JPS6319320Y2 - - Google Patents

Info

Publication number
JPS6319320Y2
JPS6319320Y2 JP1982134455U JP13445582U JPS6319320Y2 JP S6319320 Y2 JPS6319320 Y2 JP S6319320Y2 JP 1982134455 U JP1982134455 U JP 1982134455U JP 13445582 U JP13445582 U JP 13445582U JP S6319320 Y2 JPS6319320 Y2 JP S6319320Y2
Authority
JP
Japan
Prior art keywords
temperature
evaporated
substance
evaporation
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982134455U
Other languages
Japanese (ja)
Other versions
JPS5940356U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13445582U priority Critical patent/JPS5940356U/en
Publication of JPS5940356U publication Critical patent/JPS5940356U/en
Application granted granted Critical
Publication of JPS6319320Y2 publication Critical patent/JPS6319320Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)
  • Feedback Control In General (AREA)

Description

【考案の詳細な説明】 本考案は、蒸発物質を所定の温度に加熱、蒸発
させて基体上に蒸着するのに用いる蒸発源に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporation source used to heat an evaporative substance to a predetermined temperature, evaporate it, and deposit it on a substrate.

従来から薄膜の製造技術として、塗布等に比べ
て膜性能の向上、工程の簡易化等の利点を有する
真空蒸着やイオンプレーテイングが知られてい
る。これらの技術は塗布等の技術では製膜し得な
い薄膜も形成できる利点がある。
2. Description of the Related Art Vacuum deposition and ion plating have been known as thin film manufacturing techniques, which have advantages such as improved film performance and simplified process compared to coating and the like. These techniques have the advantage of being able to form thin films that cannot be formed using techniques such as coating.

真空蒸着とは、ガラス等のベルジヤーの中に被
蒸着物と蒸発物質を置き、10-5Torr以下の真空
の中で蒸発物質を加熱し、溶融させ、蒸発物質を
蒸発させることにより、被蒸発物質の表面に付着
させる技術をいう。ここで蒸発したガスの濃度は
蒸発温度に左右され、蒸発率を安定させ若しくは
所望の濃度プロフアイルを得るには、蒸発物質の
蒸発温度を一定とする必要がある。特に、セレン
ーテルル(Se−Te)のような合金蒸着をすると
きに、蒸発物質の蒸発温度に差があると、蒸発し
たガスの成分が変化し、蒸着したときテルルの含
有量が一定とならず、所望の感度の感光体が得ら
れないといつたような障害が発生する。
Vacuum evaporation is a process in which the material to be evaporated and the material to be evaporated are placed in a bell jar made of glass, etc., and the material to be evaporated is heated and melted in a vacuum of 10 -5 Torr or less. This refers to the technique of attaching it to the surface of a substance. The concentration of the evaporated gas here depends on the evaporation temperature, and in order to stabilize the evaporation rate or obtain a desired concentration profile, it is necessary to keep the evaporation temperature of the evaporated substance constant. In particular, when depositing an alloy such as selenium-tellurium (Se-Te), if there is a difference in the evaporation temperature of the evaporated substances, the components of the evaporated gas will change, and the tellurium content will not be constant during evaporation. , problems such as failure to obtain a photoreceptor with the desired sensitivity occur.

所定の膜厚、所定の感度の感光体を得るには、
蒸発率を安定させ、ガス濃度を一定とするため、
蒸発物質の蒸発温度を一定にする必要がある。
To obtain a photoreceptor with a predetermined film thickness and a predetermined sensitivity,
In order to stabilize the evaporation rate and keep the gas concentration constant,
It is necessary to keep the evaporation temperature of the evaporated substance constant.

従来は、蒸発物質を収容した蒸発源内の1箇所
で測温し、この温度により蒸発物質全体に加える
温度を調節していた。又、蒸発物質内の複数の箇
所で測温した場合であつても、実際には1箇所で
測定した温度により蒸発物質全体に加える温度を
調節し、他の箇所の測温した温度は参考にする程
度であつた。
Conventionally, the temperature was measured at one location within the evaporation source containing the evaporated material, and the temperature applied to the entire evaporated material was adjusted based on this temperature. Also, even if the temperature is measured at multiple locations within the evaporated material, the temperature applied to the entire evaporated material is actually adjusted based on the temperature measured at one location, and the temperatures measured at other locations are used as a reference. It was just enough.

しかし、蒸発物質を収容する容器は、長いもの
で3m以上のものがある。それに従い蒸発物質を
加熱するための加熱源も3m以上のものが必要と
なる。3m以上もの長さのある加熱源の個々の場
所から発生する熱量は、全部が一定であることは
なく、個々の場所により異なるのが普通である。
実際に測温したところ、第1図に示すような温度
差が生じていることが明らかとなつた。
However, there are containers that contain evaporated substances that are longer than 3 meters. Accordingly, a heating source of 3 m or more is required to heat the evaporated substance. The amount of heat generated from each location of a heating source with a length of 3 m or more is not entirely constant, and usually varies depending on the individual location.
When the temperature was actually measured, it became clear that a temperature difference as shown in FIG. 1 had occurred.

個々の場所ごとに温度が異なるのに、測温点を
一箇所とし、これにより測温した温度を基準とし
て、蒸発物質全体に加える熱量を制御すること自
体無理がある。例えば測温装置に誤差があつた場
合、あるいは測温点が他の場所と比較し温度が著
しく異なる場所に設けられた場合等は、この測温
した温度により蒸発物質全体に加わる熱量が制御
されることになり、予定された蒸発率、ガス濃度
は達成できず、所望の膜厚あるいは膜性能が得る
ことができない結果となる。
Even though the temperature varies from place to place, it is impossible to measure the temperature at one point and control the amount of heat applied to the entire evaporated substance based on the measured temperature. For example, if there is an error in the temperature measurement device, or if the temperature measurement point is installed in a location where the temperature is significantly different compared to other locations, the amount of heat added to the entire evaporated substance may be controlled based on the measured temperature. As a result, the planned evaporation rate and gas concentration cannot be achieved, and the desired film thickness or film performance cannot be obtained.

本考案は上記の如き問題点を解消すべくなされ
たものであつて、容器内に収容した蒸発物質を加
熱、蒸発せしめて基体上に蒸着させるように構成
された蒸発源において、前記容器が長く形成さ
れ、この長さに亘つて前記蒸発物質の加熱源が配
されていると共に、前記容器の長さ方向に沿つて
複数の測温素子が所定間隔を置いて設けられ、か
つ前記複数の測温素子と前記加熱源との間に、前
記複数の測温素子により測定された温度情報を演
算してその平均値を出す演算部と、この平均値に
基いて前記加熱源の発熱量を制御する制御部とが
設けられていることを特徴とする蒸発源に係るも
のである。
The present invention has been made to solve the above-mentioned problems, and is an evaporation source configured to heat and evaporate an evaporation substance contained in a container and deposit it on a substrate. A heating source for the evaporated substance is disposed over the length of the container, and a plurality of temperature measuring elements are provided at predetermined intervals along the length of the container, and the temperature measuring elements are arranged at predetermined intervals along the length of the container. A calculation unit that calculates temperature information measured by the plurality of temperature measurement elements and calculates an average value, between the temperature element and the heating source, and controls the amount of heat generated by the heating source based on this average value. The present invention relates to an evaporation source characterized in that it is provided with a control unit that controls the evaporation source.

以下、本考案の実施例を図面により詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は、真空蒸着装置を概略的に示すもので
あつて、排気管1を介して10-5〜10-7Torrの真
空圧に引かれたベルジヤー2内には、下方に蒸発
源3が、上方に回転可能な複数個の基体(ドラ
ム)4が列をなして夫々配されている。基体4は
内部からヒーター5によつて所定温度に加熱され
る。蒸発源3の内部には第3図に示すように蒸着
物質6と、これを加熱するためのヒーター7を具
備し、蒸着物質6の温度を測定するための熱電対
8が複数配されている。
FIG. 2 schematically shows a vacuum evaporation apparatus, in which an evaporation source 3 is located below in a bell gear 2 which is drawn to a vacuum pressure of 10 -5 to 10 -7 Torr through an exhaust pipe 1. However, a plurality of rotatable base bodies (drums) 4 are arranged in a row above. The base body 4 is heated from the inside to a predetermined temperature by a heater 5. Inside the evaporation source 3, as shown in FIG. 3, a vapor deposition substance 6 and a heater 7 for heating the vapor deposition substance 6 are provided, and a plurality of thermocouples 8 for measuring the temperature of the vapor deposition substance 6 are arranged. .

以上のように構成された真空蒸着装置におい
て、蒸発物質6として揮発度の異なる2種以上の
混合物(例えばSe−Te)を用い、これがヒータ
ー7により加熱される。蒸発物質6の各場所にお
ける温度は、蒸発物質6内に設けられた複数の熱
電対8により電気信号に変換され、第4図の如く
演算部9に入力される。入力された電気信号は、
演算部9で平均値が出され、この値が所望の温度
に相当する値よりも高ければ、制御部10により
ヒーター7に加わる電圧を低くし、蒸発物質に加
えられる熱量を制限する。又、この反対に、演算
部9により出された平均値が、所望の温度に相当
する値よりも低ければ、制御部によりヒーター7
に加わる電圧を高くし、蒸発物質に加わる熱量を
多くする。なお、演算部9においては、電気信号
値の合計を出し、この合計値が、所望の温度に相
当する電気信号値×熱電対の数の値とを比較する
ことによつても、前記した制御が可能であると考
えられる。
In the vacuum evaporation apparatus configured as described above, a mixture of two or more types having different volatilities (for example, Se-Te) is used as the evaporation substance 6, and this is heated by the heater 7. The temperature at each location of the evaporative substance 6 is converted into an electrical signal by a plurality of thermocouples 8 provided within the evaporative substance 6, and is input to the calculation unit 9 as shown in FIG. The input electrical signal is
The calculation unit 9 calculates an average value, and if this value is higher than the value corresponding to the desired temperature, the control unit 10 lowers the voltage applied to the heater 7 to limit the amount of heat applied to the evaporated substance. Conversely, if the average value calculated by the calculation section 9 is lower than the value corresponding to the desired temperature, the control section controls the heater 7.
Increase the voltage applied to the evaporated substance and increase the amount of heat applied to the evaporated substance. Note that the calculation section 9 calculates the total electric signal value, and compares this total value with the value of the electric signal value corresponding to the desired temperature times the number of thermocouples to perform the above-mentioned control. is considered possible.

なお、測温点を設ける位置は、第3図に示すよ
うに、個々の基体4のほぼ中央に相当する場所に
設置した方が、蒸発物質全体の温度を調節するた
めにより有効である。また、各測温点間の間隔は
基体4間の間隔と同様若しくはそれ以下であるの
がよく、20〜100cm当りに少くとも1つの測温点
を設けるのがよい。複数の測温点を設けても、設
置場所を局在化したのでは、蒸発物質全体の温度
を測温するためとしては、適切ではなく、上記の
ように場所的にみて均一に配するのがよい。
It is to be noted that it is more effective to set the temperature measurement point at a location corresponding to approximately the center of each substrate 4, as shown in FIG. 3, in order to adjust the temperature of the entire evaporated substance. Further, the interval between each temperature measuring point is preferably the same as or less than the interval between the bases 4, and it is preferable to provide at least one temperature measuring point every 20 to 100 cm. Even if multiple temperature measurement points are installed, localized installation locations are not appropriate for measuring the temperature of the entire evaporated substance. Good.

以上、本考案を例示したが、上述の例は本考案
の技術的思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、上述したヒーターとして抵抗加熱方式
以外のものを使用してもよい。又、蒸発物質は上
述したSe−Te系以外の他の合金、或いはSi等の
単一成分系でもよい。
For example, a heater other than the resistance heating type may be used as the above-mentioned heater. Further, the evaporated substance may be an alloy other than the above-mentioned Se-Te system, or a single component system such as Si.

本考案は上述した如く、容器の長さ方向に複数
の測温素子を設け、これらの測温素子の測定温度
の平均値により加熱源の発熱量(即ち、蒸発物質
に加える熱量)を制御しているので、蒸発物質が
所望の温度よりも異常に高くなることは少なく、
このため蒸発物質の突沸が防止でき、蒸着膜に異
物が混入するのを防ぐことができる。このことは
特に、容器が長く形成され、この長さ方向に亘つ
て加熱源が配されているために極めて有効であ
る。即ち、加熱源が長いために個々の場所で互い
に温度が異なり易いが、これを一箇所のみでの測
定温度に基づいて制御すると設定温度が所望の温
度から大きくばらつくのに対して、本考案のよう
に複数の測温素子を容器の長さ方向に設けてその
測定温度の平均値で温度制御すると、設定温度は
平均的となつて各場所にとつて所望の温度とのば
らつきが大幅に少なくなるのである。
As described above, the present invention provides a plurality of temperature measuring elements in the length direction of the container, and controls the calorific value of the heating source (i.e., the amount of heat added to the evaporated substance) based on the average value of the measured temperatures of these temperature measuring elements. Therefore, it is unlikely that the temperature of the evaporated material will become abnormally higher than the desired temperature.
Therefore, bumping of the evaporated substance can be prevented, and foreign matter can be prevented from being mixed into the deposited film. This is particularly effective since the container is long and the heating source is disposed along its length. In other words, since the heating source is long, the temperature tends to differ from one another at each location, but if this is controlled based on the measured temperature at only one location, the set temperature will vary greatly from the desired temperature. If multiple temperature measuring elements are installed along the length of the container and the temperature is controlled using the average value of the measured temperatures, the set temperature will be averaged and there will be significantly less variation from the desired temperature for each location. It will become.

また、そうした制御は、複数の測温素子と加熱
源との間に測定温度情報の演算部とその平均値に
基いて加熱源を制御する制御部とを設けたため
に、十二分にかつ正確に行うことができるのであ
る。
In addition, such control is possible with sufficient accuracy because a calculation unit for measured temperature information is provided between the plurality of temperature measuring elements and the heating source, and a control unit that controls the heating source based on the average value. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例において蒸発物質内の温度が測
温点により異なることを明らかにした図、第2図
は本考案の実施例による真空蒸着装置の概略断面
図、第3図は本例による蒸発源及び基体の配置を
示した図、第4図は本例の蒸発源温度をコントロ
ールする電気ブロツク図である。 なお、図面に用いられている符号において、2
……ベルジヤー、3……蒸発源、4……基体、6
……蒸発物質、7……ヒーター、8……熱電対、
9……演算部、10……制御部、である。
Fig. 1 is a diagram showing that the temperature inside the evaporated substance differs depending on the temperature measurement point in the conventional example, Fig. 2 is a schematic cross-sectional view of the vacuum evaporation apparatus according to the embodiment of the present invention, and Fig. 3 is according to the present example. FIG. 4, which shows the arrangement of the evaporation source and the substrate, is an electrical block diagram for controlling the temperature of the evaporation source in this example. In addition, in the symbols used in the drawings, 2
... Bergier, 3 ... Evaporation source, 4 ... Substrate, 6
... Evaporated substance, 7 ... Heater, 8 ... Thermocouple,
9...Arithmetic unit, 10...Control unit.

Claims (1)

【実用新案登録請求の範囲】 1 容器内に収容した蒸発物質を加熱、蒸発せし
めて基体上に蒸着させるように構成された蒸発
源において、前記容器が長く形成され、この長
さに亘つて前記蒸発物質の加熱源が配されてい
ると共に、前記容器の長さ方向に沿つて複数の
測温素子が所定間隔を置いて設けられ、かつ前
記複数の測温素子と前記加熱源との間に、前記
複数の測温素子により測定された温度情報を演
算してその平均値を出す演算部と、この平均値
に基いて前記加熱源の発熱量を制御する制御部
とが設けられていることを特徴とする蒸発源。 2 一列状に配された複数の被蒸着基体の各ほぼ
中央に対応する位置に、測温素子が夫々設けら
れている、実用新案登録請求の範囲の第1項に
記載した蒸発源。
[Claims for Utility Model Registration] 1. In an evaporation source configured to heat and evaporate an evaporative substance contained in a container and deposit it on a substrate, the container is formed long and the A heating source for the evaporated substance is disposed, and a plurality of temperature measuring elements are provided at predetermined intervals along the length direction of the container, and between the plurality of temperature measuring elements and the heating source. , a calculation unit that calculates temperature information measured by the plurality of temperature measurement elements and calculates an average value; and a control unit that controls the amount of heat generated by the heating source based on this average value. An evaporation source characterized by 2. The evaporation source according to claim 1 of the utility model registration claim, wherein a temperature measuring element is provided at a position corresponding to substantially the center of each of a plurality of substrates to be evaporated arranged in a row.
JP13445582U 1982-09-04 1982-09-04 Evaporation source Granted JPS5940356U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13445582U JPS5940356U (en) 1982-09-04 1982-09-04 Evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13445582U JPS5940356U (en) 1982-09-04 1982-09-04 Evaporation source

Publications (2)

Publication Number Publication Date
JPS5940356U JPS5940356U (en) 1984-03-15
JPS6319320Y2 true JPS6319320Y2 (en) 1988-05-30

Family

ID=30302953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13445582U Granted JPS5940356U (en) 1982-09-04 1982-09-04 Evaporation source

Country Status (1)

Country Link
JP (1) JPS5940356U (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164365U (en) * 1979-05-15 1980-11-26
JPS56138877U (en) * 1980-03-19 1981-10-20

Also Published As

Publication number Publication date
JPS5940356U (en) 1984-03-15

Similar Documents

Publication Publication Date Title
US4121537A (en) Apparatus for vacuum deposition
KR100881244B1 (en) Method and device for controlling the surface temperatures of substrates in a chemical vapour deposition reactor
US4627989A (en) Method and system for a vacuum evaporative deposition process
KR20130050321A (en) Multi-zone resistive heating apparatus, reactor incorporating the multi-zone resistive heating apparatus, heating system for a chemical vapor deposition apparatus, and method for resistive heating of substrate
US3316386A (en) Multiple evaporation rate monitor and control
US20030029232A1 (en) Coupon for measuring corrosion rates and system
JPS6319320Y2 (en)
US5540780A (en) Molecular beam epitaxy effusion cell
US5251481A (en) Direct-intake air measuring apparatus
US4874438A (en) Intermetallic compound semiconductor thin film and method of manufacturing same
EP1476903A2 (en) A method of calibrating and using a semiconductor processing system
US4823073A (en) Sensor for measuring the current or voltage of electrically conductive layers present on a reference substrate
JP2008276910A (en) Device and method for preventing condensation of lubricant vapor on surface of flow path for lubricant vapor flowing on magnetic disk to form lubricant coating on disk
JPS58204173A (en) Device and method for vapor deposition
CA2163208C (en) Sensors for sulfur activity measurements
JPH0722482A (en) Film-thickness measuring device and thin-film forming device using film-thickness measuring device
JPS6372872A (en) Vacuum deposition device
DE102019206214A1 (en) Differential calorimeter with high sensitivity
US3307515A (en) Vapor deposition apparatus including tumbler
JPS58207369A (en) Vacuum deposition device
JPH0681129A (en) Evaporation source for organic compound and accurate temp. control method therefor
EP0028514A1 (en) Process of vapor depositing photoconductive material
JPS60200963A (en) Apparatus for forming thin film
JPS59185772A (en) Control device for flow rate of evaporating gas in high melting metallic compound
JPS59223293A (en) Molecular beam epitaxial growth device