JPS6319280B2 - - Google Patents

Info

Publication number
JPS6319280B2
JPS6319280B2 JP58211631A JP21163183A JPS6319280B2 JP S6319280 B2 JPS6319280 B2 JP S6319280B2 JP 58211631 A JP58211631 A JP 58211631A JP 21163183 A JP21163183 A JP 21163183A JP S6319280 B2 JPS6319280 B2 JP S6319280B2
Authority
JP
Japan
Prior art keywords
workpiece
data
cutting
laser processing
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58211631A
Other languages
Japanese (ja)
Other versions
JPS60106687A (en
Inventor
Hideyori Umehara
Takahisa Hasegawa
Kunio Handa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP58211631A priority Critical patent/JPS60106687A/en
Publication of JPS60106687A publication Critical patent/JPS60106687A/en
Publication of JPS6319280B2 publication Critical patent/JPS6319280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Laser Beam Processing (AREA)
  • Machine Tool Copy Controls (AREA)

Description

【発明の詳細な説明】 本発明は数値制御によるレーザー加工装置に関
し、特に3次元曲面を有する被加工材を所定の切
断経路に沿つてレーザービームでもつて切断して
所要外形の加工物を得る加工方法に適用して最適
なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a numerically controlled laser processing device, and particularly to a processing method for cutting a workpiece having a three-dimensional curved surface with a laser beam along a predetermined cutting path to obtain a workpiece with a desired external shape. It is the most suitable method to apply.

一般にこの種のレーザー加工を数値制御(NC
制御)によつて行う場合には、先ず切断経路デー
タをNC制御装置に入力し、このデータに基いて
レーザーノズル又はワークテーブルの位置制御を
行つて、レーザービームを切断経路に沿つて移動
させている。切断経路のデータは、理論的に割出
されるデータと実体計測に基くデータとに分けら
れる。前者は、設計図面や理論定義された点群デ
ータのような、既に技術計算により数値化された
データである。また後者は、模範型から展開され
る石膏型や樹脂型等の実体化された枠型を3次元
測定機の3次元スキヤニング(トレース)方式に
より測定して得られるデータである。
Generally, this type of laser processing is performed using numerical control (NC).
In the case of cutting (control), the cutting path data is first input into the NC control device, and the position of the laser nozzle or work table is controlled based on this data to move the laser beam along the cutting path. There is. Data on the cutting route is divided into data determined theoretically and data based on physical measurements. The former is data that has already been quantified through technical calculations, such as design drawings or theoretically defined point cloud data. The latter is data obtained by measuring a materialized frame mold, such as a plaster mold or a resin mold, developed from a model mold using a three-dimensional scanning (tracing) method using a three-dimensional measuring machine.

実体測定による従来のデータ取得方法は、航空
機や自動車等の製造分野で知られているように実
体化された型の表面をX、Y、Z座標データとし
て取得し、金型転削加工用データ変換する方式か
ら考えられているため、第1図に示すように切断
経路データの取得には、表面上に側壁を設けた形
態の型(枠型又はメス型)としなければならな
い。つまり、先ず製造する部材自体又は模範型に
基いて第1図に示すような石膏型を作り、次に第
2図に示すように、3次元曲面である面1と外形
輪郭端面である面2との交線を、3次元測定機プ
ローブ4の先に取付けた接触子5でもつて連続ト
レースして、交線3の3次元データを取得する。
このような形態の型を製作するには、外形輪郭端
面を有するオス型からさらに測定用のメス型を取
る必要があるため、型製作が複雑となり生産コス
トが高くなる。
The conventional data acquisition method by physical measurement is to acquire the surface of a materialized mold as X, Y, and Z coordinate data, as is known in the field of manufacturing aircraft and automobiles, and use it as data for mold milling. Since the conversion method is considered, as shown in FIG. 1, in order to obtain cutting path data, it is necessary to use a mold (frame type or female type) with side walls provided on the surface. In other words, first, a plaster mold as shown in Fig. 1 is made based on the part to be manufactured or a model mold, and then as shown in Fig. 2, surface 1 is a three-dimensional curved surface, and surface 2 is an outer contour end surface. The line of intersection is continuously traced with a contact 5 attached to the tip of the probe 4 of the three-dimensional measuring machine to obtain three-dimensional data of the line of intersection 3.
In order to manufacture a mold of this type, it is necessary to take a female mold for measurement from a male mold having a contoured end face, which complicates mold manufacturing and increases production costs.

本発明は、このような従来の欠点を除去すべく
なされたもので、その目的とするところは、実体
と同等の形状を有する型の外形輪郭端面を3次元
測定機によりり3次元連続トレースすることを可
能とし、型製造の簡素化を図り、また実体そのも
のの測定を可能とすることにより、製造途中の部
品のNC化促進を図ることを一つの目的としてい
る。
The present invention has been made in order to eliminate such conventional drawbacks, and its purpose is to continuously trace the outer contour end face of a mold having a shape equivalent to that of the real object in three dimensions using a three-dimensional measuring machine. One of the objectives is to promote the use of NC for parts in the process of being manufactured by making it possible to simplify mold manufacturing and to make it possible to measure the actual object itself.

本発明によれば、3次元トレース方式により得
られたデータを処理し、自動レーザー加工制御条
件と合致させた実体加工再現用のNCデータを作
成することにより、実体測定から自動レーザー加
工までの一連の流れを確立したレーザー加工シス
テムを構成することができる。また本発明の実施
の態様によれば、レーザー加工時に焦点位置決め
センサーと被加工材の端材との干渉を避けるため
の被加工物取付用架台を設けることにより、端材
の変形を防止して、安定した自動レーザー加工を
可能にしている。
According to the present invention, by processing data obtained by a three-dimensional tracing method and creating NC data for reproducing physical processing that matches automatic laser processing control conditions, a series of processes from physical measurement to automatic laser processing can be performed. It is possible to configure a laser processing system that has an established flow. Further, according to an embodiment of the present invention, a workpiece mounting frame is provided to avoid interference between the focus positioning sensor and the scraps of the workpiece during laser processing, thereby preventing deformation of the scraps. , which enables stable automatic laser processing.

以下本発明を実施例に基いて説明する。 The present invention will be explained below based on examples.

第3図〜第8図は本発明をNC制御レーザー加
工システムに適用した実施例を示している。この
システムでは、被加工材としては一例としてガラ
ス繊維、炭素繊維等を含有した複合材料の薄板物
が用いられ、レーザービーム源としてはアルゴン
ガスレーザー、CO2レーザー等が用いられてい
る。
3 to 8 show an embodiment in which the present invention is applied to an NC-controlled laser processing system. In this system, a thin plate of a composite material containing glass fiber, carbon fiber, etc. is used as the workpiece, and an argon gas laser, a CO 2 laser, etc. are used as the laser beam source.

第3図は切断経路データの取得法を示す斜視図
で、第4図は要部断面図であつて、先ず、測定と
加工ともに共用できる被加工物取付用架台7に実
体化された模範型6あるいは模範型に代用し得る
実物を乗せ、取付ピン8で固定する。次に3次元
測定機により、加工時の座標と測定時の座標を一
致させた基準座標の設定を行ない、設定された座
標において加工原点と一致した測定原点を決め
る。そしてその測定原点の近傍で、3次元測定機
のプローブ10に取付けた端面測定用接触子9
(触針)を、オス模範型に接触させて3次元連続
トレースを行なう。この接触は、Z方向に面した
接触子大径底部15の略中心に突設した接触子小
径突起部14の根元を、オス模範型切断経路交線
13に接触させて行なう。このとき、3次元測定
機のプローブ10から端面側測定用接触子9に
X、Y、Z方向の触圧を加える。そしてこの触圧
が規定値になるところで、第4図に示すような正
しい接触位置に接触子9を保持する。このように
保持した後に3次元測定機を動作させると、プロ
ーブ10が接触子9のX、Y、Z方向の触圧を検
出し、3次元測定機の自動3次元スキヤニング機
能により、各方向の触圧が規定値となるように制
御する。そしてトレース方向について、左回りか
右回りかを指定すると、指定されたトレース方向
でオス模範型のエツジライン13を自動的に全周
トレースする。なお触圧検出によらずにX、Y、
Z方向に一定バイアス力を加えてトレースを行な
つてもよい。また自動トレースによらずに、手操
作による三次元の倣いトレース(テイーチング)
により切断経路データを得てもよい。
Fig. 3 is a perspective view showing a method of obtaining cutting path data, and Fig. 4 is a sectional view of the main part. 6 or a real object that can be substituted for the model model, and fix it with a mounting pin 8. Next, a three-dimensional measuring machine is used to set reference coordinates in which the coordinates at the time of machining and the coordinates at the time of measurement match, and determine a measurement origin that coincides with the machining origin at the set coordinates. Then, in the vicinity of the measurement origin, the end face measurement contact 9 is attached to the probe 10 of the three-dimensional measuring machine.
A stylus (stylus) is brought into contact with the male model mold to perform three-dimensional continuous tracing. This contact is made by bringing the root of the contact small diameter protrusion 14 protruding approximately at the center of the contact large diameter bottom 15 facing the Z direction into contact with the male model cutting path intersection line 13. At this time, contact pressure in the X, Y, and Z directions is applied from the probe 10 of the three-dimensional measuring machine to the end face side measurement contact 9. When this contact pressure reaches a specified value, the contact 9 is held at the correct contact position as shown in FIG. When the coordinate measuring machine is operated after being held in this manner, the probe 10 detects the contact pressure of the contact 9 in the X, Y, and Z directions, and the automatic three-dimensional scanning function of the coordinate measuring machine detects the contact pressure in each direction. Control the contact pressure to a specified value. When the tracing direction is designated as counterclockwise or clockwise, the edge line 13 of the male model is automatically traced all around in the designated tracing direction. Note that X, Y,
Tracing may be performed by applying a constant bias force in the Z direction. In addition, 3D tracing (teaching) can be performed manually without automatic tracing.
The cutting path data may be obtained by

この接触子9は、第4図に示すように被測定用
模範型6の上面の3次元曲面11と外形輪郭端面
12とのエツジライン13を全周3次元連続トレ
ースするために考えられたもので、下側に突起し
た小径部14によりX、Y方向を、上側の大径部
分の凸面状の底部15によりZ方向をそれぞれ同
時測定することを可能にしている。これは、、Z
方向をトレースする底部15の形状を凸面状に形
成したからである。上記底部15の形状が例えば
平面の場合は第4図に示すような、端部が下方に
傾斜している3次元曲面11を有する模範型6の
エツジライン13を3次元同時トレースすること
ができない。しかし本実施例では底部15の形状
を上記したように凸面状にしたのでこのように端
部が下方に傾斜している模範型6でも、第4図に
示したように小径部14の付け根をエツジライン
13に接触させることができる。即ち、小径部1
4を模範型6の外形輪郭端面12に接触させると
同時に、底部15を3次元曲面11に接触させる
ことができるので、X、Y、Z方向の3次元同時
トレースが可能である。さらに、接触子の触圧検
知によりエツジライン上の法線ベクトルi,j,
kをも同時に計測可能であるため、3次元曲面エ
ツジラインの5軸制御データの取得も可能となつ
ている。
This contactor 9 is designed to three-dimensionally continuously trace the edge line 13 between the three-dimensional curved surface 11 of the upper surface of the model mold 6 to be measured and the outer contour end surface 12, as shown in FIG. It is possible to simultaneously measure in the X and Y directions by the small diameter portion 14 protruding from the lower side, and in the Z direction by the convex bottom portion 15 of the upper large diameter portion. This is, Z
This is because the bottom portion 15 that traces the direction is formed into a convex shape. If the shape of the bottom portion 15 is, for example, a flat surface, it is not possible to three-dimensionally simultaneously trace the edge line 13 of the model mold 6 having a three-dimensional curved surface 11 whose end portion is inclined downward as shown in FIG. However, in this embodiment, the shape of the bottom part 15 is made into a convex shape as described above, so even in the model type 6 where the end part is inclined downward, the base of the small diameter part 14 can be changed as shown in FIG. It can be brought into contact with the edge line 13. That is, the small diameter portion 1
Since the bottom part 15 can be brought into contact with the three-dimensional curved surface 11 at the same time as the bottom part 15 is brought into contact with the outer contour end surface 12 of the model mold 6, simultaneous three-dimensional tracing in the X, Y, and Z directions is possible. Furthermore, normal vectors i, j,
Since k can also be measured at the same time, it is also possible to obtain five-axis control data for three-dimensional curved surface edge lines.

本実施例のレーザー加工装置のデータ取得法の
大きな特徴は、従来の側壁に囲まれた第1図のよ
うな模範型の3次元曲面の底部測定ではなく、3
次元曲面を有する実体型の上面測定が可能となつ
たことである。これにより、測定すべき模範型が
オス型だけで済み模範型の製作が簡素化され、さ
らに実体化された模範型だけでなく、それまで
NC加工あるいはレーザー加工以外の加工法で加
工されていた製品そのものの測定が可能となり、
製造途中の部品のNCあるいは自動レーザー加工
化が促進される。
A major feature of the data acquisition method of the laser processing device of this embodiment is that instead of measuring the bottom of a model three-dimensional curved surface surrounded by side walls as shown in FIG.
This makes it possible to measure the top surface of a solid type with a dimensional curved surface. This simplifies the production of model molds by requiring only the male model to be measured.
It is now possible to measure products that have been processed using processing methods other than NC processing or laser processing.
NC or automated laser processing of parts that are still being manufactured will be promoted.

前述の測定方式により得られたデータを基にし
て自動レーザー加工に必要な諸機能および諸条件
を組み込んだNCデータの作成を行なう。設定諸
機能としては、()補助ガス入切、()焦点位
置決めセンサー用倣い入切、()高周波パルス
入切、()シヤツター開閉があり、設定諸条件
としては、()レーザー光の出力値あるいは電
流値、()切断速度がある。これらの設定値を
第5図に示すようなデータ作成フローを考慮し、
切断経路データに組み込むことにより、、全自動
レーザー加工を実現している。
Based on the data obtained by the measurement method described above, we create NC data that incorporates the various functions and conditions necessary for automatic laser processing. Setting functions include () auxiliary gas on/off, () scanning on/off for focus positioning sensor, () high frequency pulse on/off, () shutter opening/closing, and setting conditions include () laser beam output value. Or there is a current value, () cutting speed. Considering the data creation flow shown in Figure 5 for these setting values,
By incorporating it into the cutting path data, fully automatic laser processing is realized.

第5図に示すように、切断加工が開始される
と、先ず加工座標系の原点より加工開始点上方に
レーザーノズルの位置決めが行われる。次に補助
ガスがオンとなり、焦点位置決めセンサーがオン
される。次にレーザー光出力値(電流値)の設定
が行われ、励振用高周波パルスがオンとなり、シ
ヤツターが開かれる。この状態でレーザー光出力
安定のため数秒間動作停止(ドウエル)が行わ
れ、その後切断加工が実行される。この加工プロ
セスでは、測定データが加工用データに変換さ
れ、更に加工条件を加味したデータに変換され、
このデータに基いてノズルの移動制御が行われ
る。切断が終了すると、シヤツターが閉じられ、
高周波パルス、焦点位置決めセンサー及び補助ガ
スがオフとなつて、レーザーノズルが加工原点に
戻される。
As shown in FIG. 5, when cutting is started, the laser nozzle is first positioned above the processing start point from the origin of the processing coordinate system. The auxiliary gas is then turned on and the focus positioning sensor is turned on. Next, the laser light output value (current value) is set, the excitation high-frequency pulse is turned on, and the shutter is opened. In this state, the operation is stopped (dwell) for several seconds to stabilize the laser light output, and then cutting is performed. In this machining process, measurement data is converted into machining data, which is further converted into data that takes into account machining conditions.
Nozzle movement control is performed based on this data. When the cutting is finished, the shutter will close and
The high frequency pulse, focus positioning sensor and auxiliary gas are turned off and the laser nozzle is returned to the processing origin.

なおレーザー加工は、熱加工であることから切
断面の熱影響層が問題となる。切断面の熱影響層
は、被加工材の材質および形状、特に板厚に対し
て、レーザー光の出力および加工速度が密接に関
係する。したがつて、NCデータ作成時にはこれ
らの因子を十分検討した上で加工条件の設定が必
要とされる。本発明における加工形状、特に板厚
に対するレーザー光の出力と加工速度とをNC制
御化した場合の例を第6図に示す。
Note that since laser processing is thermal processing, a heat-affected layer on the cut surface poses a problem. In the heat-affected layer of the cut surface, the laser beam output and processing speed are closely related to the material and shape of the workpiece, especially the plate thickness. Therefore, when creating NC data, it is necessary to carefully consider these factors before setting machining conditions. FIG. 6 shows an example of NC control of the processed shape in the present invention, particularly the laser beam output and processing speed with respect to the plate thickness.

第6図は被加工材17の部分断面を示し、区
間A−B−Cは3次元曲面の傾斜が大きい場合
で、レーザー光18がレーザーノズル16から鉛
直方向に照射されるため切断加工時の実板厚が変
化する。また、区間D−E−Fは、加工物自体の
板厚変化部である。板厚変化は、この2つのタイ
プに分けられる。どちらにおいても、板厚が変化
して行く区間A,C,D,Fでは、第6図の如
くにレーザー光の出力Pを一定にした場合は、
V1、V2、V3………のように加工速度を数段のス
テツプで加減速するように設定し、第6図の如
くに加工速度Vを一定にした場合は、P1、P2
P3………のようにレーザー光の出力を数段のス
テツプで増減するよう設定し、最適加工条件を
NCデータ化している。これにより、品質の安定
した全自動レーザー加工が可能となつている。
FIG. 6 shows a partial cross-section of the workpiece 17, where the section A-B-C shows a case where the three-dimensional curved surface has a large inclination. Actual plate thickness changes. Further, the section D-E-F is a part where the thickness of the workpiece itself changes. Changes in plate thickness can be divided into these two types. In either case, in sections A, C, D, and F where the plate thickness changes, if the output P of the laser beam is kept constant as shown in Fig. 6,
When the machining speed is set to be accelerated or decelerated in several steps like V 1 , V 2 , V 3 , etc., and the machining speed V is kept constant as shown in Fig. 6, P 1 , P 2 ,
Set the laser light output to increase/decrease in several steps as shown in P 3 ...... to find the optimal processing conditions.
It is converted into NC data. This enables fully automatic laser processing with stable quality.

また、同時に第7図に示す被加工物取付用架台
7を使用することにより、切断時における被加工
材の端材と焦点位置決めセンサー20の干渉を防
ぎ、安定した自動レーザー加工を行なえるように
している。
At the same time, by using the workpiece mounting frame 7 shown in FIG. 7, interference between the end material of the workpiece and the focus positioning sensor 20 during cutting can be prevented, and stable automatic laser processing can be performed. ing.

つまり、本システムでは、焦点位置決め用セン
サーに差動トランス型接触センサー20を用いて
いるためセンサーが常に被加工材の表面に接して
いる。レーザー加工の進行に伴ない、被加工材1
7の残余部である端材が自重によつて下に撓み、
加工終了間際には、センサー20が接触している
面内で著しく端材の隆起が生じ、センサー20と
端材とが干渉することにより、焦点位置のずれや
センサーの破損、最悪の場合は、被加工材への損
傷が発生する。これを防ぐため、第7図に示すよ
うに被加工物取付架台7に端材受け19を取付
け、端材を保持できる機構を採用している。この
機構により、端材が安定し完全な全自動レーザー
加工が可能となつた。
That is, in this system, since the differential transformer type contact sensor 20 is used as the focus positioning sensor, the sensor is always in contact with the surface of the workpiece. As laser processing progresses, the workpiece 1
The scrap material, which is the remaining part of 7, bends downward due to its own weight,
Near the end of processing, the scraps will noticeably bulge in the plane that the sensor 20 is in contact with, causing interference between the sensor 20 and the scraps, resulting in a shift in the focus position, damage to the sensor, and, in the worst case, Damage to the workpiece will occur. In order to prevent this, as shown in FIG. 7, a scrap receptacle 19 is attached to the workpiece mounting frame 7, and a mechanism capable of holding the scraps is adopted. This mechanism stabilizes the scrap material and enables fully automatic laser processing.

しかし、本システムは、X、Y、Zの同時3軸
制御方式のため、3次元曲面を有する部品加工に
制限がある。すなわち、第8図に示すように、3
次元曲面を有する部品については切断面が部品表
面の法線方向21に対して角度αを持つので、部
品上面側と下面側に切断誤差δが生じる。この切
断誤差δは、部品板厚tと法線方向と切断面の角
度αによつて(1)式で表わされる。
However, since this system uses a simultaneous three-axis control method for X, Y, and Z, there is a limit to the machining of parts with three-dimensional curved surfaces. That is, as shown in Figure 8, 3
For a component having a dimensional curved surface, the cutting surface has an angle α with respect to the normal direction 21 of the component surface, so a cutting error δ occurs on the upper and lower surfaces of the component. This cutting error δ is expressed by equation (1) using the component plate thickness t and the angle α between the normal direction and the cutting surface.

δ=t tanα (1) δは、図面公差内でなければならないので、そ
の公差をδ′とすると、 δ′=t tanα (2) (2)式をαに対して解くと、 α=tan-1(δ′/t) (3) で表わされ、αはtの関数α(t)となり、tの
値に対して許容角度αが決定される。ただし、角
度αは、切断方向に対して90゜をなす面内におけ
る法線方向と切断面のなす角である。
δ=t tanα (1) δ must be within the drawing tolerance, so if that tolerance is δ′, δ′=t tanα (2) Solving equation (2) for α, α=tan -1 (δ'/t) (3) where α is a function α(t) of t, and the allowable angle α is determined for the value of t. However, the angle α is the angle between the normal direction and the cut surface in a plane that is 90° with respect to the cutting direction.

以上の如く本発明のレーザー加工装置によれ
ば、模範物(実体物)の外形輪郭端面と3次元曲
面とのエツジラインを、Z方向に向けて凸面状に
形成した底部の略中心に小径部を突設した接触子
でもつてトレースするようにしたので、底部と3
次曲面を接触させると同時に小径部を外形輪郭端
面に接触させることができ、従つて上記底部で3
次曲面をZ方向にトレースすると同時に小径部で
外形輪郭端面をX、Y方向にトレースできる。そ
して模範物のエツジラインを全周3次元連続トレ
ースして、これによりX、Y、Z方向の3次元切
断経路データを得て、このデータに基いてレーザ
ービームの位置を数値制御して被加工材を切断加
工するようにしたので、従来の如くに模範物に基
いてメス型を作成してから3次元データを得る必
要が無く、実体物から切断経路データを直接に得
ることができ、従つて型製造のコスト、工数を低
減でき、またデータ取得から切断加工までのプロ
セスを簡素化できる。また実体物から3次元デー
タを取得できるので、製造途中の中間部品などに
もNC化されたレーザー加工システムを容易に導
入することができ、広範囲に応用できる。
As described above, according to the laser processing apparatus of the present invention, the edge line between the outer contour end face of the model object (substantive object) and the three-dimensional curved surface is formed into a convex shape in the Z direction, and the small diameter part is formed approximately at the center of the bottom part. Since I made it possible to trace even the protruding contacts, the bottom and 3
The small diameter part can be brought into contact with the outer contour end face at the same time as the next curved surface is brought into contact, so that at the bottom part 3
The next curved surface can be traced in the Z direction, and at the same time, the outer contour end face can be traced in the X and Y directions at the small diameter portion. Then, the edge line of the model is continuously traced three-dimensionally around the entire circumference to obtain three-dimensional cutting path data in the X, Y, and Z directions.Based on this data, the position of the laser beam is numerically controlled to cut the workpiece. Since the cutting process is performed by cutting, there is no need to create a female mold based on a model object and then obtain three-dimensional data as in the past, and the cutting path data can be obtained directly from the actual object. It can reduce mold manufacturing costs and man-hours, and simplify the process from data acquisition to cutting. Additionally, since 3D data can be obtained from physical objects, NC laser processing systems can be easily introduced to intermediate parts in the process of being manufactured, allowing for a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の切断経路データ取得用模範型を
示す斜視図、第2図は第1図の部分断面図、第3
図は本発明による切断経路データ取得方法を示す
斜視図、第4図は第3図の詳細部分断面図、第5
図はレーザー切断加工のフローチヤート、第6図
は被加工物の部分断面図、第6図,は第6
図に対応して設定されたレーザー加工データ
(出力及び移動速度)のグラフ、第7図は被加工
物取付用架台の側面図、第8図は、3次元曲面を
有する部品の切断面図である。 図面中に使用された符号において、1……メス
模範型3次元曲面、2……メス模範型外形輪郭端
面、3……メス模範型切断経路交線、4……3次
元測定機プローブ、5……従来形接触子、6……
オス模範型、7……取付架台、8……取付ピン、
9……オス模範型測定用接触子、10……3次元
測定機プローブ、11……オス模範型3次元曲
面、12……オス模範型外形輪郭端面、13……
オス模範型切断経路交線、14……接触子小径突
起部、15……接触子大径底部、16……レーザ
ーノズル、17……被加工材、18……レーザー
光、19……端材受け、20……接触センサー、
21……3次元曲面法線方向である。
Fig. 1 is a perspective view showing a conventional model model for acquiring cutting path data, Fig. 2 is a partial sectional view of Fig. 1, and Fig. 3 is a partial sectional view of Fig. 1.
The figure is a perspective view showing the cutting path data acquisition method according to the present invention, FIG. 4 is a detailed partial sectional view of FIG. 3, and FIG.
The figure is a flowchart of laser cutting processing, Figure 6 is a partial sectional view of the workpiece, and Figure 6 is a flowchart of laser cutting processing.
A graph of laser processing data (output and movement speed) set corresponding to the figure, Figure 7 is a side view of the workpiece mounting frame, and Figure 8 is a cross-sectional view of a part with a three-dimensional curved surface. be. In the symbols used in the drawings, 1...3-dimensional curved surface of female model mold, 2... Outer contour end surface of female model model, 3... Cross line of cutting route of female model model, 4... Three-dimensional measuring machine probe, 5... ...Conventional contactor, 6...
Male model type, 7...Mounting frame, 8...Mounting pin,
9...Male model type measurement contact, 10...3D measuring machine probe, 11...Male model type three-dimensional curved surface, 12...Male model type external contour end surface, 13...
Cross line of male model cutting path, 14...Contact small diameter protrusion, 15...Contact large diameter bottom, 16...Laser nozzle, 17...Work material, 18...Laser light, 19...Edge material Receiving, 20...contact sensor,
21...This is the normal direction of the three-dimensional curved surface.

Claims (1)

【特許請求の範囲】 1 模範物をトレースして切断経路データを得
て、この切断経路データに基いてレーザービーム
の位置を数値制御して被加工材を切断加工し、上
記模範物に対応した加工物を得るようにしたレー
ザー加工装置において、 Z方向に向けて凸面状に形成された底部を有す
る大径部と、上記底部の略中心に突設された小径
部とから成る接触子を具備し、 外形輪郭端面に連なる3次元曲面を有する上記
模範物のエツジラインを、上記大径部の底部でZ
方向にトレースすると同時に、上記小径部でX、
Y方向にトレースして、X、Y、Z方向の3次元
切断経路データを得るようにしたことを特徴とす
るレーザー加工装置。 2 上記被加工材の端部を固定支持しながら切断
加工を行なう端材受けを、上記被加工材を取付け
ている取付架台の側面に配設したことを特徴とす
る特許請求の範囲第1項に記載のレーザー加工装
置。
[Claims] 1. Tracing a model object to obtain cutting path data, and numerically controlling the position of a laser beam based on this cutting path data to cut a workpiece material corresponding to the model object. A laser processing device configured to obtain a workpiece, comprising a contactor consisting of a large diameter portion having a bottom portion formed convexly in the Z direction, and a small diameter portion protruding approximately at the center of the bottom portion. Then, the edge line of the model having a three-dimensional curved surface connected to the end surface of the external contour is aligned with Z at the bottom of the large diameter part.
At the same time, trace in the small diameter section
A laser processing device characterized by tracing in the Y direction to obtain three-dimensional cutting path data in the X, Y, and Z directions. 2. Claim 1, characterized in that a scrap receiver for performing cutting while fixedly supporting an end of the workpiece is disposed on a side surface of a mounting frame to which the workpiece is mounted. The laser processing device described in .
JP58211631A 1983-11-10 1983-11-10 Laser working method Granted JPS60106687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211631A JPS60106687A (en) 1983-11-10 1983-11-10 Laser working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211631A JPS60106687A (en) 1983-11-10 1983-11-10 Laser working method

Publications (2)

Publication Number Publication Date
JPS60106687A JPS60106687A (en) 1985-06-12
JPS6319280B2 true JPS6319280B2 (en) 1988-04-21

Family

ID=16608970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211631A Granted JPS60106687A (en) 1983-11-10 1983-11-10 Laser working method

Country Status (1)

Country Link
JP (1) JPS60106687A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192580A (en) * 1987-02-05 1988-08-09 Shibuya Kogyo Co Ltd Three-dimensional working device
US4950945A (en) * 1987-06-04 1990-08-21 Zenith Electronics Corporation Tension mask securement means and process therefor
JP3948844B2 (en) * 1998-06-12 2007-07-25 トヨタ自動車株式会社 Wet friction material
JP2009082932A (en) * 2007-09-28 2009-04-23 Pulstec Industrial Co Ltd Laser beam machining apparatus and laser beam machining method
US8334477B1 (en) 2008-07-21 2012-12-18 Roll Forming Corporation Method and apparatus for laser welding elongated workpieces
US9403238B2 (en) * 2011-09-21 2016-08-02 Align Technology, Inc. Laser cutting
CN108747049B (en) * 2018-06-14 2020-04-10 苏州大族松谷智能装备股份有限公司 Implementation method of laser cutting machine for positioning plate by using CCD
CN110228107B (en) * 2019-06-08 2020-10-30 嘉兴市金鹭喷织有限公司 Processing equipment with filtering piece in sewage purifier
CN112108782B (en) * 2020-09-18 2022-05-27 广东宏石激光技术股份有限公司 Method for automatically adjusting edge finding starting point in plate laser cutting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597892A (en) * 1979-01-17 1980-07-25 Kobe Steel Ltd Automatic laser cutting method of curved panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597892A (en) * 1979-01-17 1980-07-25 Kobe Steel Ltd Automatic laser cutting method of curved panel

Also Published As

Publication number Publication date
JPS60106687A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
US5390128A (en) Robotic processing and inspection system
US5552992A (en) Method and system for reproduction of an article from a physical model
EP1787176B2 (en) Machine tool method
US20040107019A1 (en) Automated rapid prototyping combining additive and subtractive processes
JPH01178395A (en) Laser beam machine for three dimensional shape
EP1978427A2 (en) Method for displaying the shape of a surface
JPS6319280B2 (en)
US11167382B2 (en) Method and machine equipment for manufacturing of a cutting tool
Xu et al. Shape-adaptive CNC milling for complex contours on deformed thin-walled revolution surface parts
Chouvion et al. Interface management in wing-box assembly
CN116551048A (en) Geometric self-adaptive machining equipment and method
JPS61125754A (en) Nc data preparing device for processing metal dies
DE4223483A1 (en) Monitoring the shape of castings, esp. turbine blocks - using optical scanning device which feeds any deviation signals to a subsequent machining device
US4575665A (en) Tracer control method
Wen et al. Robotic surface finishing of curved surfaces: Real-Time identification of surface profile and control
JPS6317583B2 (en)
JPH0569639B2 (en)
JP2004163347A (en) Off-line teaching method of noncontact three-dimensional shape measuring device
Lee et al. Improvement of product accuracy in freeform surface machining
RU2783722C1 (en) Method for manufacturing parts from a sheet metal blank on a cnc laser machine
JPH1173213A (en) Tool path data generating method
Olama et al. A CAD/CAM system for die design and manufacture
JPS61154786A (en) Laser cutting robot for cutting out laminated plate
KR20230110114A (en) Post-processing system for additive products
Chen et al. Kinematic errors evaluation of five-axis machine tool using direct cutting method