JPS6319304Y2 - - Google Patents

Info

Publication number
JPS6319304Y2
JPS6319304Y2 JP1985020507U JP2050785U JPS6319304Y2 JP S6319304 Y2 JPS6319304 Y2 JP S6319304Y2 JP 1985020507 U JP1985020507 U JP 1985020507U JP 2050785 U JP2050785 U JP 2050785U JP S6319304 Y2 JPS6319304 Y2 JP S6319304Y2
Authority
JP
Japan
Prior art keywords
fibers
fiber
expanded graphite
heat
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985020507U
Other languages
Japanese (ja)
Other versions
JPS60156144U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2050785U priority Critical patent/JPS60156144U/en
Publication of JPS60156144U publication Critical patent/JPS60156144U/en
Application granted granted Critical
Publication of JPS6319304Y2 publication Critical patent/JPS6319304Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は可撓性黒鉛シート材料に関する。 〈従来の技術〉 膨張黒鉛を圧縮成型した可撓性黒鉛シート材料
の製造法が特公昭44−23966号として知られてい
る。 この可撓性黒鉛シート材料は膨張黒鉛を結合剤
の不存在下に高圧で加圧成型して得られるもので
ある。その特徴は可撓性を有し、不浸透性であ
り、圧縮に対する復元率がよいというものであ
る。 〈考案が解決しようとする問題点〉 しかしながらこの可撓性黒鉛シート材料は、剛
性が小さく脆いため、変形破損し易く、取扱いが
困難であるという欠点があつた。また、膨張黒鉛
に結合剤を添加した黒鉛シート材料でも剛性の向
上は望めなかつた。 そこでパンチングメタル等の金属板と膨張黒鉛
を組み合わせた膨張黒鉛−金属積層シートが考え
られていた。 しかしながら、金属板は高温時の使用では剛
性、耐熱性、耐蝕性等に問題があるばかりでな
く、重量増加、圧縮に対する復元率の低下等にも
問題があつた。 〈問題を解決するための手段〉 本考案者等は耐熱性繊維の目開きが0.5〜20mm
の織布又は網を補強材料とすることによつて高温
下における剛性を大幅に向上できしかも耐薬品性
にすぐれた可撓性黒鉛シート材料を考案した。す
なわち、耐熱性繊維を強化材料とした膨張黒鉛又
は結合剤を含む膨張黒鉛よりなる可撓性黒鉛シー
ト材料において、耐熱性繊維が、芳香族ポリアミ
ド系繊維、フエノール樹脂繊維、スチールフアイ
バー、タングステンフアイバー、炭素繊維、炭化
ケイ素繊維、窒化ホウ素繊維、アルミナ繊維、ホ
ウ素繊維等の有機繊維、金属繊維、無機繊維の内
から選ばれた一種又は2種以上の組合せで、目開
きが0.5〜20mmの織布又は網を強化材料とした膨
張黒鉛、又は酸化黒鉛3〜50%、ホウ酸3〜15
%、リン酸アルミニウム0.1〜30%、フツ素系樹
脂1〜50%の内より選ばれた一種又は二種以上の
組合せの結合剤を含む膨張黒鉛とを加圧成形し一
体化し、かつ耐熱性繊維と膨張黒鉛との割合が容
量比で1:99〜50:50である可撓性黒鉛シート材
料である。 〈作用〉 本考案において使用される膨張黒鉛とは天然黒
鉛、熱分解黒鉛、キツシユ黒鉛等の黒鉛粉を濃硫
酸、濃硝酸、硝酸カリウム等の強酸化剤により層
間化合物を形成させて得た黒鉛粒子を急激に加熱
処理して得られるものである。 膨張率が10倍未満であると膨張黒鉛としての性
質が十分でなく、自己接着性等に難があり好まし
くない。 結合剤は、耐熱性、耐蝕性、にすぐれるものが
好ましくその混合割合は、例えば酸化黒鉛は3〜
50%、ホウ酸は3〜15%、リン酸アルミニウムは
0.1〜30%、フツ素系樹脂は1〜50%程度の値で
あることが好ましい。 耐熱性繊維としては、芳香族ポリアミド系繊
維、フエノール樹脂繊維、スチールフアイバー、
タングステンフアイバー、炭素繊維、炭化ケイ素
繊維、窒化ホウ素繊維、アルミナ繊維、ホウ素繊
維等が好ましい。特に強度が150Kg/mm2弾性率が
15t/mm2以上の無機繊維である炭素繊維、炭化ケ
イ素繊維等を使用すれば少量の使用で効果があが
り、剛性の向上が著しく、強度の向上も計れる利
点がある。 耐熱性繊維の目開きは0.5〜20mmであれば良好
な結果を得られる。この目開きが上記の範囲を逸
脱すると本考案の効果が得られにくい。 又、網は単糸を一方向に引揃えて格子状とした
ものも含むものである。 耐熱性繊維の織布又は網は第1図の断面図にも
示す如くインサートされたものでもよいし、第2
図の断面図に示す如くシートの片面にあつてもよ
い。第3図の断面図に示す如く格子状であつても
よい。 図において、1,11,21は膨張黒鉛、2,
12,22は耐熱性繊維の網を示す。 膨張黒鉛は自己接着性を有するため、織布又は
網とはそのままでも加圧成形一体化できるが、必
要があればエポキシ系樹脂、フエノール系樹脂等
の接着剤を用いてもよい。。耐熱性繊維と膨張黒
鉛との割合(容量比)は1:99〜50:50であれば
剛性向上に効果があり、可撓性が失われることも
なかつた。 〈効果〉 本考案の可撓性黒鉛シート材料は耐熱性繊維の
目開きが0.5〜20mmの織布又は網が耐熱繊維と膨
張黒鉛の容積比で1:99〜50:50に複合され使用
されているため、膨張黒鉛シートの可撓性、不浸
透性、耐熱性、耐蝕性等を損なうことなく剛性圧
縮復元性を大幅に向上できる。また、変形、破損
が少なく、取扱いが容易に行なえるという特徴を
有する。そのため各種の特に高温用のパツキン
材、ガスケツト材として最適である。しかも各種
の形状に容易に成形できる特長を有する。 〈実施例〉 以下に本考案の実施例を述べる。 実施例 1 天然黒鉛粉末(24メツシユ下〜48メツシユ上の
粒度80%含有)100重量部を濃硫840重量部と硝酸
ナトリウム50重量部を混合した液中で約10時間反
応させた。 この酸処理した天然黒鉛粒子を十分に水洗いし
た後、約100℃で乾燥させた、乾燥後この粒子を
1300℃で10秒間急速に加熱して黒鉛粒子のC方向
に、原寸法の約300倍に膨張した粒子を得た。 次に、日本カーボン社製炭素繊維“カーボロ
ン”強度280Kg/mm2、弾性率23t/mm2のフイラメン
ト数2000の炭素繊維より目開き5mmの網を用意
し、膨張黒鉛に挾み200Kg/cm2で加圧成型し、第
1図に示すごとき形状で被覆層の厚さが各々0.4
mm(全厚0.8mm)の本考案の可撓性黒鉛シート材
料を得た(本考案品1)。その特性を第1表に示
す。 本考案の可撓性黒鉛シート材料は、耐熱性繊維
が炭素繊維であるため、膨張黒鉛と同じ炭素で構
成されるため、膨張黒鉛とのなじみがよく耐熱
性、耐蝕性にすぐれるばかりでなく引張強度、曲
げ強度、ガスケツト係数等いずれも膨張黒鉛単体
より成るシートよりすぐれていた。 実施例 2 実施例1の方法により得られた膨張黒鉛に結合
剤としてホウ酸を5%添加した。次に日本カーボ
ン社製“ニカロン”炭化ケイ素繊維(強度260
Kg/mm2、弾性率30t/mm2)で目開き3mmの網を用
意し、これを介挿させて200Kg/cm2で加圧成型し
約600℃で焼成し全厚0.8mmの本考案の可撓性黒鉛
シート材料を得た(本考案品2)。その特性を第
1表に示す。本考案の可撓性黒鉛シート材料は強
度の向上が大きく、また耐摩耗性にすぐれてい
た。 実施例 3 日本カーボン社製炭素繊維“カーボロン”(強
度260Kg/mm2弾性率23t/mm2)で目開き5mmの炭素
繊維網を製造した。この網に膨張黒鉛に結合剤と
してリン酸アルミニウムを10%添加し、200Kg/
cm2で加圧、成型後800℃で焼成して全厚0.8mmの本
考案の可撓性黒鉛シート材料(本考案品3)を得
た。 次に膨張黒鉛に酸化黒鉛を15%添加したものを
マトリクスとして200Kg/cm2で加圧成型して、全
厚0.8mmの本考案の可撓性黒鉛シート材料(本考
案品4)を得た。それぞれの特性を第1表に示
す。 実施例 4 芳香族ポリミド系繊維(米国デユポン社製、商
品名“ケブラー”)強度280Kg/mm2、弾性率14t/
mm2で目開き5mmの網を製造した。この網にマトリ
クスとして実施例1の方法により得られた膨張黒
鉛を使用し200Kg/cm2で加圧し、全厚0.8mmの本考
案の可撓性黒鉛シート材料(本考案品5)を得
た。その特性を第1表に示す。 比較例 1 実施例1の方法で得られた膨張黒鉛200Kg/cm2
で加圧成型し、全厚0.8mmの可撓性黒鉛シート材
料を得た。その特性を以下の第1表に示す。 【表】
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a flexible graphite sheet material. <Prior Art> A method for producing a flexible graphite sheet material by compression molding expanded graphite is known as Japanese Patent Publication No. 44-23966. This flexible graphite sheet material is obtained by pressure molding expanded graphite at high pressure in the absence of a binder. Its characteristics are that it is flexible, impermeable, and has a good recovery rate against compression. <Problems to be Solved by the Invention> However, this flexible graphite sheet material has low rigidity and is brittle, so it is easily deformed and damaged, and it is difficult to handle. Furthermore, even graphite sheet materials made by adding a binder to expanded graphite could not be expected to improve rigidity. Therefore, an expanded graphite-metal laminate sheet, which is a combination of a metal plate such as punched metal and expanded graphite, has been considered. However, when metal plates are used at high temperatures, they not only have problems with rigidity, heat resistance, corrosion resistance, etc., but also have problems with increased weight, decreased recovery rate against compression, etc. <Means for solving the problem> The inventors of the present invention have developed heat-resistant fibers with an opening of 0.5 to 20 mm.
By using woven fabric or net as a reinforcing material, we have devised a flexible graphite sheet material that can significantly improve its rigidity at high temperatures and has excellent chemical resistance. That is, in a flexible graphite sheet material made of expanded graphite reinforced with heat-resistant fibers or expanded graphite containing a binder, the heat-resistant fibers include aromatic polyamide fibers, phenolic resin fibers, steel fibers, tungsten fibers, Woven fabric with an opening of 0.5 to 20 mm made of one or a combination of two or more selected from organic fibers, metal fibers, and inorganic fibers such as carbon fibers, silicon carbide fibers, boron nitride fibers, alumina fibers, and boron fibers. Or expanded graphite with mesh as reinforcement material, or graphite oxide 3-50%, boric acid 3-15%
%, aluminum phosphate 0.1 to 30%, and fluorocarbon resin 1 to 50%, and are integrated by pressure molding with expanded graphite containing a binder selected from one or a combination of two or more, and are heat resistant It is a flexible graphite sheet material in which the ratio of fiber to expanded graphite is 1:99 to 50:50 in terms of volume ratio. <Function> What is the expanded graphite used in this invention? Graphite particles obtained by forming an intercalation compound with a strong oxidizing agent such as concentrated sulfuric acid, concentrated nitric acid, or potassium nitrate from graphite powder such as natural graphite, pyrolytic graphite, or Kitshu graphite. It is obtained by rapid heat treatment. If the expansion rate is less than 10 times, the properties as expanded graphite will not be sufficient and self-adhesion will be poor, which is not preferable. The binder is preferably one with excellent heat resistance and corrosion resistance, and the mixing ratio thereof is, for example, 3 to 3 for graphite oxide.
50%, boric acid 3-15%, aluminum phosphate
The content is preferably 0.1 to 30%, and the fluorine resin is preferably about 1 to 50%. Heat-resistant fibers include aromatic polyamide fibers, phenolic resin fibers, steel fibers,
Tungsten fiber, carbon fiber, silicon carbide fiber, boron nitride fiber, alumina fiber, boron fiber, etc. are preferred. In particular, the strength is 150Kg/ mm2 and the elastic modulus is
If inorganic fibers such as carbon fibers and silicon carbide fibers of 15 t/mm 2 or more are used, the effect can be increased even with a small amount, and there is an advantage that the rigidity can be significantly improved and the strength can also be improved. Good results can be obtained if the opening of the heat-resistant fiber is 0.5 to 20 mm. If this opening deviates from the above range, it will be difficult to obtain the effects of the present invention. The net also includes one in which single threads are aligned in one direction to form a grid. The woven fabric or net of heat-resistant fibers may be inserted as shown in the cross-sectional view of FIG.
It may be provided on one side of the sheet as shown in the cross-sectional view of the figure. It may also be in the form of a lattice as shown in the sectional view of FIG. In the figure, 1, 11, 21 are expanded graphite, 2,
12 and 22 indicate a network of heat-resistant fibers. Since expanded graphite has self-adhesive properties, it can be integrated with a woven fabric or net by pressure molding as it is, but if necessary, an adhesive such as an epoxy resin or a phenol resin may be used. . When the ratio (capacity ratio) of heat-resistant fiber and expanded graphite was 1:99 to 50:50, it was effective in improving rigidity and flexibility was not lost. <Effects> The flexible graphite sheet material of the present invention is used by combining heat-resistant fibers with a woven fabric or mesh having an opening of 0.5 to 20 mm at a volume ratio of heat-resistant fibers and expanded graphite of 1:99 to 50:50. Therefore, the rigidity and compression recovery properties of the expanded graphite sheet can be significantly improved without impairing the flexibility, impermeability, heat resistance, corrosion resistance, etc. of the expanded graphite sheet. Further, it has the characteristics of being less likely to be deformed or damaged and can be easily handled. Therefore, it is ideal as a variety of packing materials and gasket materials, especially for high-temperature applications. Moreover, it has the feature that it can be easily molded into various shapes. <Example> Examples of the present invention will be described below. Example 1 100 parts by weight of natural graphite powder (containing 80% particle size below 24 meshes to above 48 meshes) was reacted for about 10 hours in a mixture of 840 parts by weight of concentrated sulfur and 50 parts by weight of sodium nitrate. After thoroughly washing the acid-treated natural graphite particles with water, they were dried at approximately 100°C.
The graphite particles were rapidly heated at 1300° C. for 10 seconds to obtain particles that expanded in the C direction of the graphite particles to about 300 times their original size. Next, a net with a mesh opening of 5 mm was prepared from carbon fiber "Carboron" manufactured by Nippon Carbon Co., Ltd., which had a strength of 280 Kg/mm 2 and an elastic modulus of 23 t/mm 2 and a number of filaments of 2000, and was sandwiched between expanded graphite to obtain a net of 200 Kg/cm 2 . The thickness of each coating layer is 0.4 mm.
A flexible graphite sheet material of the present invention having a thickness of 0.8 mm (total thickness 0.8 mm) was obtained (Product 1 of the present invention). Its characteristics are shown in Table 1. Since the heat-resistant fiber of the flexible graphite sheet material of the present invention is carbon fiber, which is the same carbon as expanded graphite, it is compatible with expanded graphite and not only has excellent heat resistance and corrosion resistance. The tensile strength, bending strength, gasket coefficient, etc. were all superior to sheets made of expanded graphite alone. Example 2 5% of boric acid was added as a binder to the expanded graphite obtained by the method of Example 1. Next, “Nicalon” silicon carbide fiber manufactured by Nippon Carbon Co., Ltd. (strength 260
Kg/mm 2 , elastic modulus 30t/mm 2 ), mesh opening 3mm was prepared, this was inserted, pressure molded at 200Kg/cm 2 and baked at approximately 600℃, resulting in a total thickness of 0.8mm. A flexible graphite sheet material was obtained (Product 2 of the present invention). Its characteristics are shown in Table 1. The flexible graphite sheet material of the present invention had significantly improved strength and excellent wear resistance. Example 3 A carbon fiber network with an opening of 5 mm was manufactured using carbon fiber "Carboron" manufactured by Nippon Carbon Co., Ltd. (strength: 260 Kg/mm 2 elastic modulus: 23 t/mm 2 ). To this net, 10% aluminum phosphate was added as a binder to expanded graphite, and 200 kg/
After pressurizing and molding at cm 2 and firing at 800°C, a flexible graphite sheet material of the present invention (product 3 of the present invention) having a total thickness of 0.8 mm was obtained. Next, a matrix prepared by adding 15% graphite oxide to expanded graphite was pressure-molded at 200 kg/cm 2 to obtain the flexible graphite sheet material of the present invention (product 4 of the present invention) with a total thickness of 0.8 mm. . The characteristics of each are shown in Table 1. Example 4 Aromatic polymide fiber (manufactured by DuPont, USA, trade name "Kevlar") strength 280 Kg/mm 2 , elastic modulus 14 t/
A net with a mesh opening of 5 mm was manufactured in mm 2 . The expanded graphite obtained by the method of Example 1 was used as a matrix in this net, and it was pressurized at 200 kg/cm 2 to obtain the flexible graphite sheet material of the present invention (product 5 of the present invention) with a total thickness of 0.8 mm. . Its characteristics are shown in Table 1. Comparative Example 1 Expanded graphite obtained by the method of Example 1 200Kg/cm 2
Pressure molding was performed to obtain a flexible graphite sheet material with a total thickness of 0.8 mm. Its properties are shown in Table 1 below. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐熱性繊維の網が介挿された状態の本
考案品の断面図、第2図は耐熱性繊維の網が片面
にある本考案品の断面図、第3図は耐熱性繊維が
一方向に引揃えられ、積層され格子状である本考
案品の断面図を示す。 1,11,21……膨張黒鉛、2,21,22
……耐熱性繊維。
Figure 1 is a cross-sectional view of the invented product with a heat-resistant fiber mesh inserted, Figure 2 is a cross-sectional view of the invented product with a heat-resistant fiber mesh on one side, and Figure 3 is a cross-sectional view of the invented product with a heat-resistant fiber mesh inserted. 1 shows a cross-sectional view of the product of the present invention, which is aligned in one direction and laminated in a lattice shape. 1, 11, 21...expanded graphite, 2, 21, 22
...Heat-resistant fiber.

Claims (1)

【実用新案登録請求の範囲】 (1) 耐熱性繊維を強化材料とした膨張黒鉛又は結
合剤を含む膨張黒鉛よりなる可撓性黒鉛シート
材料において、耐熱性繊維が、芳香族ポリアミ
ド系繊維、フエノール樹脂繊維、スチールフア
イバー、タングステンフアイバー、炭素繊維、
炭化ケイ素繊維、窒化ホウ素繊維、アルミナ繊
維、ホウ素繊維等の有機繊維、金属繊維、無機
繊維の内から選ばれた一種又は2種以上の組合
せで、目開きが0.5〜20mmの織布又は網を強化
材料とした膨張黒鉛、又は酸化黒鉛3〜50%、
ホウ酸3〜15%、リン酸アルミニウム0.1〜30
%、フツ素系樹脂1〜50%の内より選ばれた一
種又は二種以上の組合せの結合剤を含む膨張黒
鉛とを加圧成形し一体化し、かつ耐熱性繊維と
膨張黒鉛との割合が容量比で1:99〜50:50で
ある可撓性黒鉛シート材料。 (2) 耐熱性繊維の強度が150Kg/mm2以上、弾性率
が15t/mm2以上である実用新案登録請求の範囲
第1項記載の可撓性黒鉛シート材料。
[Scope of claim for utility model registration] (1) In a flexible graphite sheet material made of expanded graphite reinforced with heat-resistant fibers or expanded graphite containing a binder, the heat-resistant fibers are aromatic polyamide fibers, phenol Resin fiber, steel fiber, tungsten fiber, carbon fiber,
A woven fabric or net with an opening of 0.5 to 20 mm made of one or a combination of two or more selected from organic fibers, metal fibers, and inorganic fibers such as silicon carbide fibers, boron nitride fibers, alumina fibers, and boron fibers. Expanded graphite or oxidized graphite 3-50% as reinforcing material,
Boric acid 3-15%, aluminum phosphate 0.1-30%
%, and expanded graphite containing one or more binders selected from 1 to 50% of fluorocarbon resin are pressure-molded and integrated, and the ratio of heat-resistant fiber and expanded graphite is Flexible graphite sheet material with a capacity ratio of 1:99 to 50:50. (2) The flexible graphite sheet material according to claim 1, wherein the heat-resistant fiber has a strength of 150 Kg/mm 2 or more and an elastic modulus of 15 t/mm 2 or more.
JP2050785U 1985-02-18 1985-02-18 Flexible graphite sheet material Granted JPS60156144U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050785U JPS60156144U (en) 1985-02-18 1985-02-18 Flexible graphite sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050785U JPS60156144U (en) 1985-02-18 1985-02-18 Flexible graphite sheet material

Publications (2)

Publication Number Publication Date
JPS60156144U JPS60156144U (en) 1985-10-17
JPS6319304Y2 true JPS6319304Y2 (en) 1988-05-30

Family

ID=30511057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050785U Granted JPS60156144U (en) 1985-02-18 1985-02-18 Flexible graphite sheet material

Country Status (1)

Country Link
JP (1) JPS60156144U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355146A (en) * 1986-08-26 1988-03-09 東レ株式会社 Fiber reinforced inorganic material
JP5361126B2 (en) * 2006-11-16 2013-12-04 オイレス工業株式会社 Multi-layer sliding member and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930410A (en) * 1972-07-20 1974-03-18
JPS49115095A (en) * 1973-03-09 1974-11-02
JPS50146612A (en) * 1974-05-17 1975-11-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930410A (en) * 1972-07-20 1974-03-18
JPS49115095A (en) * 1973-03-09 1974-11-02
JPS50146612A (en) * 1974-05-17 1975-11-25

Also Published As

Publication number Publication date
JPS60156144U (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
US4146401A (en) Graphite material having compressibility and recovering property and method for manufacturing the same
US3956548A (en) Duo material carbon composite brake disk
US6773528B2 (en) Process for producing fiber-reinforced-silicon carbide composites
Fitzer et al. Structure and strength of carbon/carbon composites
JP3154537B2 (en) Silicon carbide reinforced carbon composite
US20040097360A1 (en) Fiber-reinforced composite ceramic, fabrication method and lining material, armor, reflective surface and component having the composite ceramic
EP0292997A1 (en) Friction material
JPS6319304Y2 (en)
TWI306360B (en) End-face seal for graphite electrodes
JPS60191058A (en) Flexible graphite composite material
JPH0211322A (en) Sheetlike carbon composite material and its manufacture
JPH11349924A (en) Production of carbonaceous friction material
JPH06190962A (en) Molded heat insulating material
TWI855418B (en) Threaded fastener made of a two-dimensional carbon-carbon composite material produced by laminating anisotropic non-woven fabrics
JP7174094B2 (en) Molded heat insulating material with surface layer and method for manufacturing the same
JP2648349B2 (en) Bonding method of carbon fiber / carbon composite member
JPS6073171A (en) Fiber-reinforced expanded graphite gasket, and method of manufacturing it
JPS632426Y2 (en)
JPH0754277Y2 (en) Graphite sheet
JPS5861343A (en) Leaf spring
JPH05117026A (en) Expanded graphite-combined gasket material
JPH05331297A (en) Produciton of friction material
JPS6071578A (en) Manufacture of flexible graphite formed body
JPH0659726B2 (en) High temperature insulating structural material and method for producing the same