JPS63191593A - Method of calculating external force of three-way force detector - Google Patents

Method of calculating external force of three-way force detector

Info

Publication number
JPS63191593A
JPS63191593A JP62019034A JP1903487A JPS63191593A JP S63191593 A JPS63191593 A JP S63191593A JP 62019034 A JP62019034 A JP 62019034A JP 1903487 A JP1903487 A JP 1903487A JP S63191593 A JPS63191593 A JP S63191593A
Authority
JP
Japan
Prior art keywords
force
detector
tool
external force
force detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62019034A
Other languages
Japanese (ja)
Inventor
南 善勝
榑林 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62019034A priority Critical patent/JPS63191593A/en
Publication of JPS63191593A publication Critical patent/JPS63191593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば産業用ロボットの作業端に装着して使
う3方向力検出器の外力算出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an external force calculation method for a three-directional force detector used by being attached to the working end of an industrial robot, for example.

〔従来の技術〕[Conventional technology]

この種装置の要部の概要を表わす側面図を第4図に示す
A side view showing the outline of the main parts of this type of device is shown in FIG.

産業用ロボット手首部に3方向力検出器を介してツール
を装着し、ロボットが作業を行なう場合の構成である。
This is a configuration in which a tool is attached to the wrist of an industrial robot via a three-directional force detector, and the robot performs work.

すなわち、 ロボットアーム4の先端のロボット手首部1に3方向力
検出器2を取り付けて、その先にツール3を固定してお
り、ツール3は3次元の空間において自在に可動できる
ようにしである。
That is, a three-direction force detector 2 is attached to the robot wrist 1 at the tip of the robot arm 4, and a tool 3 is fixed to the tip thereof, so that the tool 3 can freely move in three-dimensional space. .

しかして作業中に、ツール3が受ける外力を3方向力検
出器2で検出する場合に問題となるのは、ツール3自身
の重量Wによる外力検出値への影響である。
However, when the three-directional force detector 2 detects an external force applied to the tool 3 during work, a problem arises in the influence of the weight W of the tool 3 itself on the detected external force value.

この影響を取り除くため、いずれも本出願人が先に開発
し提案した 特願昭60−274764号(従来例)特願昭61−1
46726号(先行例)がある。− 従来例は特定の2つの姿勢での較正値であり、3方向力
検出器2のクロストーク、熱等による特性を考慮し、こ
れを改良したのが先行例である。
In order to eliminate this influence, both Japanese Patent Applications No. 60-274764 (prior example) and Japanese Patent Application No. 61-1 were developed and proposed by the present applicant.
There is No. 46726 (preceding example). - The conventional example is a calibration value for two specific postures, and the prior example is improved by taking into account the characteristics of the three-directional force detector 2 due to crosstalk, heat, etc.

この先行例は、3方向力検出器2の各軸(X。This prior example is based on each axis (X) of the three-directional force detector 2.

Y、 Z軸)の検出値(Xl、Yl、Zl)の情報から
、各軸の較正値(Xo、Yo、Zo)を補正し、外力F
を として算出する3方向力検出器の零点較正方法である。
Based on the information on the detected values (Xl, Yl, Zl) of the Y, Z axes, the calibration values of each axis (Xo, Yo, Zo) are corrected, and the external force F
This is a zero point calibration method for a three-directional force detector that calculates the following.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、先行例では3方向力検出器2の合力Foを とすると、外力Fは F−I FローW+ となり、外力、ツールffi量、合力の関係図を表わす
m5図に示すように、 合力F。−ツール重量W が 外力F−0 である〔第5図(a)〕。
However, in the previous example, if the resultant force Fo of the three-direction force detector 2 is assumed, the external force F becomes F-IF low W+, and as shown in the diagram m5 showing the relationship between the external force, the tool ffi amount, and the resultant force, the resultant force F . - The tool weight W is the external force F-0 [Fig. 5(a)].

このとき、外力Fがツール重量Wと反対に作用した場合
〔第5図(b)、) 、外力Fは■→■→■〔第5図(
a)〕の経路をたどり、合力F。で反転してしまい、正
確な外力Fの算出ができない。
At this time, if the external force F acts in the opposite direction to the tool weight W [Fig. 5 (b),), the external force F becomes ■ → ■ → ■ [Fig. 5 (
a)], the resultant force F is obtained. The external force F cannot be calculated accurately.

ここにおいて本発明は、この先行例の難点を克服し、例
えば産業用ロボット手首部の姿勢を表わす座標を利用し
て、3方向力検出器より正確な外力を算出する方法を提
供することを、その目的とする。
The present invention overcomes the drawbacks of the prior art and provides a method for calculating external force more accurately than a three-directional force detector by using, for example, coordinates representing the posture of an industrial robot's wrist. That purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、 ツール重量Wを測定し、ロボット手首部の座標と3方向
力検出器の座標をパラメータの関係式で結びつけ、3方
向力検出器に加わるツール重量Wおよび外力Fを3方向
力検出器の座標上で表現し、外力の算出を行なう 3方向力検出器の外力算出方法である。
The present invention measures the tool weight W, connects the coordinates of the robot wrist and the coordinates of the 3-directional force detector using a parameter relational expression, and detects the tool weight W and external force F applied to the 3-directional force detector. This is an external force calculation method for a three-directional force detector that expresses the external force on the coordinates of the vessel and calculates the external force.

〔作 用〕[For production]

ロボット手首部の姿勢を表わす座標を利用し、ロボット
手首部と3方向力検出器をパラメータで関係づけている
から、ツール重量Wを3方向力検出器の座標上でZsw
’ Xsw’ ”svと表現され、3方向力検出器の各
軸出力成分z  、x  、y  かS     S 
    S らツール重量成分をそれぞれ取り除くことができ、外力
Fが正確に導出される。
Since the coordinates representing the posture of the robot wrist are used and the robot wrist and the three-direction force detector are related by parameters, the tool weight W can be expressed as Zsw on the coordinates of the three-direction force detector.
It is expressed as '
S and tool weight components can be removed, respectively, and the external force F can be accurately derived.

〔実施例〕〔Example〕

以下、本発明の一実施例について、図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

ロボット本体5の固定座標とロボット手首部1の座標関
係図は、第3図に表わすとおりである。
A diagram showing the relationship between the fixed coordinates of the robot body 5 and the coordinates of the robot wrist portion 1 is shown in FIG.

第3図のように、6図節を有するロボットの場合に、 各関節A  (n−1,2,3,4,5,6)は、 A smRot (Z、θ) 4’rans (0,0
,九)1        n となり、eTrans(a  、0.0)*Rot (
X、an)ロボット手首部1の先端をT、とすれば、T
s = Z ” AI A2 As Ai、 Ai、 
Asである。
As shown in Figure 3, in the case of a robot with six nodes, each joint A (n-1, 2, 3, 4, 5, 6) is A smRot (Z, θ) 4'rans (0, 0
, 9) 1 n , and eTrans(a , 0.0)*Rot (
X, an) If the tip of the robot wrist part 1 is T, then T
s = Z ” AI A2 As Ai, Ai,
It is As.

ただし、 であり、ロボット本体5の固定座標の方向余弦だけで表
現すると となる。
However, , and can be expressed only by the direction cosine of the fixed coordinates of the robot body 5.

ロボット手首部1と3方向力検出器2の座標を結び付け
るパラメータを、第2図のロボット手首部1の座標(X
H,YH,ZH)の各軸の回転角度sx、sy、szと
し、3方向力検出器2の方向余弦をあられすマトリック
スをSとすると、5−T6−Rot  (X、、5X)
Rot  (YH,5Y)Ro t (Zu 、S Z
) と表わすことができる。
The parameter that connects the coordinates of the robot wrist 1 and the three-direction force detector 2 is defined as the coordinate (X) of the robot wrist 1 in FIG.
5-T6-Rot (X, 5X)
Rot (YH, 5Y) Rot (Zu, S Z
) can be expressed as

一方、ツール重量Wは3方向力検出器2の座標で、第1
図に示すように、 X  Y  Z sv’    sv’    sw と表わすことができる。
On the other hand, the tool weight W is the coordinate of the three-directional force detector 2, and the first
As shown in the figure, it can be expressed as X Y Z sv'sv' sw.

すなわち、第1図(a)は3方向力検出器2の各軸の外
力x  、y  、z  とツール3の重iwS   
  S     S の関係を表わし、第1図(b)はツール重量WのZ 成
分Z とX  −Y  平面への投影成分W′s   
     5w5s を示し、第1図(c)はX −Y 平面上でW′S からツールTflQのX、Y  成分Xsw’  Ys
vが導S     S 出されることを現わしている。
That is, FIG. 1(a) shows the external forces x, y, z on each axis of the three-directional force detector 2 and the weight iwS of the tool 3.
S
5w5s, and FIG. 1(c) shows the X, Y components of tool TflQ from W'S on the X-Y plane.
This shows that v is derived from S S .

したがってロボット本体5の固定座標上で、ツール重量
Wの方向を定義すると、3方向力検出器2の各軸におけ
るツール重量成分を算出することができる。
Therefore, by defining the direction of the tool weight W on the fixed coordinates of the robot body 5, the tool weight components in each axis of the three-directional force detector 2 can be calculated.

ロボット本体5を地面に平行に設置した場合、ツール重
量Wはロボット本体5の固定座標上で(0,0,−w) と定義される。
When the robot body 5 is installed parallel to the ground, the tool weight W is defined as (0, 0, -w) on the fixed coordinates of the robot body 5.

このときの3方向力検出器の各軸成分は(X8w、 Y
8v、 ZSv) −[0,O,−W)・Sとなり、 X思■−−w争nzs v y  −−w・0□8 v Z ■−W・azs v となる。
At this time, each axis component of the three-directional force detector is (X8w, Y
8v, ZSv) -[0,O,-W)・S, and

あるロボット手首部1の姿勢でツール3が外力Fを受け
たときの、3方向力検出器の各軸成分をXSF・YSF
・ZSF とすると、 Xl−Xo−XsV+X5F Yl−Yo−Ysv+YsF Zl −ZO−Zsw+Zsw ここに、Xo、Yo、Zoは3方向力検出器の零点較正
値である、 となり、 X  −(Xl−Xo’) −X8、 F Y  −(Y、 −Yo) −Ys。
When the tool 3 receives an external force F in a certain posture of the robot wrist 1, each axis component of the three-directional force detector is expressed as XSF and YSF.
・If ZSF, then ) -X8, F Y -(Y, -Yo) -Ys.

F Z  −(Z  −Zo) −Z8w SP    l となる。F Z  -(Z  -Zo) -Z8w SP l becomes.

外力Fは と、導出することができる。The external force F is and can be derived.

このように、3方向力検出器2の取付は方向に制限がな
く、ツール3の受ける外力Fを正確(こ算出される。
In this way, the three-direction force detector 2 can be mounted without any restrictions in the direction, and the external force F received by the tool 3 can be accurately calculated.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、ロボット手首部に固定された
3方向力検出器において、ツールの受ける外力を、外力
の方向とは無関係に、どのようなロボット手首姿勢につ
いても、正確に算出することができ、作業の信頼性が向
上し、効率が著しく増大することから、大幅なコストの
低減を図ることができる。
Thus, according to the present invention, the three-directional force detector fixed to the robot wrist can accurately calculate the external force applied to the tool for any robot wrist posture, regardless of the direction of the external force. This improves operational reliability and significantly increases efficiency, resulting in significant cost reductions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における3方向力検出器の座
標上でのツール重量成分を表わす図、第2図はロボット
手首部の座標と3方向力検出器の座標を関係づけるパラ
メータを示す図、第3図は6関節ロボットの固定座標と
ロボット手首部の座標を表わす図、第4図は産業用ロボ
ットの手首部;;3方向力検出器を装着しその先にツー
ルを固定した構成を示す側面図、第5図は外力Fの算出
グラフを表わす図である。 1・・・・・・ロボット手首部(3方向力検出器支持部
材) 2・・・・・・3方向力検出器 3・・・・・・ツール 4・・・・・・ロボットアーム 5・・・・・・ロボット本体。 出願人代理人  佐  藤  −雄 第3図
FIG. 1 is a diagram showing the tool weight component on the coordinates of a three-directional force detector in an embodiment of the present invention, and FIG. 2 is a diagram showing parameters relating the coordinates of the robot wrist and the coordinates of the three-directional force detector. Figure 3 is a diagram showing the fixed coordinates of a 6-joint robot and the coordinates of the robot's wrist; Figure 4 is a diagram showing the wrist of an industrial robot; a three-directional force detector is attached and a tool is fixed at the tip. FIG. 5, a side view showing the configuration, is a diagram showing a calculation graph of the external force F. 1...Robot wrist part (3-direction force detector support member) 2...3-direction force detector 3...Tool 4...Robot arm 5. ...Robot body. Applicant's agent Mr. Sato Figure 3

Claims (1)

【特許請求の範囲】 1、3方向力検出器をロボット手首部に固定し、 ツール重量Wを測定し、 ツールを3方向力検出器に固着させ、 作業時にツールに加わる外力Fを3方向力検出器で検出
するさいに、ロボット手首部の姿勢を表わす座標を媒介
として、ロボット手首部と3方向力検出器をパラメータ
で関係づけ、 ツール重量を3方向力検出器の座標上で表現し、3方向
力検出器の各軸出力成分からツール重量を取り除く、 ことを特徴とする3方向力検出器の外力算出方法。
[Claims] 1 and 3 directional force detectors are fixed to the robot wrist, the tool weight W is measured, the tool is fixed to the 3 directional force detector, and the external force F applied to the tool during work is calculated as the 3 directional force. When detecting with a detector, the robot wrist and the three-direction force detector are related by parameters using the coordinates representing the posture of the robot wrist, and the tool weight is expressed on the coordinates of the three-direction force detector. A method for calculating an external force for a three-directional force detector, comprising: removing tool weight from each axis output component of the three-directional force detector.
JP62019034A 1987-01-29 1987-01-29 Method of calculating external force of three-way force detector Pending JPS63191593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019034A JPS63191593A (en) 1987-01-29 1987-01-29 Method of calculating external force of three-way force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019034A JPS63191593A (en) 1987-01-29 1987-01-29 Method of calculating external force of three-way force detector

Publications (1)

Publication Number Publication Date
JPS63191593A true JPS63191593A (en) 1988-08-09

Family

ID=11988157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019034A Pending JPS63191593A (en) 1987-01-29 1987-01-29 Method of calculating external force of three-way force detector

Country Status (1)

Country Link
JP (1) JPS63191593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257975A (en) * 1995-03-23 1996-10-08 Agency Of Ind Science & Technol Force-control robot compensating force detection
JP2012013537A (en) * 2010-06-30 2012-01-19 Canon Inc Method of calibrating force sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257975A (en) * 1995-03-23 1996-10-08 Agency Of Ind Science & Technol Force-control robot compensating force detection
JP2012013537A (en) * 2010-06-30 2012-01-19 Canon Inc Method of calibrating force sensor

Similar Documents

Publication Publication Date Title
JP2713899B2 (en) Robot equipment
US4698572A (en) Kinematic parameter identification for robotic manipulators
Liu et al. A base force/torque sensor approach to robot manipulator inertial parameter estimation
US12011825B2 (en) Device, method and program for estimating weight and position of gravity center of load by using robot
Parenti-Castelli et al. A new algorithm based on two extra-sensors for real-time computation of the actual configuration of the generalized Stewart-Gough manipulator
Etemadi‐zanganeh et al. Real‐time direct kinematics of general six‐degree‐of‐freedom parallel manipulators with minimum‐sensor data
Ahmad et al. Shape recovery from robot contour-tracking with force feedback
JPS63191593A (en) Method of calculating external force of three-way force detector
Tucker et al. Generalized inverses for robotic manipulators
JPH0741565B2 (en) Robot teaching method
JP3577124B2 (en) Method of acquiring mating data using force control robot
JP4134369B2 (en) Robot control device
JPH0639070B2 (en) Robot device force sensor calibration method
CN108284456A (en) Gravitational compensation method in sensor load external force measurement based on dimensionality reduction parsing
JPH01146645A (en) Profile control system
Nelson et al. Integrating force and vision feedback within virtual environments for telerobotic systems
JPH0731536B2 (en) Teaching data correction robot
JP2913661B2 (en) Robot control method
Wahrburg Application of a Novel Force-Torque Sensor in Advanced Robot Assembly and Machining Tasks
JP2751967B2 (en) Copying control device
JP2613076B2 (en) Copying teaching control method
JPS6330905A (en) Hybrid control device for redundant manipulator
Lin Identification of a class of nonlinear deterministic systems with application to manipulators
JPS61117395A (en) Centering apparatus of rock driller
JPH03104576A (en) Power control type robot