JPS63192207A - Superconducting coil - Google Patents
Superconducting coilInfo
- Publication number
- JPS63192207A JPS63192207A JP2496087A JP2496087A JPS63192207A JP S63192207 A JPS63192207 A JP S63192207A JP 2496087 A JP2496087 A JP 2496087A JP 2496087 A JP2496087 A JP 2496087A JP S63192207 A JPS63192207 A JP S63192207A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- inorganic insulating
- diamond
- coil
- insulating thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 20
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 16
- 239000010432 diamond Substances 0.000 claims abstract description 16
- 238000004804 winding Methods 0.000 claims abstract description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000011247 coating layer Substances 0.000 claims abstract description 4
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000009501 film coating Methods 0.000 claims abstract 2
- 230000005284 excitation Effects 0.000 abstract description 7
- 238000010791 quenching Methods 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000000171 quenching effect Effects 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 230000001133 acceleration Effects 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 5
- 210000004709 eyebrow Anatomy 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷却特性に優れた超電導コイルに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a superconducting coil with excellent cooling properties.
なお、この発明は、マグネット用のみならず、トランス
用、或いは発電機の電機子用と云ったその他の用途の超
電導コイルにも適用される。The present invention is applicable not only to superconducting coils for magnets but also for other uses such as transformers and generator armatures.
超電導コイルの冷却特性向上策としては、超電導線の間
、例えば眉間に液体ヘリウムの通る冷却チャンネルを設
ける方法と、超電導線間のスペーサに良伝熱性の材料を
使用する方法が一般化している。この発明はその中の後
者の形態に属する。As measures to improve the cooling characteristics of superconducting coils, two methods have become common: providing a cooling channel between the superconducting wires, such as between the eyebrows, through which liquid helium passes, and using a material with good heat conductivity for the spacer between the superconducting wires. This invention belongs to the latter form.
ところで、後者の形態の従来コイルにおいては、■熱伝
導の良い市販エポキシ樹脂を線間に含浸してこれをスペ
ーサとする方法、■良熱伝導性の金属、例えば銅箔を眉
間に入れる等の方法が採られている。By the way, in the latter type of conventional coil, there are two methods: (1) impregnating commercially available epoxy resin with good thermal conductivity between the wires and using this as a spacer, (2) inserting a metal with good thermal conductivity, such as copper foil, between the eyebrows. method is being adopted.
■の方法は、アルミナや金属粉等の良熱伝導性微粉末が
混入された樹脂を真空中でコイルに含浸し、線間の隙間
を埋めたその微粉末混入樹脂を介して線に生じた熱を外
部に拡散させようとするものである。Method (2) involves impregnating a coil with a resin mixed with fine powder with good thermal conductivity, such as alumina or metal powder, in a vacuum, and forming wires through the resin mixed with the fine powder, which fills the gaps between the wires. The idea is to diffuse heat to the outside.
また、■の方法は、例えば、ツルイドコイルの巻線時に
、マイラーの様な薄膜で絶縁された銅箔を巻込むことに
よって、上記と同様に眉間の熱伝導を向上させるもので
ある。In addition, method (2) improves the heat conduction between the eyebrows in the same way as above, by wrapping a copper foil insulated with a thin film such as Mylar when winding the tluid coil, for example.
上記■の方法を採用した超電導コイルは、含浸樹脂に熱
伝導の良いエポキシ樹脂を用いたとじても、金属に比べ
れば樹脂の熱伝導性は格別に劣ることから、僅かな発熱
をすばや(拡散させることができず、そのため局所的な
温度上昇が起き易く、コイルが不安定で、常電導への転
移(クエンチ)が起こり易いと言う問題がある。Superconducting coils that adopt method Therefore, there are problems in that local temperature increases are likely to occur, the coil is unstable, and transition to normal conductivity (quenching) is likely to occur.
また、超電導線を樹脂のしみ込み易いガラス繊維等で包
んだ後に樹脂を含浸し、線間の絶縁を行なうため、絶縁
層が不必要に厚くなり、伝熱速度が遅くなっり、製造工
程が複雑化したりすると云う問題もある。In addition, since superconducting wires are wrapped in glass fiber, etc., which easily absorbs resin, and then impregnated with resin to insulate the wires, the insulation layer becomes unnecessarily thick, slowing down the heat transfer rate, and slowing down the manufacturing process. There is also the problem of complicating things.
一方、■の方法によるコイルは、銅箔表面の絶縁膜のた
めに、熱伝導が悪くなり、また、その防止のために巻線
をきつくすると銅箔を通して眉間短絡が生じるなどの不
都合があった。なお、コイル線材の絶縁には、普通、ホ
ルマール等のエナメルが用いられているが、これは超電
導コイルには適さない。On the other hand, the coil made by method (2) had problems such as poor heat conduction due to the insulating film on the surface of the copper foil, and if the winding was made too tight to prevent this, a short circuit would occur between the eyebrows through the copper foil. . Note that enamel such as formal is usually used to insulate coil wires, but this is not suitable for superconducting coils.
この発明は、上述の諸問題を無くして、超電導コイルの
信鎖性及び性能を高めることを口約としている。This invention aims to eliminate the above-mentioned problems and improve the reliability and performance of superconducting coils.
この発明の超電導コイルは、巻線する線に、低温下で良
熱伝導性を示す無機質絶縁薄膜のコーティング層を有す
る第1図或いは第2図に示す如き構造の超電導線材を用
いたことに特徴づけられる。The superconducting coil of the present invention is characterized by using a superconducting wire having a structure as shown in FIG. 1 or 2, which has a coating layer of an inorganic insulating thin film that exhibits good thermal conductivity at low temperatures for the wire to be wound. can be attached.
第1図の線材1は超電導線2にダイヤモンド等の無機質
絶縁薄膜3のコーティングを施したものであって、第3
図に示すように、これをボビン4に稠密に巻線すると、
ツルイド型の超電導コイル5が完成する。A wire 1 in FIG. 1 is a superconducting wire 2 coated with an inorganic insulating thin film 3 such as diamond.
As shown in the figure, if this is densely wound around bobbin 4,
The tluid type superconducting coil 5 is completed.
一方、第2図の線材1′は、超電導素線2′に、無機質
絶縁薄膜3のコーティングを施したものを多数本集合し
て平角状に撚線したもので、眉間に絶縁スペーサ6を介
在する等して第4図に示すように重ね巻きすると、いわ
ゆるパンケーキ巻きの超電導コイル5′が完成する。1
0は、コイル5′を収納する低温容器の一例を示したも
ので、内槽11と外槽12間に断熱層13が存在し、内
槽11内の液体ヘリウム14により、コイル5′を冷却
するよう4こしである。On the other hand, the wire 1' shown in Fig. 2 is a superconducting wire 2' coated with an inorganic insulating thin film 3 and twisted into a rectangular shape, with an insulating spacer 6 interposed between the eyebrows. When the superconducting coil 5' is wound in layers as shown in FIG. 4, a so-called pancake-wound superconducting coil 5' is completed. 1
0 shows an example of a low-temperature container in which a coil 5' is housed. A heat insulating layer 13 exists between an inner tank 11 and an outer tank 12, and the coil 5' is cooled by liquid helium 14 in the inner tank 11. It is 4 strained to make it.
なお、使用する超電導線は、表面に無機質絶縁薄膜3の
存在するものであればよく、例示のもの以外に種々の構
成が考えられる。コイル形状も図示のものに限定されな
い0例えば鞍形成いはレーストラック形のダイポールコ
イルなどであってもよい。It should be noted that the superconducting wire to be used may be one having an inorganic insulating thin film 3 on its surface, and various configurations other than those illustrated are possible. The shape of the coil is not limited to that shown in the drawings; for example, it may be a saddle-shaped or racetrack-shaped dipole coil.
また、薄膜3の材質としては、ダイヤモンド以外にアル
ミナ、アモルファスダイヤモンド、アモルファスアルミ
ナ等であってもよい。Further, the material of the thin film 3 may be alumina, amorphous diamond, amorphous alumina, etc. other than diamond.
薄膜3を構成する例えばダイヤモンドの熱伝導は、一般
に、多用されているエポキシ樹脂等の絶縁物と違って低
温で非常に良くなり、銅と同じレベルになる。従って、
わずかな発熱でもすばやく伝達されて拡散し、コイルに
局所的な温度上昇が起こらない。The thermal conductivity of diamond, for example, which constitutes the thin film 3, is generally very good at low temperatures, unlike commonly used insulators such as epoxy resin, and is on the same level as copper. Therefore,
Even a small amount of heat is quickly transmitted and diffused, preventing local temperature rises in the coil.
また、ダイヤモンドの場合、膜厚は前述のエポキシに比
較して極端に薄くてよい、これは、非常に硬く、機械的
に強固であめためである。従って、熱の伝わりも速く、
温度上昇し難い。Further, in the case of diamond, the film thickness may be extremely thin compared to the above-mentioned epoxy because it is extremely hard, mechanically strong, and durable. Therefore, heat transfers quickly,
It is difficult for the temperature to rise.
さらに、ダイヤモンドは優れた絶縁物であるため、巻線
を強固にしても絶縁性能の低下がなく、銅箔に見られる
層間短絡の心配がなくなる。Furthermore, since diamond is an excellent insulator, even if the windings are strengthened, the insulation performance will not deteriorate, and there is no need to worry about interlayer short circuits that occur with copper foil.
このほか、ダイヤモンドの薄膜は、CVD (気相成長
法)によって比較的容易にコーティングでき、そのコー
ティング線又はこれを撚線した線を単に巻線すればよい
のでコイルの製造工程も複雑にならない。In addition, a diamond thin film can be coated relatively easily by CVD (vapor phase growth), and the coil manufacturing process does not become complicated because the coated wire or the twisted wire thereof can be simply wound.
これ等のことは、薄膜の材質としてアルミナ等をコーテ
ィングした場合にも云えることである。This also applies when alumina or the like is used as the thin film material.
以下に、より具体的な実施例を述べる。 More specific examples will be described below.
超電導線に対するダイヤモンド等の薄膜のコーティング
には、周知のプラズマCVD法等を採用すればよい。A well-known plasma CVD method or the like may be used to coat the superconducting wire with a thin film of diamond or the like.
即ち、先ず、第5図に示す如きプラズマCVD装置の反
応管15内に、超電導線2を連続的に繰り出すサプライ
リール16と巻取りリール17をセットする0次に、薄
膜がダイヤモンドである場合には、H2とCH4の原料
ガス18を反応管内に供給する。That is, first, a supply reel 16 and a take-up reel 17 for continuously feeding out superconducting wire 2 are set in a reaction tube 15 of a plasma CVD apparatus as shown in FIG. supplies raw material gases 18 of H2 and CH4 into the reaction tube.
そして、この状態下で、図の如(マグネトロン19から
マイクロ波20を発射し、これを導波管21から反応部
に送って反応部をプラズマ状態にする。22はのぞき窓
である。Under this condition, as shown in the figure (a microwave 20 is emitted from the magnetron 19 and sent from the waveguide 21 to the reaction section to turn the reaction section into a plasma state. 22 is a peephole.
また、一方では、反応管内の図示しない基板を昇温させ
て放射熱により超電導線1を700〜1000℃の温度
に保つ。すると、原料ガスの高温反応により超電導線上
にダイヤモンドの薄膜が成長する。On the other hand, a substrate (not shown) in the reaction tube is heated to maintain the superconducting wire 1 at a temperature of 700 to 1000° C. using radiant heat. Then, a thin diamond film grows on the superconducting wire due to the high-temperature reaction of the source gas.
実施例では、成長速度1μm/hrで3μm厚のダイヤ
モンドコーティングを実施した。このときのガス流量は
、100 m 17w1nである。In the example, a 3 μm thick diamond coating was performed at a growth rate of 1 μm/hr. The gas flow rate at this time was 100 m 17w1n.
次に、このようにして得られた線を用いて、第2図に示
すツルイド型超電導コイルを製作した。Next, the wire thus obtained was used to fabricate a truide-type superconducting coil shown in FIG. 2.
超電導線は0.7謹径で銅比1.0、長さ3000 m
を用い、これをステンレスボビンに巻線した0巻線の層
数は27層、総ターン数6500ターンであり、また、
コイルの仕上り径は、第2図の外径D−140閣、内径
d=100m、高さH冨270閣である。The superconducting wire has a diameter of 0.7 mm, a copper ratio of 1.0, and a length of 3000 m.
The number of layers of the 0 winding wire, which is wound on a stainless steel bobbin, is 27 layers, and the total number of turns is 6500 turns.
The finished diameter of the coil is as shown in Fig. 2: outer diameter D - 140 m, inner diameter d = 100 m, and height H 270 m.
この後、完成コイルに通電したところ、5分でトレーニ
ングなしに、しかもクエンチせずに6Tまで到達した。After this, when the completed coil was energized, it reached 6T in 5 minutes without training and without quenching.
さらに、励磁速度を上げ、6Tまでの励磁時間を、2分
、1分と短縮したが、このときも、クエンチは生じなか
った。一方、比較のため、同一条件で巻線したホルマー
ル絶縁コイルに通電した結果、トレーニングなしでは、
励磁時間を5分とっても5.OTでクエンチが起き、6
Tには至らなかった。その原因は、励磁時に発生する交
流損失によるものと推定される゛。Furthermore, the excitation speed was increased and the excitation time up to 6T was shortened to 2 minutes and 1 minute, but no quench occurred at this time either. On the other hand, for comparison, we energized formal insulated coils wound under the same conditions, and found that without training,
Even if the excitation time is 5 minutes, 5. Quench occurs in OT, 6
It didn't reach T. The cause is presumed to be AC loss that occurs during excitation.
以上の通電実験結果は、ダイヤモンド等の無機質絶縁薄
膜のために、この発明のコイルの場合、いわゆる熱はけ
が良くなって交流損失熱や線材間に生じる摩擦熱を迅速
に拡散させていることを顕著に表わしていると云える。The above energization experiment results show that the coil of this invention has better heat dissipation due to the inorganic insulating thin film made of diamond, etc., which quickly diffuses AC loss heat and frictional heat generated between the wires. It can be said that this is clearly expressed.
以上述べたように、この発明は、超電導線に無機質絶縁
薄膜のコーティングを施し、これをスペーサとしてコイ
ル全体の冷却性(熱はけ)を向上させたものであるから
、超電導コイルの中で発生する熱、例えば、電磁力によ
って動く線と線の間の摩擦熱でコイルがクエンチする心
配がなくなる。As mentioned above, this invention coats the superconducting wire with an inorganic insulating thin film and uses this as a spacer to improve the cooling performance (heat dissipation) of the entire coil. There is no need to worry about the coil being quenched due to heat produced by the coil, such as frictional heat between the wires moved by electromagnetic force.
また、励磁を早めることによって生じる交流損失熱の拡
散にも存効に働くため、クエンチ防止に関する信頼性が
より一層高まる。従って、直流コイル、交流コイルのい
ずれであっても高速励磁が可能になり、かつ、所期の性
能を安定に発揮させることができると云う効果が得られ
る。Furthermore, since it effectively works to diffuse AC loss heat caused by accelerating excitation, reliability in preventing quenching is further increased. Therefore, it is possible to excite at high speed whether it is a DC coil or an AC coil, and the desired performance can be stably exhibited.
直流コイルに対しての効果は、上の理由による。The effect on DC coils is due to the above reasons.
一方、交流コイルについては、交流損失が性能の良し悪
しに大きく影響を及ぼすため、特に有効に働く。On the other hand, AC coils are particularly effective because AC loss greatly affects performance.
なお、使用する超電導線は、先に述べたように、モノリ
シック線、平角撚線等、特に限定されないが、平角撚線
の場合、コーテイング膜により素線間が電気絶縁される
ため、カップリングロス(交流損失の一種)がな(なり
、導体の発熱が小さくなるため、交流用途のコイルに特
に適する。As mentioned above, the superconducting wire used is not particularly limited, such as monolithic wires, rectangular stranded wires, etc., but in the case of rectangular stranded wires, the coating film provides electrical insulation between the strands, so there is no coupling loss. (a type of alternating current loss), which reduces heat generation in the conductor, making it particularly suitable for coils for alternating current applications.
第1図及び第2図は、この発明に用いる超電導線の一例
を示す断面図、第3図及び第4図は二の発明の超電導コ
イルの一例を示す断面図、第5図は、超電導線に対する
無機質絶縁薄膜のコーティング工程を示す線図である。
1.1′・・・・・・超電導線材、2.2′・・・・・
・超電導素線、3・・・・・・無機質v!A縁薄膜、4
・・・・・・ボビン、5.5′・・・・・・超電導コイ
ル、6・・・・・・絶縁スペーサ。1 and 2 are cross-sectional views showing an example of a superconducting wire used in the present invention, FIGS. 3 and 4 are cross-sectional views showing an example of a superconducting coil according to the second invention, and FIG. 5 is a cross-sectional view showing an example of a superconducting wire used in the present invention. FIG. 3 is a diagram illustrating a coating process of an inorganic insulating thin film. 1.1'...Superconducting wire, 2.2'...
・Superconducting wire, 3...Inorganic v! A edge thin film, 4
...Bobbin, 5.5'...Superconducting coil, 6...Insulating spacer.
Claims (2)
グ層を有する超電導線材を巻線して形成される超電導コ
イル。(1) A superconducting coil formed by winding a superconducting wire having an inorganic insulating thin film coating layer with good thermal conductivity at low temperatures.
、アモルファスダイヤモンド、アモルファスアルミナの
いずれかであることを特徴とする特許請求の範囲第(1
)項記載の超電導コイル。(2) Claim No. 1, characterized in that the inorganic insulating thin film is one of diamond, alumina, amorphous diamond, and amorphous alumina.
) The superconducting coil described in section 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2496087A JPS63192207A (en) | 1987-02-05 | 1987-02-05 | Superconducting coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2496087A JPS63192207A (en) | 1987-02-05 | 1987-02-05 | Superconducting coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63192207A true JPS63192207A (en) | 1988-08-09 |
Family
ID=12152541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2496087A Pending JPS63192207A (en) | 1987-02-05 | 1987-02-05 | Superconducting coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63192207A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5396205A (en) * | 1991-04-26 | 1995-03-07 | Hitachi, Ltd. | Unspliced superconducting coil device with high stability |
-
1987
- 1987-02-05 JP JP2496087A patent/JPS63192207A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5396205A (en) * | 1991-04-26 | 1995-03-07 | Hitachi, Ltd. | Unspliced superconducting coil device with high stability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0423354B2 (en) | Oxide superconductor wire, method of producing the same and article produced therefrom | |
US6081179A (en) | Superconducting coil | |
US4977039A (en) | Superconducting wire and cable | |
US4407062A (en) | Methods of producing superconductors | |
KR20170047253A (en) | A metal assembly comprising a superconductor | |
US5350638A (en) | Electrical insulated wire | |
US3306972A (en) | Superconducting cable | |
JPS6410887B2 (en) | ||
JPS63192207A (en) | Superconducting coil | |
JPS63196016A (en) | Superconducting coil | |
RU2124775C1 (en) | Method for producing long high-temperature superconducting parts | |
JPH01134811A (en) | Extremely low temperature cable | |
JPH01144516A (en) | Optical composite coaxial cable | |
JPH10116723A (en) | Superconducting magnet | |
RU2124774C1 (en) | Method for producing long high-temperature superconducting parts | |
JPH06176924A (en) | Superconducting magnet | |
JPS6381709A (en) | Superconductor | |
JPH03222212A (en) | Manufacture of high-temperature superconducting wire-rod | |
JP3542222B2 (en) | Superconducting coil | |
JPH0982147A (en) | Oxide superconduting wire and its manufacture | |
JPH06349357A (en) | Manufacture of superconductor | |
JPH024931A (en) | Manufacture of nb3x super conducting material | |
JPS63254610A (en) | Superconductive cable | |
JPH117845A (en) | Superconductive wire | |
JPH06203665A (en) | Manufacture of superconducting cable |