JPS63193141A - Multi-wavelength memory medium - Google Patents

Multi-wavelength memory medium

Info

Publication number
JPS63193141A
JPS63193141A JP62025699A JP2569987A JPS63193141A JP S63193141 A JPS63193141 A JP S63193141A JP 62025699 A JP62025699 A JP 62025699A JP 2569987 A JP2569987 A JP 2569987A JP S63193141 A JPS63193141 A JP S63193141A
Authority
JP
Japan
Prior art keywords
wavelength multiplexing
medium
stretching
photosensitive molecules
amorphous matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62025699A
Other languages
Japanese (ja)
Inventor
Koichi Arishima
功一 有島
Toshihiro Nishi
西 俊弘
Hisao Tabei
田部井 久男
Hiroaki Hiratsuka
平塚 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62025699A priority Critical patent/JPS63193141A/en
Publication of JPS63193141A publication Critical patent/JPS63193141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Abstract

PURPOSE:To increase the sensitivity of a medium and degree of wavelength multiplexing by dispersing photosensitive molecules into a stretched amorphous matrix. CONSTITUTION:This medium is formed by dispersing the photosensitive molecules such as prophyrin into the amorphous matrix such as stretched elastomer. For example, the medium is prepd. by immersing a butadiene rubber film for the prescribed time in a chloroform soln. of tetraporphyrin, then drying the film, stretching the film and fixing both ends thereof to a press plate. Then, hole width is decreased and a quantum yield is improved and, therefore, the memory medium having the high sensitivity and large degree of wavelength multiplexing is obtd.

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明は、波長多重記憶媒体、さらに詳細には高感度で
かつ波長多重度の大きい波長多重記憶媒体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application of the Invention] The present invention relates to a wavelength multiplexing storage medium, and more particularly to a wavelength multiplexing storage medium that is highly sensitive and has a large wavelength multiplexing degree.

〔発明の従来技術〕[Prior art to the invention]

従来、波長多重記憶媒体における光感応性分子を分散さ
せるアモルフォス系マトリックスとして 。
Traditionally, it has been used as an amorphous matrix to disperse photosensitive molecules in wavelength multiplexed storage media.

を機ポリマーや無機ガラスが用いられてきた。Organic polymers and inorganic glasses have been used.

しかし、これらのマトリックス中において、光感応性分
子はランダムな方向をとっているため、偏光性の高いレ
ーザ光を照射したとき、光感応性分子の双極子モーメン
トの方向が、レーザ光の偏光方向と一致する割合に比例
して励起される。理論計算の結果、光感応性分子がラン
ダムな分散をしている場合の量子収率は偏光方向に配向
している場合の量子収率の2/3であることがわかって
いる。
However, in these matrices, the photosensitive molecules have random orientations, so when irradiated with highly polarized laser light, the direction of the dipole moment of the photosensitive molecules changes from the polarization direction of the laser light. is excited in proportion to the proportion that coincides with . As a result of theoretical calculations, it has been found that the quantum yield when photosensitive molecules are randomly dispersed is 2/3 of the quantum yield when they are oriented in the polarization direction.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

このように従来のアモルフォス系マトリックスでは、光
感応性分子の配向制御は行われていないため、媒体の量
子収率は配向効果の理論限界の2/3程度のものしか得
られていなかった。さらに、文献(1),P、HTHI
JSSEN、S、νoelker、 chem、Phy
s、Letl、120  (6) 、496 (’85
 ) )に示されているようにアモルフォス系マトリッ
クスにおけるゲスト分子を取り囲む微視的空間の大きさ
がゲスト分子の熱運動性に影響し、ホール中を決定する
励起寿命を左右する。
As described above, in conventional amorphous matrices, the orientation of photosensitive molecules is not controlled, so that the quantum yield of the medium is only about 2/3 of the theoretical limit of the orientation effect. Furthermore, reference (1), P, HTHI
JSSEN,S,νoelker,chem,Phy
s, Letl, 120 (6), 496 ('85
) As shown in ), the size of the microscopic space surrounding a guest molecule in an amorphous matrix affects the thermal mobility of the guest molecule, and influences the excitation lifetime that determines the hole.

従来のアモルフォス系マトリックスでは、ゲスト分子を
取り囲む微視的空間はポリマー構造や媒体条件に依存し
、これを減少させる工夫はなされていなかった。
In conventional amorphous matrices, the microscopic space surrounding guest molecules depends on the polymer structure and medium conditions, and no efforts have been made to reduce this.

本発明の目的は、光感応性分子のランダムな向きを一方
向に配向させるとともに、アモルフォスマトリックス中
の微視的な空間を小さくもしくは減少させることにより
量子収率を高め、ホール中を小さくし、高感度でかつ波
長多重度の大きな波長多重記憶媒体を提供することにあ
る。
The purpose of the present invention is to orient the random orientation of photosensitive molecules in one direction and to increase the quantum yield and reduce the size of holes by reducing or reducing the microscopic space in the amorphous matrix. The object of the present invention is to provide a wavelength multiplexing storage medium with high sensitivity and a large wavelength multiplexing degree.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、波長多重記憶媒体においてゲスト分子の配向
化およびマトリックス中の微視的な空間を除くため、ア
モルフォス系マトリックスに光感応性分子を分散させた
波長多重記憶媒体において、室温または加熱状態におい
て延伸したマトリックスを用いたことを特徴としている
The present invention provides a wavelength multiplexing storage medium in which photosensitive molecules are dispersed in an amorphous matrix in order to orient guest molecules and eliminate microscopic spaces in the matrix in a wavelength multiplexing storage medium at room temperature or in a heated state. It is characterized by the use of a stretched matrix.

上記処理が施こされていない従来の波長多重記憶媒体と
は感度(量子収率)、波長多重度(ホール中)の向上が
図られた点で異なる。
It differs from conventional wavelength multiplexing storage media that are not subjected to the above processing in that sensitivity (quantum yield) and wavelength multiplexing (in holes) are improved.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

本発明により使用されるアモルフォス系マトリックスは
、従来この種の記憶媒体のマトリックスとして使用され
、かつ延伸が可能なものであればいかなるものでもよい
。たとえば、ブクジエン、イソプレン、クロロプレン、
フッ素ゴム、スチレン−ブタジェンゴムなどのエアラス
トマや、ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ルなどの熱可塑性樹脂を使用することができる。
The amorphous matrix used in the present invention may be any material that has been conventionally used as a matrix for storage media of this type and is stretchable. For example, bucdiene, isoprene, chloroprene,
Aerosols such as fluororubber and styrene-butadiene rubber, and thermoplastic resins such as polyethylene, polypropylene, and polyvinyl chloride can be used.

このアモルフォス系マトリックスに設けられる光感応性
分子も、本発明において基本的に限定されるものではな
い。たとえば、テトラフェニルポルフィリン、ポルフィ
リン、フタロシアニンなどの一種以上であることができ
る。
The photosensitive molecules provided in this amorphous matrix are also not fundamentally limited in the present invention. For example, it can be one or more of tetraphenylporphyrin, porphyrin, phthalocyanine, etc.

本発明においては、このようなアモルフォス系マトリッ
クスを延伸させるものであるが、この延伸の方法は、本
発明において基本的に限定されるものではなく、たとえ
ば引っ張り試験器などによって延伸することもできる。
In the present invention, such an amorphous matrix is stretched, but the method of stretching is not fundamentally limited in the present invention, and stretching can also be performed using, for example, a tensile tester.

延伸の程度は、本発明においては、マトリックスが破断
する寸前まで可能であり、延伸の程度を大きくするにし
たがって、前述の効果は大きくなる(第1表参照)。
In the present invention, the degree of stretching is possible up to just before the matrix breaks, and as the degree of stretching is increased, the above-mentioned effect becomes greater (see Table 1).

このように、光感応性分子を設けたアモルフォス系マト
リックスを延伸することによって、マトリックスポリマ
のポリマ鎖が伸び、ポリマ鏡開の距離が短くなって、ゲ
スト分子が自由に運動できる空間が狭くなり、このため
ゲスト分子の励起寿命が長くなり、ホール中が狭くなる
効果が生じるものと考えられる。さらに、延伸すること
によって、延伸方向にゲスト分子が配向し、この方向に
偏向したレーザ光を照射することによって、励起が効率
よく起こり、量子収率が向上するものと考えられる。
In this way, by stretching an amorphous matrix provided with photosensitive molecules, the polymer chains of the matrix polymer are lengthened, the distance of polymer mirror opening is shortened, and the space in which guest molecules can move freely is narrowed. Therefore, the excitation lifetime of the guest molecule becomes longer, which is thought to have the effect of narrowing the inside of the hole. Furthermore, it is thought that by stretching, guest molecules are oriented in the stretching direction, and by irradiation with laser light polarized in this direction, excitation occurs efficiently and the quantum yield is improved.

〔実施例〕〔Example〕

テトラフェニルポルフィリンのクロロホルム溶液(濃度
10−5…ol/jり中にブタジェンゴムフィルム(厚
さ1 M)を1時間以上浸漬する。浸漬後、真空乾燥し
、引っ張り試験器で延伸後、両端を押さえ板で固定し試
料を作製した。
A butadiene rubber film (thickness: 1 M) is immersed in a chloroform solution of tetraphenylporphyrin (concentration: 10-5 ol/j) for at least 1 hour. After immersion, it is vacuum dried, stretched with a tensile tester, and both ends are A sample was prepared by fixing it with a holding plate.

得られた試料をクライオスタットに入れ、液体ヘリウム
温度まで冷却し、リング色糸レーザ(バント巾IQ−3
cm−’ )を用いて、645nmの光を照射時間30
秒、照射光量30μw/cJの条件で照射したところテ
トラフェニルポルフィリンの01バンドにホールを生成
した。
The obtained sample was placed in a cryostat, cooled to liquid helium temperature, and then heated using a ring colored thread laser (bund width IQ-3).
cm-') for irradiation time of 30 nm with 645 nm light.
When the sample was irradiated for 2 seconds at an irradiation light amount of 30 μw/cJ, a hole was generated in the 01 band of tetraphenylporphyrin.

生成したホール中と延伸比の関係を調べたところ、第1
表に示すように延伸によりホール中が減少する現象およ
び量子収率が向上する現象が見られた。
When we investigated the relationship between the generated holes and the stretching ratio, we found that the first
As shown in the table, the phenomenon that the number of holes decreased and the quantum yield improved by stretching were observed.

なお、第1表中、延伸比は下記の式によって示される値
である。
In addition, in Table 1, the stretching ratio is a value shown by the following formula.

(延伸前の長さ) 第1表 以上の説明より明らかなように延伸により、ホール中が
狭くなり、波長多重度が向上するとともに量子収率が向
上し、高感度な波長多重記憶媒体が得られる。
(Length before stretching) As is clear from the explanations in Table 1 and above, stretching narrows the inside of the hole, improves the wavelength multiplexing degree and improves the quantum yield, resulting in a highly sensitive wavelength multiplexing storage medium. It will be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、延伸するごとによりホール中が小
さくなり、量子収率が向上することにより、波長多重記
憶媒体において、波長多重度の向上、高感度化が図れる
利点がある。
As explained above, each time the stretching is performed, the hole size becomes smaller and the quantum yield is improved, which has the advantage of improving the wavelength multiplexing degree and increasing the sensitivity in the wavelength multiplexing storage medium.

Claims (1)

【特許請求の範囲】[Claims] (1)アモルフォス系マトリックスに光感応性分子を分
散させた波長多重記憶媒体において、延伸したマトリッ
クスを用いたことを特徴とする波長多重記憶媒体。
(1) A wavelength multiplexing storage medium in which photosensitive molecules are dispersed in an amorphous matrix, characterized in that a stretched matrix is used.
JP62025699A 1987-02-06 1987-02-06 Multi-wavelength memory medium Pending JPS63193141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025699A JPS63193141A (en) 1987-02-06 1987-02-06 Multi-wavelength memory medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62025699A JPS63193141A (en) 1987-02-06 1987-02-06 Multi-wavelength memory medium

Publications (1)

Publication Number Publication Date
JPS63193141A true JPS63193141A (en) 1988-08-10

Family

ID=12173036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025699A Pending JPS63193141A (en) 1987-02-06 1987-02-06 Multi-wavelength memory medium

Country Status (1)

Country Link
JP (1) JPS63193141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335579A2 (en) * 1988-03-28 1989-10-04 Mitsui Petrochemical Industries, Ltd. Photo-recording media and photo-recording method
US6799753B2 (en) 2001-09-28 2004-10-05 Tokai Rubber Industries, Ltd. Fluid-filled elastic mount

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335579A2 (en) * 1988-03-28 1989-10-04 Mitsui Petrochemical Industries, Ltd. Photo-recording media and photo-recording method
US6799753B2 (en) 2001-09-28 2004-10-05 Tokai Rubber Industries, Ltd. Fluid-filled elastic mount

Similar Documents

Publication Publication Date Title
KR920001279B1 (en) Light-polarizing plate having excellent durability and production of it
KR100257131B1 (en) Liquid-Crystal Alignment Film
KR950704705A (en) POLARIZING ELEMENT, POLARIZING PLATE, AND PROCESS FOR PRODUCTION THEREOF
GB1579002A (en) Polymer surface treatment
Tawa et al. Local environment dependence of photoinduced anisotropy observed in azo-dye-doped polymer films
Müller et al. Ink‐Free Reversible Optical Writing in Monolayers by Polymerization of a Trifunctional Monomer: Toward Rewritable “Molecular Paper”
JPS63193141A (en) Multi-wavelength memory medium
Mizutani et al. The aggregation of a merocyanine dye in solution and film.
HU176806B (en) With nfrared light controllable liquid crystal cell
US7070913B2 (en) Photo-induced dichroic polarizers and fabrication methods thereof
Perny et al. Molecular orientation and liquid crystal alignment properties of new cinnamate-based photocrosslinkable polymers
Itaya et al. Interfacial characteristics of poly (methyl methacrylate) film: aggregation of pyrene and micropolarity revealed by time-resolved total internal reflection fluorescence spectroscopy
Kim et al. In situ study of fiber structure development of poly (butylene terephthalate) in a continuous laser-heated drawing process
Hasegawa et al. Two-photon resonant third-harmonic generation in polysilanes
Ramos-Garcia et al. Polarization dependence on the holographic recording in spiropyran-doped polymers
Tawa et al. Photoinduced anisotropy in a polymer doped with azo dyes in the photostationary state studied by polarized FT-IR spectroscopy
Alsaiari et al. Investigation on structural, optical, morphological, electrical, mechanical and biological activities of pure and crystal violet dye-doped epsomite single crystals
Skloss et al. Detection of cross-link formation by 2+ 2 photocycloaddition in poly (vinyl cinnamate) by 13C solid-state NMR
Owen et al. The photochemistry of triphenylmethane dyes in films of poly (methylmethacrylate)
Ichimura et al. Surface-assisted formation of anisotropic dye molecular films
Birch et al. Photoselective isomerization leading to anisotropy of substrate: Bleaching of a photochromic indolinospiropyran in poly (ethyl methacrylate)
Fernandes et al. Controlling the fluorescence intensity of luminescent thin films by photoisomerization of azo dyes
JPH0784266A (en) Production of liquid crystal display element
JP3435691B2 (en) Method for modifying surface layer and functional thin film produced by the method
Fournier et al. Charge transfer dynamics of donor-acceptor systems in solutions and sol-gel matrices: Code: FP4