開口
面積)の変化率が大きく、同流路面積を所望の値に設定
しづらいといった問題がある。
By the way, in the main valve 10 of the flow rate control device described above, the tapered surface 12 of the poppet valve portion 12a of the valve body 12
Since the apex angle θ of a1 is limited to a predetermined angle (usually 40 to 60 degrees) due to the need to ensure proper seating on the valve seats 1 and 1d, a variable throttle for the axial stroke of the poppet valve portion 12a is used. There is a problem in that the rate of change in the flow path area (opening area that defines the flow rate of the valve) of the valve is large, and it is difficult to set the flow path area to a desired value.

また、ポペット弁部12aのテーパ面12a1と弁座l
id間に形成される可変絞り部を流れる圧油により大き
なフローフォースが発生して弁体12が軸方向へ押動さ
れることがあるため、折角設定した上記流路面積が影響
を受けることがある。
In addition, the tapered surface 12a1 of the poppet valve portion 12a and the valve seat l
Since a large flow force may be generated by the pressure oil flowing through the variable restrictor formed between the id and push the valve body 12 in the axial direction, the above-mentioned flow path area which has been carefully set may be affected. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、上記した主弁
10として採用し得る流量制御弁を、大径孔の両側に同
一径の小径孔をそれぞれ同軸的に設けてなり、一方の小
径孔と前記大径孔間の段部に弁座を形成するとともに、
前記大径孔の中間部に第1流入出路を接続し、また一方
の小径孔の中間部に第2流入出路を接続してなる弁本体
と、前記大径孔に摺動自在に嵌挿されて同大径孔の両端
部に互いに連通ずる第1油室と第2油室を形成するスプ
ール部と、同スプール部の前記第1油室側に設けられて
テーパ面にて前記弁座に着座したり離説して前記第1油
室と前記一方の小径孔間を連通遮断するポペット弁部と
、同ポペ・7ト弁部の一側に設けられて前記一方の小径
孔内に延び同小径孔との間に前記弁座を通して前記第1
油室に連通ずるとともに前記第2流入出路に連通ずる第
3油室を形成する連結部と、同連結部の一側に設けられ
て前記一方の小径孔に摺動自在に嵌挿され同小径孔端に
パイロット圧が付与される第4油室を形成するピストン
部を一体的に備えるとともに、前記スプール部の前記第
2油室側に設けられて前記他方の小径孔に摺動自在に嵌
挿され同小径孔端に前記両流入出路のうち流入路となる
流路に絞りを介して常に接続されるとともに戻り路に選
択的に接続される第5油室を形成する小径部を一体的に
備え、また前記スプール部の前記第1油室側端部にて前
記弁本体とにより前記第5油室側への軸方向移動によっ
て前記ポペット弁部のテーパ面と弁座間に形成される流
路面積より流路面積が常に小さい可変絞り部を構成する
弁体と、 同弁体を前記第4油室に向けて付勢するばねを具備する
構成とした。
In order to solve the above-described problems, the present invention provides a flow control valve that can be adopted as the main valve 10 described above, in which a large-diameter hole and small-diameter holes of the same diameter are coaxially provided on both sides of the large-diameter hole, and one small-diameter hole is provided. and forming a valve seat in the stepped portion between the large diameter hole,
a valve body having a first inflow/outflow passage connected to an intermediate portion of the large diameter hole and a second inflow/output passage connected to an intermediate portion of one of the small diameter holes, and a valve body that is slidably inserted into the large diameter hole; a spool portion forming a first oil chamber and a second oil chamber that communicate with each other at both ends of the large diameter hole; a poppet valve portion that shuts off communication between the first oil chamber and the one small diameter hole when seated or separated; and a poppet valve portion provided on one side of the poppet valve portion and disposed within the one small diameter hole. and the first valve seat through the valve seat between the small diameter hole and the small diameter hole.
a connecting portion forming a third oil chamber that communicates with the oil chamber and the second inflow/outlet passage; and a connecting portion that is provided on one side of the connecting portion and is slidably inserted into the one small diameter hole and has the same small diameter. A piston part is integrally provided at the hole end to form a fourth oil chamber to which pilot pressure is applied, and is provided on the second oil chamber side of the spool part and is slidably fitted into the other small diameter hole. A small diameter portion is integrally inserted into the small diameter hole end to form a fifth oil chamber that is always connected to the inflow channel of the two inflow and outflow channels via a throttle and selectively connected to the return channel. In preparation for this, a flow is formed between the tapered surface of the poppet valve portion and the valve seat by the axial movement of the spool portion toward the fifth oil chamber side by the valve body at the end portion of the spool portion on the first oil chamber side. The present invention is configured to include a valve body constituting a variable throttle portion whose flow path area is always smaller than the flow path area, and a spring that urges the valve body toward the fourth oil chamber.

〔発明の作用・効果〕[Action/effect of the invention]

本発明による流量゛制御弁においては、第4油室にパイ
ロット圧が付与されて弁体がばねに抗して軸方向へ移動
することにより、流入路と流出路が弁体のスプール部と
弁本体とにより構成される可変絞り部、第1油室、ポペ
ット弁部のテーパ面と弁座間に形成される流路及び第3
油室を通して連通して、ポペット弁部のテーパ面と弁座
間に形成される流路が前記可変絞り部の流路面積より流
路面積が常に大きい単なる通路として機能し、流入路か
ら流出路へ流れる流量が流路面積の最も小さい可変絞り
部にて規定される。
In the flow rate control valve according to the present invention, by applying pilot pressure to the fourth oil chamber and moving the valve body in the axial direction against the spring, the inflow passage and the outflow passage are connected to the spool portion of the valve body and the valve body. a variable throttle section constituted by the main body, a first oil chamber, a flow path formed between the tapered surface of the poppet valve section and the valve seat, and a third
The flow path that communicates through the oil chamber and is formed between the tapered surface of the poppet valve portion and the valve seat functions as a mere passage whose flow path area is always larger than the flow path area of the variable throttle portion, and flows from the inflow path to the outflow path. The flow rate is defined by the variable throttle section with the smallest flow path area.

しかして、スプール部又は弁本体に設けられる可変絞り
部の開口は、その形状を他のものに制約されることなく
適宜に設定可能であり、弁体の軸方向ストロークに対す
る可変絞り部の流路面積の変化率を適宜に小さくするこ
とができる。したがって、可変絞り部の流路面積を所望
の値に設定しやすくすることができる。
Therefore, the shape of the opening of the variable throttle part provided in the spool part or the valve body can be set as appropriate without being restricted by other things, and the flow path of the variable throttle part can be adjusted according to the axial stroke of the valve body. The rate of change in area can be appropriately reduced. Therefore, it is possible to easily set the flow path area of the variable throttle portion to a desired value.

また、本発明による流量制御弁においては、ポペット弁
部のテーパ面と弁座間に形成される流路が単なる通路と
して機能し、かつ弁体のスプール部と弁本体とにより構
成される可変絞り部にて流体が絞られるようにしたため
、ポペット弁部のテーパ面と弁座間に形成される流路を
流れる圧油により発生するフローフォースを殆ど無くす
ことができるとともに、可変絞り部を流れる圧油により
発生するフローフォースを第4図に示したものに比して
小さなものとすることができて、弁体のフローフォース
による軸方向移動を小さくすることができ、所望の値に
設定した可変絞り部の流路面積がフローフォースの影響
をさほど受けないようにすることができる。なお、本発
明者の実験結果によれば、本発明による流量制御弁にお
いて弁体に作用するフローフォースは第4図に示した弁
体に作用するフローフォースの略半分になることが判明
した。
Further, in the flow control valve according to the present invention, the flow path formed between the tapered surface of the poppet valve portion and the valve seat functions as a mere passage, and the variable throttle portion is configured by the spool portion of the valve body and the valve body. Since the fluid is throttled at , it is possible to almost eliminate the flow force generated by the pressure oil flowing through the flow path formed between the tapered surface of the poppet valve part and the valve seat, and the flow force generated by the pressure oil flowing through the variable throttle part can be reduced. The flow force generated can be made smaller than that shown in Fig. 4, the axial movement of the valve body due to the flow force can be reduced, and the variable throttle section can be set to a desired value. The area of the flow path can be made so that it is not so affected by the flow force. According to the experimental results of the present inventor, it has been found that the flow force acting on the valve body in the flow control valve according to the present invention is approximately half of the flow force acting on the valve body shown in FIG.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図は本発明による流量制御弁を示していて、同流量
制御弁40は、第1部材41A、第2部材41B及び第
3部材41Cからなる弁本体41と、この弁本体41内
に上下方向(軸方向)へ摺動自在に嵌挿した弁体42と
、この弁体42を下方へ付勢するばね43を主要構成部
材としている。弁本体41は、大径孔41aの上下両側
に同一径の小径孔41b、41cをそれぞれ同軸的に設
けてなり下方の段部に弁座41dを形成してなる段付内
孔を有するとともに、大径孔41aの中間部に形成され
て流入路pHが連通ずる環状溝41eや、下方の小径孔
41bの中間部に形成されて流出路P12が連通ずる環
状141fを有している。
FIG. 1 shows a flow rate control valve according to the present invention, and the flow rate control valve 40 includes a valve body 41 consisting of a first member 41A, a second member 41B, and a third member 41C, and a valve body 41 having upper and lower parts inside the valve body 41. The main components are a valve body 42 that is slidably inserted in the direction (axial direction) and a spring 43 that biases the valve body 42 downward. The valve body 41 has a stepped inner hole in which small diameter holes 41b and 41c of the same diameter are coaxially provided on both upper and lower sides of a large diameter hole 41a, and a valve seat 41d is formed in the lower step. It has an annular groove 41e formed in the middle part of the large diameter hole 41a and communicating with the inflow passage pH, and an annular groove 141f formed in the middle part of the lower small diameter hole 41b and communicating with the outflow passage P12.

弁体42は、大径孔41aに摺動自在に嵌挿されて同大
径孔41aの両端部に連通孔42a (第3図に仮想線
にて示したように弁本体41に設けた連通路であっても
実施可能である)を通して互いに連通ずる第1油室R1
1と第2油室R12を形成するスプール部42bと、同
スプール部42bの下側(第1油室R11側)に設けら
れてテーパ面42C1にて弁座41dに着座したり離脱
して第1油室R11と下方の小径孔41b間を連通連断
するポペット弁部42cと、同ポペット弁部42cの下
側に設けられて下方の小径孔41b内に延び同小径孔4
1bとの間に流出路P12に連通ずる第3油室R13を
形成する連結部42dと、同連結部42dの下側に設け
られて小径孔41bに摺動自在に嵌挿され同小径孔端に
パイロット圧が付与される第4油室R14を形成するピ
ストン部42eを一体的に備えるとともに、ポペット弁
部42aの上側に設けられて上方の小径孔41Cに摺動
自在に嵌挿され同小径孔41c端に絞り44を介して環
状溝41eに常に接続されるとともに戻り路P6に選択
的に接続される第5油室R15(第3図参照)を形成す
る小径筒部42fを一体的に備えている。また弁体42
のスプール部42bの下端外周には、大径孔内壁41a
l及び環状m41eとにより、第5油室R15側への軸
方向移動によってポペット弁部42cのテーパ面42c
lと弁座41d間に形成される流路面積より流路面積が
常に小さい可変絞り部Aを構成する開口42b1が設け
られている。なお、開口42b1の形状は第2図に示し
たものの一つが採用されている。
The valve body 42 is slidably inserted into the large diameter hole 41a, and has communication holes 42a (as shown by phantom lines in FIG. 3) provided in the valve body 41 at both ends of the large diameter hole 41a. first oil chambers R1 that communicate with each other through
The spool part 42b that forms the first oil chamber R12 and the second oil chamber R12 is provided on the lower side (the first oil chamber R11 side) of the spool part 42b, and the tapered surface 42C1 seats on the valve seat 41d and separates from the valve seat 41d. 1. A poppet valve portion 42c that communicates and connects the oil chamber R11 and the lower small diameter hole 41b, and a poppet valve portion 42c that is provided below the poppet valve portion 42c and extends into the lower small diameter hole 41b.
1b, which forms a third oil chamber R13 that communicates with the outflow path P12, and a connecting portion 42d that is provided on the lower side of the connecting portion 42d and is slidably fitted into the small diameter hole 41b, and an end of the small diameter hole. It is integrally provided with a piston portion 42e forming a fourth oil chamber R14 to which pilot pressure is applied, and is slidably inserted into an upper small diameter hole 41C provided above the poppet valve portion 42a. A small diameter cylindrical portion 42f that forms a fifth oil chamber R15 (see Fig. 3) that is always connected to the annular groove 41e through the throttle 44 and selectively connected to the return path P6 is integrally formed at the end of the hole 41c. We are prepared. Also, the valve body 42
A large diameter hole inner wall 41a is provided on the outer periphery of the lower end of the spool portion 42b.
1 and the annular m41e, the tapered surface 42c of the poppet valve portion 42c is moved in the axial direction toward the fifth oil chamber R15.
An opening 42b1 constituting a variable throttle portion A whose flow path area is always smaller than the flow path area formed between the valve seat 41d and the valve seat 41d is provided. Note that the shape of the opening 42b1 is one of those shown in FIG. 2.

上記のように構成した流量制御弁は、第3図にて例示し
たように、第4油室R14を第1パイロソト弁20に接
続するとともに第2パイロツト弁30の第1+JJ換弁
31に接続し、また第5油室R15を第2パイロツト弁
30の第2切換弁32に接続することにより、流量制御
装置の主弁として採用される。なお、第1パイロツト弁
20及び第2パイロツト弁30の構成は第4図に示した
ものと全く同じである。
The flow rate control valve configured as described above, as illustrated in FIG. 3, connects the fourth oil chamber R14 to the first pilot valve 20 and also connects to the first +JJ exchange valve 31 of the second pilot valve 30, Furthermore, by connecting the fifth oil chamber R15 to the second switching valve 32 of the second pilot valve 30, it can be used as the main valve of the flow rate control device. The configurations of the first pilot valve 20 and the second pilot valve 30 are exactly the same as those shown in FIG. 4.

ところで、上記のように構成した流量制御弁においては
、第4油室R14に付与されるパイロット圧による押圧
力が小さく、しかも第5油室R15が戻り路P6との連
通を遮断されておれば、弁体42は流入路pHから絞り
44を通して第5油室R15に付与される油圧及びばね
43の作用により上記したパイロット圧による押圧力に
抗してポペット弁部42Cを弁座41dに着座させてお
り、流入路pHと流出路P12の連通が適確に遮断され
ている。しかして、このときには、流入路pH内圧力が
弁体42におけるスプール部42bの一部外周に作用す
るのみで弁体42を軸方向へ押動する力としては作用せ
ず、また第3油室R13に付与される流出路P12内圧
力がポペット弁部42Cとピストン部42eに常に相殺
されるように作用するため、流入路内圧力や流出路内圧
力の変動によって弁体42が軸方向へ押動されることは
ない。
By the way, in the flow control valve configured as described above, if the pressing force due to the pilot pressure applied to the fourth oil chamber R14 is small and the fifth oil chamber R15 is cut off from communicating with the return path P6, , the valve body 42 resists the pressing force due to the pilot pressure described above by the action of the hydraulic pressure applied to the fifth oil chamber R15 through the throttle 44 from the inflow path pH and the action of the spring 43, and seats the poppet valve portion 42C on the valve seat 41d. Therefore, communication between the inflow path pH and the outflow path P12 is appropriately blocked. At this time, the inflow channel pH pressure only acts on a part of the outer periphery of the spool portion 42b of the valve body 42, and does not act as a force to push the valve body 42 in the axial direction. Since the pressure inside the outflow path P12 applied to R13 always acts on the poppet valve portion 42C and the piston portion 42e to cancel each other out, the valve body 42 is pushed in the axial direction due to fluctuations in the pressure inside the inflow path and the pressure inside the outflow path. It will not be moved.

また、第4油室R14に付与されるパイロット圧による
押圧力がばね43の取付荷重より太き(、しかも第4油
室R14が戻り路P6と接続されて連通しておれば、第
5油室R15内の油圧は略ゼロとなっていて、弁体42
は第4油室R14内のパイロット圧による押圧力とばね
43の作用力がバランスする位置まで押動されている。
In addition, if the pressing force due to the pilot pressure applied to the fourth oil chamber R14 is greater than the mounting load of the spring 43 (and if the fourth oil chamber R14 is connected and communicated with the return path P6, the fifth oil chamber R14 The oil pressure in the chamber R15 is approximately zero, and the valve body 42
is pushed to a position where the pressing force due to the pilot pressure in the fourth oil chamber R14 and the acting force of the spring 43 are balanced.

このため、流入路pHと流出路P12は、可変絞り部A
Therefore, the inflow path pH and the outflow path P12 are
.

第1油室R11,ポペット弁部42cのテーパ面42C
1と弁座41d間に形成される流路及び第3油室R13
を通して連通していて、ポペット弁部42aのテーパ面
42a1と弁座41d間に形成される流路が可変絞り部
Aの流路面積より流路面積が常に大きい単なる通路とし
て機能し、流入路pHから流出路P12へ流れる流量が
流路面積の最も小さい可変絞り部Aにて規定される。し
たがって、第4油室R14に付与されるパイロット圧を
変えることにより、弁体42の位置を調整できて可変絞
り部Aでの絞り量を調整でき、流入路pHから流出路P
i2へ流れる流量を調整することができる。しかして、
このときには、流入路pH内圧力が弁体42におけるス
プール部42bの一部外周に作用するのみで弁体42を
軸方向へ押動する力としては作用せず、また第1〜築3
油室R11〜R13内圧力が流出路P12内圧力と略等
しくなっていて、各第1〜第3油室R11〜R13内圧
力がスプール部42b、ポペット弁部42c及びピスト
ン部42eに常に相殺されるように作用するため、流入
路内圧力や流出路内圧力の変動によって弁体42が軸方
向へ押動されることはない。
1st oil chamber R11, tapered surface 42C of poppet valve part 42c
1 and the flow path formed between the valve seat 41d and the third oil chamber R13
The flow path formed between the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d functions as a simple passage whose flow path area is always larger than the flow path area of the variable throttle portion A, and the inflow path pH The flow rate flowing from the outlet to the outflow path P12 is defined by the variable throttle section A having the smallest flow path area. Therefore, by changing the pilot pressure applied to the fourth oil chamber R14, the position of the valve body 42 can be adjusted, and the amount of throttling in the variable throttle part A can be adjusted, and the pH of the inlet passage can be changed to the pH of the outlet passage P.
The flow rate flowing to i2 can be adjusted. However,
At this time, the inflow channel pH pressure only acts on a part of the outer periphery of the spool portion 42b of the valve body 42 and does not act as a force to push the valve body 42 in the axial direction.
The pressure inside the oil chambers R11 to R13 is approximately equal to the pressure inside the outflow path P12, and the pressure inside each of the first to third oil chambers R11 to R13 is always offset by the spool portion 42b, the poppet valve portion 42c, and the piston portion 42e. Therefore, the valve body 42 is not pushed in the axial direction due to fluctuations in the pressure in the inlet passage or the pressure in the outlet passage.

ところで、弁体42のスプール部42bに設けられる開
口42b1は、その形状を他のものに制約されることな
く適宜に設定可能であり、弁体42の軸方向ストローク
に対する可変絞り部Aの流路面積の変化率を適宜に小さ
くすることができる。
By the way, the shape of the opening 42b1 provided in the spool portion 42b of the valve body 42 can be set as appropriate without being restricted by other things, and the flow path of the variable throttle portion A with respect to the axial stroke of the valve body 42 can be set appropriately. The rate of change in area can be appropriately reduced.

したがって、可変絞り部Aの流路面積を所望の値に設定
しやすくすることができる。
Therefore, the flow path area of the variable throttle section A can be easily set to a desired value.

また、本実施例の流量制御弁においては、ポペット弁部
42Cのテーパ面42c1と弁座41d間に形成される
流路が串なる通路として機能し、かつスプール部42b
に設けた開口42b1と弁本体41の大径孔内壁41a
1及び環状溝41eとにより構成される可変絞り部Aに
て流体が絞られるようにしたため、ポペット弁部42c
のテーパ面42c1と弁座41d間に形成される流路を
流れる圧油により発生するフローフォースを殆ど無くす
ことができるとともに、可変絞り部Aを流れる圧油によ
り発生するフローフォースを第4図に示したものに比し
て小さなものとすることができて、弁体42のブローフ
ォースによる軸方向移動を小さくすることができ、所望
の値に設定した可変絞り部Aの流路面積がフローフォー
スの影響をさほど受けないようにすることができる。な
お、本発明者の実験結果によれば、弁体42に作用する
フローフォースは第4図に示した弁体12に作用するフ
ローフォースの略半分になることが判明した。
Further, in the flow control valve of this embodiment, the flow path formed between the tapered surface 42c1 of the poppet valve portion 42C and the valve seat 41d functions as a skewer passage, and the spool portion 42b
The opening 42b1 provided in the valve body 41 and the large diameter hole inner wall 41a of the valve body 41
1 and the annular groove 41e.
The flow force generated by the pressure oil flowing through the flow path formed between the tapered surface 42c1 and the valve seat 41d can be almost eliminated, and the flow force generated by the pressure oil flowing through the variable throttle part A is shown in FIG. It can be made smaller than the one shown, and the axial movement of the valve body 42 due to the blow force can be reduced, and the flow path area of the variable throttle section A set to a desired value can be adjusted to the flow force. can be made so that it is not affected as much. According to the experimental results of the present inventor, it has been found that the flow force acting on the valve body 42 is approximately half of the flow force acting on the valve body 12 shown in FIG. 4.

第5図は本発明の他の実施例を示していて、同図に示し
た流量制御弁においては、弁本体41が第1〜第4部材
41A〜41Dによって構成されていて、第4部材41
Dに弁座41dが形成されている。このため、第4部材
41Dの材質を例えば鉄として弁座41dの耐久性向上
を図ることができる。また、弁本体41の第2部材41
Bと第4部材41Dが一体的に結合された状態にて第1
部材41A内に組付けられており、第2部材41Bと第
4部材41D内には弁体42とばね43が予め組込まれ
ている。このため、この流量制御弁においては、組付性
がよいといった利点やぼね43の取付荷重を予め調緊す
ることができるといった利点がある。また、この流量制
御弁においては、可変絞り部Aがスプール部42bの下
端外周壁42b2と第4部材41Dに形成した開口41
gとにより構成されている。なお、開口41gの形状は
第6図に示したものの一つが採用されている。
FIG. 5 shows another embodiment of the present invention, and in the flow control valve shown in the same figure, the valve body 41 is constituted by first to fourth members 41A to 41D, and the fourth member 41
A valve seat 41d is formed at D. Therefore, the durability of the valve seat 41d can be improved by using iron as the material of the fourth member 41D, for example. Further, the second member 41 of the valve body 41
In the state where B and the fourth member 41D are integrally connected, the first
The valve body 42 and the spring 43 are assembled in the member 41A, and the valve body 42 and the spring 43 are assembled in the second member 41B and the fourth member 41D in advance. Therefore, this flow control valve has the advantage that it is easy to assemble and that the mounting load of the spring 43 can be adjusted in advance. Further, in this flow rate control valve, the variable throttle part A is connected to an opening 41 formed in the lower end outer peripheral wall 42b2 of the spool part 42b and the fourth member 41D.
g. Note that one of the shapes shown in FIG. 6 is adopted as the shape of the opening 41g.

その他の構成は第1図に示した流量制御弁の構成と実質
的に同じである。また、第5図に示した実施例の作用・
効果は上述した第1図〜第3図にて示した実施例の作用
・効果と実質的に同じであるため、その説明は省略する
The rest of the structure is substantially the same as that of the flow control valve shown in FIG. In addition, the effect of the embodiment shown in FIG.
Since the effects are substantially the same as those of the embodiment shown in FIGS. 1 to 3 described above, a description thereof will be omitted.

なお、上記した実施例においては、第3図にて示したよ
うに、第5油室R15を絞り44を介して環状溝41e
に連通させて、環状溝41eに接続された流路を流入路
pHとするとともに環状溝41fに接続された流路を流
出路P12としたが、第5油室R15を絞り44を介し
て環状溝41fに連通させて、環状溝41fに接続され
た流路を流入路とするとともに環状141eに接続され
た流路を流出路としても、上記実施例と同様の作用・効
果が期待できる。
In the above embodiment, as shown in FIG. 3, the fifth oil chamber R15 is connected to the annular groove 41e through the throttle 44.
The flow path connected to the annular groove 41e was set as the inflow path pH, and the flow path connected to the annular groove 41f was set as the outflow path P12. Even if the flow path connected to the annular groove 41f is used as an inflow path and the flow path connected to the annular groove 141e is used as an outflow path, the same functions and effects as in the above embodiment can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流量制御弁の一実施例を示す要部
拡大断面図、第2図は第1図に示した開口の形状例を示
す端面図、第3図は第1図に示した流量制御弁を主弁と
して構成した流量制御装置の一例を示す全体構成図、第
4図は特願昭61−11709号にて提案した流量制御
装置の一例を示す全体構成図、第5図は本発明による流
量制御弁の他の実施例を示す要部拡大断面図、第6図は
第5図に示した開口の形状例を示す端面図である。 符号の説明 40・・・流量制御弁(主弁)、41・・・弁本体、4
1a・・−大径孔、41b、41cm小径孔、41d・
・・弁座、42・・・弁体、42b・・・スプール部、
42C・・・ポペット弁部、42C1・・・テーパ面、
42d・・・連結部、42e・・・ピストン部、42f
・・・小径部、43・・・ばね、44・・・絞り、A・
・・可変絞り部、pH・・・流入路(第1流入出路)R
12・・・流出路(第2流入出路)、P6・・・戻り路
、R11・・・第1油室、R12・・・第2油室、R1
3・・・第3油室、R14・・・第4油室、R15・・
・第5油室。 第3図
FIG. 1 is an enlarged cross-sectional view of essential parts showing one embodiment of the flow control valve according to the present invention, FIG. 2 is an end view showing an example of the shape of the opening shown in FIG. 1, and FIG. 3 is the same as shown in FIG. FIG. 4 is an overall configuration diagram showing an example of a flow rate control device configured with a flow rate control valve as the main valve. FIG. 6 is an enlarged cross-sectional view of a main part showing another embodiment of the flow control valve according to the present invention, and FIG. 6 is an end view showing an example of the shape of the opening shown in FIG. 5. Explanation of symbols 40...Flow rate control valve (main valve), 41...Valve body, 4
1a...-Large diameter hole, 41b, 41cm small diameter hole, 41d.
... Valve seat, 42... Valve body, 42b... Spool part,
42C...poppet valve part, 42C1...tapered surface,
42d...Connection part, 42e...Piston part, 42f
...Small diameter part, 43...Spring, 44...Aperture, A.
...Variable throttle part, pH...Inflow path (first inflow and outflow path) R
12... Outflow path (second inflow/output path), P6... Return path, R11... First oil chamber, R12... Second oil chamber, R1
3...Third oil chamber, R14...Fourth oil chamber, R15...
・No. 5 oil room. Figure 3

Claims (1)

【特許請求の範囲】 大径孔の両側に同一径の小径孔をそれぞれ同軸的に設け
てなり、一方の小径孔と前記大径孔間の段部に弁座を形
成するとともに、前記大径孔の中間部に第1流入出路を
接続し、また一方の小径孔の中間部に第2流入出路を接
続してなる弁本体と、前記大径孔に摺動自在に嵌挿され
て同大径孔の両端部に互いに連通する第1油室と第2油
室を形成するスプール部と、同スプール部の前記第1油
室側に設けられてテーパ面にて前記弁座に着座したり離
脱して前記第1油室と前記一方の小径孔間を連通遮断す
るポペット弁部と、同ポペット弁部の一側に設けられて
前記一方の小径孔内に延び同小径孔との間に前記弁座を
通して前記第1油室に連通するとともに前記第2流入出
路に連通する第3油室を形成する連結部と、同連結部の
一側に設けられて前記一方の小径孔に摺動自在に嵌挿さ
れ同小径孔端にパイロット圧が付与される第4油室を形
成するピストン部を一体的に備えるとともに、前記スプ
ール部の前記第2油室側に設けられて前記他方の小径孔
に摺動自在に嵌挿され同小径孔端に前記両流入出路のう
ち流入路となる流路に絞りを介して常に接続されるとと
もに戻り路に選択的に接続される第5油室を形成する小
径部を一体的に備え、また前記スプール部の前記第1油
室側端部にて前記弁本体とにより前記第5油室側への軸
方向移動によって前記ポペット弁部のテーパ面と弁座間
に形成される流路面積より流路面積が常に小さい可変絞
り部を構成する弁体と、 同弁体を前記第4油室に向けて付勢するばねを具備して
なる流量制御弁。
[Scope of Claims] Small diameter holes of the same diameter are coaxially provided on both sides of a large diameter hole, and a valve seat is formed in the step between one of the small diameter holes and the large diameter hole, and A valve main body having a first inlet/outlet passage connected to the middle part of the hole and a second inflow/outlet passage connected to the middle part of one of the small diameter holes, and a valve body having the same size and slidably inserted into the large diameter hole. A spool portion forming a first oil chamber and a second oil chamber communicating with each other at both ends of the diameter hole, and a spool portion provided on the first oil chamber side of the spool portion and seated on the valve seat with a tapered surface. a poppet valve part that is separated and blocks communication between the first oil chamber and the one small diameter hole, and a poppet valve part that is provided on one side of the poppet valve part and extends into the one small diameter hole and between the same small diameter hole. a connecting portion forming a third oil chamber that communicates with the first oil chamber through the valve seat and communicating with the second inflow/outlet passage; and a connecting portion that is provided on one side of the connecting portion and slides into the one small diameter hole. It is integrally provided with a piston part that forms a fourth oil chamber that is freely inserted into the small diameter hole and applies pilot pressure to the end of the small diameter hole, and is provided on the second oil chamber side of the spool part and has a second small diameter hole. A fifth oil chamber is slidably inserted into the hole and at the end of the small diameter hole is always connected to the inflow path of the two inflow and outflow paths via a throttle and selectively connected to the return path. The tapered surface of the poppet valve portion is integrally provided with a small diameter portion to form a small diameter portion, and the spool portion is axially moved toward the fifth oil chamber side by the valve body at the end portion of the spool portion on the first oil chamber side. A flow control valve comprising: a valve body that constitutes a variable throttle portion whose flow path area is always smaller than the flow path area formed between the valve seats; and a spring that biases the valve body toward the fourth oil chamber. .
JP16446386A 1986-07-11 1986-07-11 Flow control valve Granted JPS6319406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16446386A JPS6319406A (en) 1986-07-11 1986-07-11 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16446386A JPS6319406A (en) 1986-07-11 1986-07-11 Flow control valve

Publications (2)

Publication Number Publication Date
JPS6319406A true JPS6319406A (en) 1988-01-27
JPH0557444B2 JPH0557444B2 (en) 1993-08-24

Family

ID=15793651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16446386A Granted JPS6319406A (en) 1986-07-11 1986-07-11 Flow control valve

Country Status (1)

Country Link
JP (1) JPS6319406A (en)

Also Published As

Publication number Publication date
JPH0557444B2 (en) 1993-08-24

Similar Documents

Publication Publication Date Title
US6554014B2 (en) Proportional pilot operated directional valve
JPS5830568A (en) Constant flow valve
AU672713B2 (en) Two stage pressure control valve
JPS6319406A (en) Flow control valve
JPS6319405A (en) Flow control valve
JP2005351419A (en) Hydraulic shock absorber
US4722362A (en) Pilot operated 3/2 poppet valve
JPS6319404A (en) Flow rate control valve
JPH043190Y2 (en)
JPS6319403A (en) Flow control valve
JPH0246384A (en) Solenoid valve
JP3634412B2 (en) Fluid control device
JP2531884Y2 (en) Spool valve
JP2561717Y2 (en) Two-way relief valve
JPS5834486Y2 (en) Pressure control valve with check valve
JPH0438135Y2 (en)
JPH0645042Y2 (en) Control valve
JP2574671Y2 (en) Spool valve
JP2571246Y2 (en) Pilot operated check valve
JPH03603Y2 (en)
JPH0198774A (en) Pressure control valve
JPH0449693Y2 (en)
JP2000035152A (en) Solenoid valve
JP2586207Y2 (en) Poppet valve device
JPH0556401B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees