JPS6319242B2 - - Google Patents

Info

Publication number
JPS6319242B2
JPS6319242B2 JP55014422A JP1442280A JPS6319242B2 JP S6319242 B2 JPS6319242 B2 JP S6319242B2 JP 55014422 A JP55014422 A JP 55014422A JP 1442280 A JP1442280 A JP 1442280A JP S6319242 B2 JPS6319242 B2 JP S6319242B2
Authority
JP
Japan
Prior art keywords
rolling
rolling mill
plate thickness
strip
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014422A
Other languages
Japanese (ja)
Other versions
JPS56111521A (en
Inventor
Fumio Yoshida
Yoshikazu Kodera
Okinori Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP1442280A priority Critical patent/JPS56111521A/en
Publication of JPS56111521A publication Critical patent/JPS56111521A/en
Publication of JPS6319242B2 publication Critical patent/JPS6319242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は熱間圧延されるストリツプの走間板厚
変更圧延制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rolling control method for changing the running plate thickness of a hot rolled strip.

近年熱間タンデム圧延機において圧延速度を全
く落とすことなく成品板厚を自動的に精度良く1
本のストリツプから連続した2種類以上の成品を
自動的に圧延し歩留向上、燃料原単位の向上、ロ
ツト余剰材の減少を計るストリツプの走間板厚変
更圧延のニーズが急速に高まりつつある。
In recent years, hot tandem rolling mills have been able to automatically adjust the thickness of the finished product with high precision without reducing the rolling speed at all.
There is a rapidly increasing need for strip thickness changing rolling, which automatically rolls two or more consecutive products from a book strip to improve yield, fuel consumption, and reduce lot surplus material. .

本発明は上記の様なニーズを満足するため、二
台以上並べられたタンデム圧延機においてストリ
ツプの走間板厚変更圧延を行なうにおいて、走間
板厚変更の実施前後で円滑かつ精度の良い圧下制
御をおこなうことを目的とする。
In order to satisfy the above-mentioned needs, the present invention provides smooth and accurate rolling before and after changing the running thickness of a strip in tandem rolling mills arranged in two or more tandem rolling mills. The purpose is to perform control.

上記目的を達成するために本発明においては、
ストリツプの走間板厚変更圧延において熱間圧延
されるストリツプの先端が上流側圧延機のロール
バイト下に噛み込んだ直後の検出した圧下位置と
圧延力を基準圧下位置および基準圧延力として記
憶し、この圧下位置と圧延力とを用いてストリツ
プの上流側圧延機出側板厚の基準値を演算しそれ
以降のこの上流側圧延機で圧延されるストリツプ
に対して検出した圧下位置と圧延力により圧延中
のストリツプの上流側圧延機出側検出板厚を演算
しこの板厚と前記の上流側圧延機の出側板厚基準
値とを比較し、上流側圧延機の出側板厚偏差を算
出し、またストリツプの先端が下流側圧延機のロ
ールバイト下に噛み込んだ直後の検出した圧下位
置と圧延力を基準圧下位置および基準圧延力とし
て記憶し、この記憶された圧下位置と圧延力とを
用いてストリツプの下流側圧延機の出側板厚基準
値を演算しそれ以降この下流値圧延機で圧延され
るストリツプに対して検出した圧下位置と圧延力
により圧延中のストリツプの下流側圧延機の出側
検出板厚を演算しこの板厚と前記下流側圧延機の
出側板厚基準値とを比較することによりこの下流
側圧延機の出側板厚偏差を算出し、これらの算出
した上流側圧延機の出側板厚偏差および下流側圧
延機の出側板厚偏差を用いて上流側圧延機の出側
板厚偏差信号をストリツプの単位長さ毎に一旦記
憶し、そのストリツプの該当部分が下流側圧延機
に到達するタイミング毎に前記記憶した出側板厚
偏差信号を取り出すことにより下流側圧延機の入
側板厚偏差信号とし、この下流側圧延機の入側板
厚偏差信号と前記算出した下流側圧延機の出側板
厚偏差信号とを用いて下流側圧延機における圧下
率変動を演算することにより上流側圧延機と下流
側圧延機間で圧延されているストリツプのマスバ
ランス変動を計算し、このマスバランスの変動を
もとの安定状態にもどすように上流側圧延機の速
度駆動制御装置を駆動し制御するにおいて圧延中
のストリツプの走間板厚変更する場合、ストリツ
プの先端が下流側圧延機に噛み込んだ以後下流側
圧延機での走間板厚変更圧延開始前は下流側圧延
機での圧下率変動計算により上流側圧延機の圧延
速度修正量を計算し、次いで上流側圧延機での走
間板厚変更圧延開始時に上流側圧延機の前記圧延
速度修正量を記憶し同時に上流側圧延機での入側
板厚偏差および出側板厚偏差の基準値をその時点
での入側板厚および出側板厚に置きかえ記憶する
ことによりその時点での下流側圧延機の入、出側
板厚偏差は零とし、次いで走間板厚変更開始後は
前記の更新された新しい入側板厚基準および出側
板厚基準からの板厚偏差により下流側圧延機にお
ける圧下率変動計算を行い上流側圧延機の圧延速
度修正量を計算するとともに前に記憶した圧延速
度修正量と加え合わせこの修正量を用いて上流側
圧延機の速度駆動制御装置を駆動し制御すること
により、上記圧延機間のマスバランス変動を修正
し、次いで下流側圧延機での別途入力される走間
板厚変更圧延終了信号を受けると再び圧延速度修
正量を記憶するとともに入側および出側板厚の基
準値をその時点の板厚に置きかえ記憶しそれ以降
のストリツプに対しては前方の更新された新しい
入側板厚基準および出側板厚基準からの入、出側
板厚偏差を演算し、これらの板厚偏差により計算
した上流側圧延機の圧延速度修正量と前記記憶し
た圧延速度修正量との和を用いて上流側圧延機の
速度駆動制御装置を駆動し制御する。
In order to achieve the above object, in the present invention,
The rolling position and rolling force detected immediately after the tip of the hot-rolled strip is bitten under the roll bit of the upstream rolling mill during strip thickness change rolling are stored as the reference rolling position and rolling force. Using this rolling position and rolling force, calculate the standard value of the thickness of the strip at the exit side of the upstream rolling mill, and then calculate the standard value of the thickness of the strip at the exit side of the upstream rolling mill. The detected plate thickness at the exit side of the upstream rolling mill of the strip being rolled is calculated, and this plate thickness is compared with the above-mentioned standard value for the exit side thickness of the upstream rolling mill, and the deviation of the thickness at the exit side of the upstream rolling mill is calculated. In addition, the rolling position and rolling force detected immediately after the tip of the strip is bitten under the roll bit of the downstream rolling mill are stored as a standard rolling position and standard rolling force, and the stored rolling position and rolling force are The standard value of the exit side thickness of the strip on the downstream side rolling mill is calculated using this value, and from then on, the downstream side rolling mill of the strip being rolled is calculated based on the rolling position and rolling force detected for the strip being rolled on this downstream rolling mill. By calculating the detected outlet plate thickness and comparing this plate thickness with the outlet plate thickness standard value of the downstream rolling mill, the outlet plate thickness deviation of the downstream rolling mill is calculated, and the calculated upstream rolling Using the exit side thickness deviation of the machine and the exit side thickness deviation of the downstream rolling mill, the exit side thickness deviation signal of the upstream rolling mill is once stored for each unit length of the strip, and the corresponding portion of the strip is By taking out the stored exit plate thickness deviation signal at each timing of reaching the machine, it is used as an entry plate thickness deviation signal of the downstream rolling mill, and the input plate thickness deviation signal of the downstream rolling mill and the calculated downstream rolling mill are combined. The mass balance fluctuation of the strip being rolled between the upstream rolling mill and the downstream rolling mill is calculated by calculating the rolling reduction variation in the downstream rolling mill using the exit side plate thickness deviation signal and the mass balance. When changing the running thickness of the strip during rolling by driving and controlling the speed drive control device of the upstream rolling mill so as to return to the original stable state from fluctuations in After the running plate thickness is changed in the downstream rolling mill, before rolling starts, the rolling speed correction amount of the upstream rolling mill is calculated by the reduction rate fluctuation calculation in the downstream rolling mill, and then the rolling speed correction amount of the upstream rolling mill is calculated. At the start of rolling, the rolling speed correction amount of the upstream rolling mill is memorized, and at the same time, the standard values of the entry thickness deviation and exit thickness deviation in the upstream rolling mill are changed to the entry and exit thickness deviations at that time. By replacing it with the thickness and storing it, the inlet and outlet thickness deviations of the downstream rolling mill at that point are set to zero, and then after the running plate thickness change starts, the updated inlet and outlet thickness standards are used. The rolling reduction rate variation in the downstream rolling mill is calculated based on the thickness deviation from the plate thickness, and the rolling speed correction amount of the upstream rolling mill is calculated.The rolling speed correction amount is added to the previously memorized rolling speed correction amount, and this correction amount is used to perform upstream rolling. By driving and controlling the speed drive control device of the machine, the mass balance fluctuation between the rolling mills is corrected, and then rolling is started again when the downstream rolling mill receives a separately input rolling plate thickness change rolling end signal. The amount of speed correction is memorized, and the reference values for the entry and exit thicknesses are replaced and stored with the thicknesses at that time.For subsequent strips, the new entry and exit thickness standards are used for subsequent strips. The input and exit plate thickness deviations are calculated, and the speed drive control of the upstream rolling mill is performed using the sum of the rolling speed correction amount of the upstream rolling mill calculated based on these plate thickness deviations and the memorized rolling speed correction amount. Drive and control equipment.

以下、図面を参照して本発明を詳細に説明す
る。第1図に本発明を実施する装置構成を示す。
第1図において、1は走行中に走間板厚変更圧延
されるストリツプ、2aはストリツプ1の上流側
圧延機でストリツプ1を圧延する。2bはストリ
ツプ1の下流側圧延機であり、ストリツプ1を圧
延する。3aは圧下位置検出器であり、ストリツ
プ1が圧延されている時上流側圧延機2aのロー
ルバイト下でのロール間隙を電気信号に変換して
検出する。3bは圧下位置検出器であり、ストリ
ツプ1が圧延されている時下流側圧延機2bのロ
ールバイト下でのロール間隙を電気信号に変換し
て検出するものである。4aは圧延力検出器であ
りストリツプ1が圧延されている時、上流側圧延
機2aの圧延力を電気信号に変換して検出する。
4bは圧延力検出器であり、ストリツプ1が圧延
されている時下流側圧延機2bの圧延力を電気信
号に変換して検出するものである。5aは出側板
厚偏差演算装置であり、上流側圧延機2aでの圧
下位置検出器3aおよび圧延力検出器4aにより
検出されたロールバイト下の圧下位置信号と圧延
力信号により圧延されるストリツプ1の上流側圧
延機2aの出側板厚偏差を演算する。5bは出側
板厚偏差演算装置であり、下流側圧延機2bでの
圧下位置検出器3bおよび圧延力検出器4bによ
り検出されたロールバイト下の圧下位置信号と圧
延力信号により圧延されるストリツプ1の、下流
側圧延機2bでの出側板厚偏差を演算するもので
ある。8は下流側圧延機2bの入側板厚偏差演算
装置であり、出側板厚偏差演算装置5aによつて
演算された圧延されるストリツプ1の上流側圧延
機2aの出側板厚偏差信号を入力し、ある時点で
の上流側圧延機2aのロールバイト下のストリツ
プ1の部分が下流側圧延機2bのロールバイト下
に到達させる機能を有する。6は圧下補償装置で
あり、上流側圧延機2aの出側板厚偏差演算装置
5aにより演算された出側板厚偏差と下流側圧延
機2bの出側板厚偏差演算装置5bにより演算さ
れた出側板厚偏差を受け上流側圧延機2aの出側
板厚偏差演算装置5aよりの出側板厚偏差信号を
ストリツプ1の単位長さ毎に記憶部に一旦記憶
し、そのストリツプ1の該当部分が下流側圧延機
2bのロールバイト下に到達するタイミング毎に
前記記憶した上流側圧延機2aの出側板厚偏差信
号を取り出すことにより、下流側圧延機2bの入
側板厚偏差信号とする。この下流側圧延機2bの
入側板厚偏差信号と前記算出した出側板厚偏差信
号とを用いて下流側圧延機2bにおける圧下率変
動を演算することにより上流側圧延機2aと下流
側圧延機2b間で圧延されているストリツプ1の
マスバランスの変動を計算しこのマスバランスの
変動をもとの安定状態に戻すように上流側圧延機
2aの圧延速度を速度駆動制御装置7により制御
し、このマスバランスの変動を修正制御する。7
は速度駆動制御装置であり圧下補償装置6より出
力される圧延速度修正量信号により上流側圧延機
2aの圧延速度を修正制御する。9は走間板厚変
更圧延タイミング入力装置であり、圧下補償装置
6の圧下補償出力信号を記憶したり基準板厚を更
新したりする走間板厚変更圧延開始信号および終
了信号を圧下補償装置6に出力する機能を有す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 shows the configuration of an apparatus for implementing the present invention.
In FIG. 1, numeral 1 denotes a strip that is rolled to change the thickness during running, and numeral 2a rolls the strip 1 in a rolling mill on the upstream side of the strip 1. 2b is a rolling mill downstream of the strip 1, which rolls the strip 1. Reference numeral 3a denotes a rolling position detector which detects the roll gap under the roll bite of the upstream rolling mill 2a by converting it into an electric signal when the strip 1 is being rolled. Reference numeral 3b denotes a rolling position detector which detects the roll gap under the roll bite of the downstream rolling mill 2b by converting it into an electric signal when the strip 1 is being rolled. A rolling force detector 4a detects the rolling force of the upstream rolling mill 2a by converting it into an electric signal when the strip 1 is being rolled.
4b is a rolling force detector which converts the rolling force of the downstream rolling mill 2b into an electric signal and detects it when the strip 1 is being rolled. Reference numeral 5a denotes an exit side plate thickness deviation calculation device, which calculates the strip 1 to be rolled based on the rolling force signal and the rolling position signal under the roll bite detected by the rolling position detector 3a and the rolling force detector 4a in the upstream rolling mill 2a. The outlet plate thickness deviation of the upstream rolling mill 2a is calculated. Reference numeral 5b denotes an exit side sheet thickness deviation calculating device, which calculates the strip 1 to be rolled based on the rolling force signal and rolling position signal under the roll bite detected by the rolling position detector 3b and rolling force detector 4b in the downstream rolling mill 2b. This is to calculate the exit side sheet thickness deviation at the downstream rolling mill 2b. Reference numeral 8 denotes an inlet thickness deviation calculation device of the downstream rolling mill 2b, which inputs an outlet thickness deviation signal of the upstream rolling mill 2a of the strip 1 to be rolled calculated by the outlet thickness deviation calculation device 5a. , has the function of causing the portion of the strip 1 under the roll bite of the upstream rolling mill 2a to reach under the roll bite of the downstream rolling mill 2b at a certain point in time. Reference numeral 6 denotes a reduction compensation device, which calculates the exit side plate thickness deviation calculated by the exit side plate thickness deviation calculation device 5a of the upstream side rolling mill 2a and the exit side plate thickness calculated by the exit side plate thickness deviation calculation device 5b of the downstream side rolling mill 2b. In response to the deviation, the output side plate thickness deviation signal from the output side plate thickness deviation calculation device 5a of the upstream rolling mill 2a is temporarily stored in the storage section for each unit length of the strip 1, and the corresponding portion of the strip 1 is transferred to the downstream side rolling mill. By taking out the stored exit side plate thickness deviation signal of the upstream rolling mill 2a at each timing when the roll bite of roll bit 2b is reached, it is used as an entry side plate thickness deviation signal of the downstream rolling mill 2b. The upstream rolling mill 2a and the downstream rolling mill 2b are calculated by calculating the rolling reduction variation in the downstream rolling mill 2b using the input plate thickness deviation signal of the downstream rolling mill 2b and the calculated exit plate thickness deviation signal. The rolling speed of the upstream rolling mill 2a is controlled by the speed drive control device 7 so as to calculate the fluctuation in the mass balance of the strip 1 being rolled between the rolling mills 1 and 2, and control the rolling speed of the upstream rolling mill 2a to return the mass balance fluctuation to the original stable state. Correct and control mass balance fluctuations. 7
is a speed drive control device which corrects and controls the rolling speed of the upstream rolling mill 2a based on a rolling speed correction amount signal output from the rolling reduction compensator 6. Reference numeral 9 denotes a running plate thickness changing rolling timing input device, which stores the rolling plate thickness changing rolling start signal and end signal for storing the rolling plate thickness changing output signal of the rolling plate thickness compensating device 6 and updating the standard plate thickness. It has the function of outputting to 6.

上記のような装置構成においてストリツプ1の
先端が上流側圧延機2aのロールバイト下に噛み
込んだ直後の圧下位置検出器3aおよび圧延力検
出器4aにより検出された圧下位置と圧延力を出
側板厚偏差演算装置5aに入力し基準圧下位置お
よび基準圧延力として記憶し、この記憶された圧
下位置と圧延力とを用いてストリツプ1の上流側
圧延機2aの出側板厚の基準値を演算し、それ以
降この上流側圧延機2aで圧延されるストリツプ
1に対して圧下位置検出器3aおよび圧延力検出
器4aにより検出した圧下位置と圧延力により圧
延中のストリツプ1の上流側圧延機2aでの出側
検出板厚を演算し、この板厚と前記の上流側圧延
機2aの出側板厚基準値とを比較することにより
この上流側圧延機2aでの出側板厚偏差を算出す
る。またストリツプ1の先端が下流側圧延機2b
のロールバイト下に噛み込んだ直後の圧下位置検
出器3bおよび圧延力検出器4bにより検出した
圧下位置と圧延力を出側板厚偏差演算装置5bに
入力し基準圧下位置および基準圧延力として記憶
し、この記憶された圧下位置と圧延力とを用いて
ストリツプ1の下流側圧延機2bでの出側板厚基
準値を演算し、それ以降この上流側圧延機2aで
圧延されるストリツプ1に対して圧下位置検出器
3bおよび圧延力検出器4bにより検出された圧
下位置と圧延力により、圧延中のストリツプ1の
下流側圧延機2bの出側検出板厚を演算しこの板
厚と前記の下流側圧延機2bの出側板厚基準値と
を比較することによりこの下流側圧延機2bの出
側板厚偏差を算出する。これらの演算し算出した
上流側圧延機2aの出側板厚偏差を用いて、上流
側圧延機2aの出側板厚偏差信号を入側板厚偏差
演算装置8に入力しストリツプ1の単位長さ毎に
一旦記憶しそのストリツプ1の該当部分が下流側
圧延機2bに到達するタイミング毎に前記記憶し
た上流側圧延機2aの出側板厚偏差信号を取り出
すことにより下流側圧延機2bの入側板厚偏算信
号とする。この下流側圧延機2bの入側板厚偏差
信号と前記算出した下流側圧延機2bの出側板厚
偏差信号とを用いて下流側圧延機2bにおける圧
下率変動を演算し、上流側圧延機2aと下流側圧
延機2b間で圧延されているストリツプ1のマス
バランス変動をもとの安定状態にもどすように上
流側圧延機2aの速度駆動制御装置7を駆動し制
御する圧下補償装置6において、圧延中のストリ
ツプ1を走間板厚変更する場合、ストリツプ1の
先端が下流側圧延機2bに噛み込んだ以後、下流
側圧延機2bでの走間板厚変更圧延タイミング入
力装置9よりの走間板厚変更圧延開始信号を受け
るまでは、前記の下流側圧延機2bでの圧下率変
動計算により上流側圧延機2aの圧延速度修正量
を算出する。次いで下流側圧延機2bでの走間板
厚変更圧延タイミング入力装置9よりの走間板厚
変更圧延開始信号を受けるとすぐに圧下補償装置
6よりの出力信号を前記上流側圧延機2aの圧延
速度修正量として記憶し、同時に上流側圧延機2
aでの入側板厚偏差および出側板厚偏差の基準値
をその時点での入側板厚および出側板厚に置きか
え記憶することにより、その時点での下流側圧延
機2bの更新された新しい入側板厚偏差および出
側板厚偏差は零となる。従つて走間板厚変更開始
後、圧下補償装置6は前記更新された新しい入側
板厚基準および出側板厚基準からの板厚偏差によ
り下流側圧延機2bにおける圧下率変動計算を行
ない、上流側圧延機2aの圧延速度修正量を計算
するとともに前に記憶した上流側圧延機2aの圧
延速度修正量と加え合わせ、この圧延速度修正量
を用いて上流側圧延機2aの速度駆動制御装置7
を駆動し制御する。同様に下流側圧延機2bでの
走間板厚変更圧延タイミング入力装置9よりの走
間板厚変更圧延終了信号を受けると再度圧延速度
修正量を記憶するとともに、入側板厚および出側
板厚の基準値をその時点の板厚に置きかえ記憶
し、それ以降のストリツプ1に対しては前記更新
された新しい入側板厚基準および出側板厚基準か
らの入側および出側板厚偏差を演算し、これらの
板厚偏差により計算した上流側圧延機2aの圧延
速度修正量と前記記憶した圧延速度修正量との和
を用いて上流側圧延機2aの速度駆動制御装置7
を駆動し制御する圧下補償装置6の補償動作を円
滑かつ精度良く行なう。
In the device configuration as described above, the rolling position and rolling force detected by the rolling position detector 3a and the rolling force detector 4a immediately after the tip of the strip 1 is bitten under the roll bit of the upstream rolling mill 2a are transmitted to the output side plate. It is input to the thickness deviation calculating device 5a and stored as a standard rolling position and a standard rolling force, and the standard value of the exit side plate thickness of the upstream rolling mill 2a of the strip 1 is calculated using the stored rolling position and rolling force. From then on, the strip 1 being rolled by the upstream rolling mill 2a is determined based on the rolling position and rolling force detected by the rolling position detector 3a and the rolling force detector 4a for the strip 1 being rolled by the upstream rolling mill 2a. By calculating the detected exit plate thickness of the upstream rolling mill 2a and comparing this plate thickness with the reference value of the exit plate thickness of the upstream rolling mill 2a, the exit plate thickness deviation at the upstream rolling mill 2a is calculated. Also, the tip of the strip 1 is connected to the downstream rolling mill 2b.
The rolling position and rolling force detected by the rolling position detector 3b and the rolling force detector 4b immediately after the roll bite is bitten under the roll bite are inputted to the output plate thickness deviation calculating device 5b and stored as the standard rolling position and standard rolling force. Using the memorized rolling position and rolling force, calculate the reference value of the exit side thickness of the strip 1 at the downstream rolling mill 2b, and then calculate the standard value for the strip 1 rolled at the upstream rolling mill 2a. Based on the rolling position and rolling force detected by the rolling position detector 3b and the rolling force detector 4b, the detected plate thickness at the outlet side of the downstream rolling mill 2b of the strip 1 being rolled is calculated, and this plate thickness and the downstream side plate thickness are calculated. By comparing the reference value of the outlet side plate thickness of the rolling mill 2b, the outlet side plate thickness deviation of the downstream rolling mill 2b is calculated. Using the output thickness deviation of the upstream rolling mill 2a calculated through these calculations, the output thickness deviation signal of the upstream rolling mill 2a is input to the input thickness deviation calculation device 8, and is calculated for each unit length of the strip 1. Once stored, the inlet thickness of the downstream rolling mill 2b is calculated by taking out the memorized outlet thickness deviation signal of the upstream rolling mill 2a every time the corresponding portion of the strip 1 reaches the downstream rolling mill 2b. Signal. Using this inlet plate thickness deviation signal of the downstream rolling mill 2b and the calculated outlet plate thickness deviation signal of the downstream rolling mill 2b, the reduction rate fluctuation in the downstream rolling mill 2b is calculated, and the rolling reduction rate fluctuation in the downstream rolling mill 2b is calculated. In the rolling reduction compensation device 6, which drives and controls the speed drive control device 7 of the upstream rolling mill 2a, so as to restore the mass balance fluctuation of the strip 1 being rolled between the downstream rolling mills 2b to the original stable state, When changing the running plate thickness of the strip 1 in the middle, after the tip of the strip 1 is bitten by the downstream rolling mill 2b, the running plate thickness changing rolling timing input device 9 in the downstream rolling mill 2b is input. Until the board thickness change rolling start signal is received, the rolling speed correction amount of the upstream rolling mill 2a is calculated by the reduction rate fluctuation calculation in the downstream rolling mill 2b. Next, as soon as the running plate thickness changing rolling start signal is received from the running plate thickness changing rolling timing input device 9 in the downstream rolling mill 2b, the output signal from the rolling reduction compensating device 6 is applied to the rolling process in the upstream rolling mill 2a. It is stored as the speed correction amount, and at the same time the upstream rolling mill 2
By replacing and storing the reference values of the entry side plate thickness deviation and exit side plate thickness deviation at that time with the entry side plate thickness and exit side plate thickness at that time, the updated new entry side plate of the downstream rolling mill 2b at that time is obtained. The thickness deviation and exit side plate thickness deviation are zero. Therefore, after the start of changing the thickness during running, the rolling reduction compensating device 6 calculates the rolling reduction rate fluctuation in the downstream rolling mill 2b based on the thickness deviation from the updated new entry side thickness standard and exit side thickness standard, and Calculate the rolling speed correction amount of the rolling mill 2a, add it to the previously stored rolling speed correction amount of the upstream rolling mill 2a, and use this rolling speed correction amount to control the speed drive control device 7 of the upstream rolling mill 2a.
drive and control. Similarly, when the downstream rolling mill 2b receives a running plate thickness change rolling completion signal from the running plate thickness changing rolling timing input device 9, it stores the rolling speed correction amount again, and changes the input side plate thickness and exit side plate thickness. The reference value is replaced with the plate thickness at that time and stored, and for subsequent strips 1, the entry and exit thickness deviations from the updated new entry and exit thickness standards are calculated, and these deviations are calculated. The speed drive control device 7 of the upstream rolling mill 2a uses the sum of the rolling speed correction amount of the upstream rolling mill 2a calculated based on the plate thickness deviation and the memorized rolling speed correction amount.
The compensation operation of the reduction compensating device 6 that drives and controls the compensator 6 is performed smoothly and accurately.

第2図は走間板厚変更圧延実施前後における圧
下補償出力の動作を具体的に図示したものであ
る。図中ΔVは圧下補償装置6の出力信号であり
ΔVpはその出力の記憶値信号である。またΔVc
速度駆動制御装置7に与えられる圧下補償装置6
の制御信号である。走間板厚変更圧延開始タイミ
ング(図中のA点とする)でΔVpが記憶されると
同時にΔVは零となる。
FIG. 2 specifically illustrates the operation of the reduction compensation output before and after performing rolling to change the plate thickness during running. In the figure, ΔV is the output signal of the pressure reduction compensator 6, and ΔV p is the stored value signal of the output. Further, ΔV c is the reduction compensation device 6 provided to the speed drive control device 7.
is the control signal. As soon as ΔV p is stored at the timing of starting rolling for changing plate thickness during running (point A in the figure), ΔV becomes zero.

走間板厚変更圧延終了タイミング(図中のB点
とする)においても上記と同様な動作となるが速
度駆動制御装置7に対する制御信号ΔVcは連続的
に出力されることになる。
The same operation as described above occurs also at the end timing of the rolling plate thickness change rolling (point B in the figure), but the control signal ΔV c to the speed drive control device 7 is continuously output.

もしこの圧下補償装置6において走間板厚変更
圧延の前後で圧下補償出力値を記憶または再記憶
させ基準板厚を更新または再更新させないとする
ならば、圧下補償動作の基準値は圧延されるスト
リツプの先端が噛み込んだ時点とすることおよび
走間板厚変更圧延の場合大幅に板厚および圧下率
が変動しそのマスフロー変動の修正量が著しく大
きくなりまた圧下補償出力が圧延機の入側および
出側板厚偏差の一次近似式で表現するため圧延条
件の非線形性によりこの近似の精度が著しく悪く
なる。従つて走間板厚変更圧延する場合圧下補償
動作としては精度が大幅に低下し円滑な動作を期
待できなくなる。
If this reduction compensation device 6 stores or re-memorizes the reduction compensation output value before and after rolling to change plate thickness during running, and updates or re-updates the reference plate thickness, the reference value of the reduction compensation operation is set to the rolling value. This is the point at which the tip of the strip is bitten, and in the case of rolling with a change in plate thickness during running, the plate thickness and reduction rate will change significantly, and the amount of correction for mass flow fluctuations will be significantly large. Since the thickness deviation on the exit side is expressed by a first-order approximation equation, the accuracy of this approximation is significantly degraded due to the nonlinearity of the rolling conditions. Therefore, when rolling while changing the plate thickness, the accuracy of the reduction compensation operation is greatly reduced and smooth operation cannot be expected.

しかして上記のような本発明によれば走間板厚
変更圧延する場合、その前後における入側板厚偏
差および出側板厚偏差は絶えず小さな値にとどめ
ておくことができ精度の良い圧下補償動作を可能
にでき、圧延されるストリツプを安定かつ精度よ
く通板させることができる。また走間板厚変更圧
延が円滑に精度よく出来る効果を奏する。
However, according to the present invention as described above, when performing strip thickness change rolling during running, the entrance side thickness deviation and exit side thickness deviation before and after the rolling can be kept constantly at small values, and highly accurate reduction compensation operation can be performed. This makes it possible to thread the rolled strip stably and accurately. Further, there is an effect that the plate thickness can be changed smoothly and accurately during rolling.

なお、本発明はタンデム圧延機を三台以上並べ
た場合にも適用できる。例えば、上流側より第
1、第2および第3のタンデム圧延機がある場
合、まず第1と第2の圧延機間のマスバランスに
ついて、第1の圧延機を上流側圧延機とし第2の
圧延機を下流側圧延機として本発明を適用し、ま
た、第2と第3の圧延機間のマスバランスについ
て、第2の圧延機を上流側圧延機とし第3の圧延
機を下流側圧延機として本発明を適用すればよ
い。同様に、本発明は4台以上のタンデム圧延機
が並んだ場合にも適用できる。すなわち、上述の
本発明の説明は、任意の隣接した二台の圧延機に
ついて記述したものであり、三台以上でも上述の
ように適用できる。
Note that the present invention can also be applied to a case where three or more tandem rolling mills are arranged side by side. For example, if there are a first, second, and third tandem rolling mill from the upstream side, first consider the mass balance between the first and second rolling mills, with the first rolling mill being the upstream rolling mill and the second rolling mill being the upstream rolling mill. The present invention is applied with the rolling mill as the downstream rolling mill, and regarding the mass balance between the second and third rolling mills, the second rolling mill is the upstream rolling mill and the third rolling mill is the downstream rolling mill. The present invention may be applied as a machine. Similarly, the present invention can also be applied to a case where four or more tandem rolling mills are lined up. That is, the above description of the present invention has been described for any two adjacent rolling mills, but the present invention can also be applied to three or more rolling mills as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置構成を示すブロ
ツク図、第2図は本発明の実施において、走間板
厚変更圧延前後における圧力補償出力を示すタイ
ムチヤートである。 1……走間板厚変更されるストリツプ、2a…
…上流側圧延機、2b……下流側圧延機、3a,
3b……圧下位置検出器、4a,4b……圧延力
検出器、5a,5b……出側板厚偏差演算装置、
6……圧下補償装置、7……速度駆動制御装置、
8……入側板厚偏差演算装置、9……走間板厚変
更圧延タイミング入力装置。
FIG. 1 is a block diagram showing the configuration of an apparatus for implementing the present invention, and FIG. 2 is a time chart showing the pressure compensation output before and after rolling to change the running plate thickness in implementing the present invention. 1...Strip whose plate thickness is changed during running, 2a...
...Upstream rolling mill, 2b...Downstream rolling mill, 3a,
3b... Rolling position detector, 4a, 4b... Rolling force detector, 5a, 5b... Output side plate thickness deviation calculation device,
6... Roll-down compensation device, 7... Speed drive control device,
8... Entrance plate thickness deviation calculating device, 9... Rolling timing input device for changing plate thickness during running.

Claims (1)

【特許請求の範囲】[Claims] 1 熱間圧延中にストリツプの走間板厚変更を行
なう連続した熱間圧延機においてストリツプの先
端が上流側圧延機のロールバイト下に噛み込んだ
直後の検出した圧下位置と圧延力を基準圧下位置
および基準圧延力として記憶し、この記憶された
圧下位置と圧延力とを用いてストリツプの上流側
圧延機出側板厚の基準値を演算し、それ以降のこ
の上流側圧延機で圧延されるストリツプに対して
検出した圧下位置と圧延力により圧延中のストリ
ツプの上流側圧延機出側検出板厚を演算し、この
板厚と前記の上流側圧延機出側板厚基準値とを比
較することにより、この上流側圧延機の出側板厚
偏差を算出し、またストリツプの先端が下流側圧
延機のロールバイト下に噛み込んだ直後の検出し
た圧下位置と圧延力を基準圧下位置および基準圧
延力として記憶し、この記憶された圧下位置と圧
延力とを用いてストリツプの下流側圧延機出側板
厚の基準値を演算し、それ以降この下流側圧延機
で圧延されるストリツプに対して検出した圧下位
置と圧延力により圧延中のストリツプの下流側圧
延機出側検出板厚を演算しこの板厚と前記の下流
側圧延機出側板厚基準値とを比較することにより
この下流側圧延機の出側板厚偏差を算出し、これ
らの演算算出した上流側圧延機の出側板厚偏差お
よび下流側圧延機の出側板厚偏差を用いて上流側
圧延機の出側板厚偏差信号をストリツプの単位長
さ毎に一旦記憶し、そのストリツプの該当部分が
下流側圧延機に到達するタイミング毎に前記記憶
した上流側圧延機の出側板厚偏差信号を取り出す
ことにより下流側圧延機の入側板厚偏差信号と
し、この下流側圧延機の入側板厚偏差信号と前記
算出した下流側圧延機の出側板厚偏差信号とを用
いて下流側圧延機における圧下率変動を演算する
ことによりこの圧延機の圧下率変動を検出し、こ
の圧下率変動を用いて上流側圧延機と下流側圧延
機間で圧延されているストリツプのマスバランス
の変動を計算し、このマスバランスの変動をもと
の安定状態にもどすように上流側圧延機の速度駆
動制御装置を駆動し制御することにより上流側お
よび下流側圧延機間において圧延されているスト
リツプのマスバランス変動を修正制御する圧下補
償において、圧延中のストリツプを走間板厚変更
する場合ストリツプの先端が下流側圧延機に噛み
込んだ以後下流側圧延機で走間板厚変更圧延開始
をするまでは前記の下流側圧延機での圧下率変動
計算により上流側圧延機の圧延速度修正量を算出
し、次いで下流側圧延機での走間板厚変更圧延開
始とともに前記上流側圧延機の圧延速度修正量を
記憶し、同時に上流側圧延機での入側板厚偏差お
よび出側板厚偏差の基準値をその時点での入側板
厚および出側板厚におきかえ記憶することによ
り、その時点での下流側圧延機の更新された新し
い入側板厚偏差および出側板厚偏差は零とし、走
間板厚変更開始後は前記更新された新しい入側基
準板厚および出側基準板厚からの板厚偏差により
下流側圧延機における圧下率変動計算を行い、上
流側圧延機の圧延速度修正量を計算するとともに
前に記憶した上流側圧延機の圧延速度修正量と加
え合わせこの圧延速度修正量を用いて上流側圧延
機の速度駆動制御装置を駆動し制御し、下流側圧
延機が走間板厚変更を終了すると再度圧延速度修
正量を記憶するとともに、入側板厚および出側板
厚の基準値をその時点の板厚に置き換え、記憶
し、それ以降のストリツプに対しては前記更新さ
れた新しい入側板厚基準および出側板厚基準から
の入側および出側板厚偏差を演算しこれらの板厚
偏差により計算した上流側圧延機の圧延速度修正
量と前記記憶した圧延速度修正量との和を用いて
上流側圧延機の速度駆動制御装置を駆動し制御す
る圧下補償をおこなうことを特徴とするストリツ
プの走間板厚変更圧延制御方法。
1. In a continuous hot rolling mill that changes the running thickness of the strip during hot rolling, the rolling position and rolling force detected immediately after the tip of the strip gets caught under the roll bit of the upstream rolling mill are used as the reference rolling. The position and standard rolling force are stored, and the memorized rolling position and rolling force are used to calculate the standard value of the thickness of the strip on the upstream rolling mill exit side, and the strip is subsequently rolled in this upstream rolling mill. Calculating the detected plate thickness on the upstream rolling mill exit side of the strip during rolling based on the detected rolling position and rolling force for the strip, and comparing this plate thickness with the above-mentioned upstream rolling machine exit side thickness reference value. The thickness deviation at the exit side of the upstream rolling mill is calculated, and the rolling position and rolling force detected immediately after the tip of the strip is bitten under the roll bit of the downstream rolling mill are used as the standard rolling position and standard rolling force. The memorized rolling position and rolling force are used to calculate the standard value of the strip thickness at the exit side of the downstream rolling mill. The downstream rolling mill exit side detection thickness of the strip being rolled is calculated based on the rolling position and rolling force, and by comparing this thickness with the downstream rolling mill exit side standard thickness reference value, the downstream rolling mill thickness is calculated. Calculate the exit plate thickness deviation, and use the calculated exit plate thickness deviation of the upstream rolling mill and downstream rolling mill to convert the output plate thickness deviation signal of the upstream rolling mill into the unit length of the strip. By storing the output side thickness deviation signal of the upstream rolling mill and retrieving the memorized exit side plate thickness deviation signal of the upstream rolling mill at each timing when the corresponding portion of the strip reaches the downstream rolling mill, the input side plate thickness deviation signal of the downstream rolling mill is obtained. Then, the rolling reduction rate of this rolling mill is calculated by calculating the rolling reduction rate fluctuation in the downstream rolling mill using the input plate thickness deviation signal of the downstream rolling mill and the calculated outlet plate thickness deviation signal of the downstream rolling mill. The fluctuation is detected, the fluctuation in the mass balance of the strip being rolled between the upstream rolling mill and the downstream rolling mill is calculated using this rolling reduction fluctuation, and this fluctuation in mass balance is returned to the original stable state. In reduction compensation, which corrects and controls mass balance fluctuations in the strip being rolled between the upstream and downstream rolling mills by driving and controlling the speed drive control device of the upstream rolling mill, When changing the strip thickness, after the tip of the strip is bitten by the downstream rolling mill, until the downstream rolling mill starts rolling to change the strip thickness, the upstream strip thickness is calculated based on the reduction rate fluctuation calculation in the downstream rolling mill. The rolling speed correction amount of the rolling mill is calculated, and then, at the start of rolling to change the running plate thickness in the downstream rolling mill, the rolling speed correction amount of the upstream rolling mill is stored, and at the same time, the entry side plate thickness in the upstream rolling mill is calculated. By replacing and storing the reference values of the deviation and exit side plate thickness deviation with the entry side plate thickness and exit side plate thickness at that time, the updated new entry side plate thickness deviation and exit side plate thickness deviation of the downstream rolling mill at that time can be obtained. is set to zero, and after the start of changing the running plate thickness, the reduction rate fluctuation in the downstream rolling mill is calculated based on the plate thickness deviation from the updated new entry-side reference plate thickness and exit-side reference plate thickness, and The rolling speed correction amount is calculated and added to the previously memorized rolling speed correction amount of the upstream rolling mill, and this rolling speed correction amount is used to drive and control the speed drive control device of the upstream rolling mill. When the rolling mill finishes changing the strip thickness during running, it stores the rolling speed correction amount again, replaces the reference values for the entrance and exit thicknesses with the sheet thicknesses at that point, stores them, and stores them for subsequent strips. is the rolling speed correction amount of the upstream rolling mill calculated by calculating the entrance and exit side plate thickness deviations from the updated new entry side plate thickness standard and exit side plate thickness standard, and the above-mentioned stored rolling speed. A strip thickness changing rolling control method, characterized in that rolling compensation is performed by driving and controlling a speed drive control device of an upstream rolling mill using the sum of the correction amount.
JP1442280A 1980-02-08 1980-02-08 Controlling method for rolling work changeable thickness of strip while operation continues Granted JPS56111521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1442280A JPS56111521A (en) 1980-02-08 1980-02-08 Controlling method for rolling work changeable thickness of strip while operation continues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1442280A JPS56111521A (en) 1980-02-08 1980-02-08 Controlling method for rolling work changeable thickness of strip while operation continues

Publications (2)

Publication Number Publication Date
JPS56111521A JPS56111521A (en) 1981-09-03
JPS6319242B2 true JPS6319242B2 (en) 1988-04-21

Family

ID=11860575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1442280A Granted JPS56111521A (en) 1980-02-08 1980-02-08 Controlling method for rolling work changeable thickness of strip while operation continues

Country Status (1)

Country Link
JP (1) JPS56111521A (en)

Also Published As

Publication number Publication date
JPS56111521A (en) 1981-09-03

Similar Documents

Publication Publication Date Title
RU2078626C1 (en) Rolling process control method
CN104874613B (en) Compensated the method realizing second flow balance between hot continuous rolling frame by rolling mill speed
JP2004255421A (en) Flying thickness changing apparatus for continuous rolling mill
US4506532A (en) Method for controlling continuous rolling mill and control apparatus therefor
US8347681B2 (en) Method for rolling a sheet metal strip
CN108453137B (en) Control device and control method for rolling mill and computer readable storage medium
JPS6319242B2 (en)
JP3067879B2 (en) Shape control method in strip rolling
US3704609A (en) Rolling mill gauge control during acceleration
US3807206A (en) Strip gage change during rolling in a tanden rolling mill
JPH0141404B2 (en)
JP3224052B2 (en) Thickness control method for continuous rolling mill
JP3506119B2 (en) Method of changing rolling load distribution of tandem rolling mill
JPH09276915A (en) Dynamic setup method in continuous rolling mill
JP2997634B2 (en) Rolling mill control device
JP3085501B2 (en) Rolling control method and apparatus
RU2075358C1 (en) Method of controlling metal speed in multistand mill for continuous hot rolling with provision of minimum traction efforts in metal taking into account non-uniform heating of metal by its length
JPS6124082B2 (en)
JP3125492B2 (en) How to change the setting during running of the rolling mill
JP2562011B2 (en) Shape control method for continuous rolling mill
JP3125660B2 (en) Strip width control method in hot continuous rolling
JP3147265B2 (en) Speed control method for continuous rolling mill
JPH0615318A (en) Method for learning flying gage change setup of gold rolling mill
SU865461A1 (en) Device for forming the effort-setting signal at automatic control of rolled strip thickness
SU865460A1 (en) System of automatic control of rolled strip thickness