JPH01146645A - Profile control system - Google Patents

Profile control system

Info

Publication number
JPH01146645A
JPH01146645A JP30460687A JP30460687A JPH01146645A JP H01146645 A JPH01146645 A JP H01146645A JP 30460687 A JP30460687 A JP 30460687A JP 30460687 A JP30460687 A JP 30460687A JP H01146645 A JPH01146645 A JP H01146645A
Authority
JP
Japan
Prior art keywords
force
speed command
command
monitoring
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30460687A
Other languages
Japanese (ja)
Inventor
Akihiko Yabuki
彰彦 矢吹
Yutaka Yoshida
豊 吉田
Katsushi Nishimoto
西本 克史
Yasuyuki Nakada
康之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30460687A priority Critical patent/JPH01146645A/en
Publication of JPH01146645A publication Critical patent/JPH01146645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Copy Controls (AREA)
  • Manipulator (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To facilitate prevention of the damage of an object and a work, by a method wherein, when an monitoring force exerted in a position control direction exceeds an allowable range, an output from a blind zone computing means is added to a speed command in the direction of a normal extending vertically to a profile direction. CONSTITUTION:By means of a deviation between a detecting force Fr produced by coordinate-converting a force detected by a force detecting means and a force command Fo indicating a press force, a speed command Vf is outputted in a direction, extending vertically to the profile direction, to a force control means B. A monitoring force exerted in the direction of position control is computed by a blind zone computing means C, and it is decided by the blind zone computing means whether the monitoring force is in an allowable range. Meanwhile, a deviation between a present position coordinate Xp and a target position Xo is determined by means of a position control means A, and is outputted in a profile direction as a speed command Vp. When the monitoring force exceeds a given allowable range, an output from the blind zone computing means C is added to a speed command Vf by means of the blind computing means C. The damage of an object and a work when an abnormal force is exerted can be prevented from occurring.

Description

【発明の詳細な説明】 〔概 要〕 本発明は産業用ロボット等を用いて対象物表面に沿って
加工するならい制御方式に関し、対象物表面の異常に対
して容易に対応し得、対象物表面あるいはワークに損傷
を与えることのないならい制御を提供することを目的と
し、本発明によれば、力検知手段により検出された力を
座標変換して得られる検出力と押しつけ力を示す力指令
との偏差に基づいて、ならい方向に垂直な法線方向に速
度指令を出力する力制御手段と、前記力制御手段内に設
けられ、位置制御方向に作用する監視力を演算する手段
と、前記監視力について所定の許容範囲を設定する不感
帯演算部とを備える不感帯演算手段と、現在位置座標と
目標位置との偏差に基づいて、ならい方向に速度指令を
出力する位置制御手段とを備え、前記不感帯演算手段に
おいて前記監視力が前記許容範囲を越えたときに、前記
速度指令に前記不感帯演算手段の出力を加えるように構
成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a tracing control method for machining along the surface of an object using an industrial robot, etc., which can easily respond to abnormalities on the surface of the object, and The present invention aims to provide contouring control that does not damage the surface or workpiece, and according to the present invention, a force command indicating the detected force and pressing force obtained by coordinate transformation of the force detected by the force detection means is provided. a force control means for outputting a speed command in the normal direction perpendicular to the tracing direction based on the deviation from the profiling direction; a means provided within the force control means for calculating a monitoring force acting in the position control direction; A dead zone calculation means comprising a dead zone calculation section for setting a predetermined permissible range for the monitoring force, and a position control means for outputting a speed command in the tracing direction based on the deviation between the current position coordinates and the target position, The dead zone calculating means is configured to add the output of the dead zone calculating means to the speed command when the monitoring force exceeds the allowable range.

〔産業上の利用分野〕[Industrial application field]

本発明はならい制御方式に関し、特に産業用ロボットに
おいて、ワークを対象物表面の形状になぞって加工する
必要のある作業に利用するならい制御方式に関する。
The present invention relates to a profiling control method, and more particularly to a profiling control method used in industrial robots for operations that require machining a workpiece by tracing the shape of the surface of the object.

〔従来の技術及び発明が解決しようとする問題点〕対象
物表面の加工、例えば、パリ取り、拭き取り等の作業に
ロボットを使用することはすでに知られており、このと
きに用いるならい制御方式もすでに提案されている。
[Prior art and problems to be solved by the invention] It is already known that robots are used for processing the surface of objects, such as deburring, wiping, etc., and the profiling control method used at this time is also known. Already proposed.

ならい制御の基本的な方法は、第4図に示すようにワー
クを構成するアームAに回転機構Rを介して取り付けら
れたハンドHと、対象物Oとの接触点Pにおける拘束方
向(X方向)を力制御方向とし、他の方向(YおよびZ
方向)を位置制御方向として各々完全に分離して制御す
るものである。
The basic method of profiling control is as shown in Fig. 4, in which a hand H attached to an arm A constituting a workpiece via a rotation mechanism R is placed in a restraining direction (X direction) at a contact point P with an object O. ) as the force control direction, and the other directions (Y and Z
direction) as the position control direction and are controlled completely separately from each other.

既ち、このならい制御では対象物表面の接触点Pにおけ
る法線方向(X方向)に力指令を与え、対象物の接平面
内の任意の方向に移動指令を与えるようにしている。と
ころで、上述の力および移動指令を正しくハンドHに与
えるためには対象物の表面形状が正確に数値的に記述さ
れることが必要であり、さらに、表面形状の変化に微妙
に追従可能でかつリアルタイム処理の可能な高精度の視
覚装置が必要である。
Already, in this tracing control, a force command is given in the normal direction (X direction) at the contact point P on the object surface, and a movement command is given in an arbitrary direction within the tangential plane of the object. By the way, in order to correctly apply the above-mentioned forces and movement commands to the hand H, it is necessary that the surface shape of the object is accurately described numerically, and furthermore, it is necessary to be able to subtly follow changes in the surface shape. High-precision visual equipment capable of real-time processing is required.

一方、上述の如きならい制御方式では、位置制御の方向
は作業時の外乱や位置決め上の誤差あるいは対象物表面
の異常形状によって非常に影響を受けやすいものである
ため、例えば移動指令が対象物の接平面外に指向して与
えられることがある。
On the other hand, in the above-mentioned profile control method, the direction of position control is highly susceptible to disturbances during work, errors in positioning, or abnormal shapes on the surface of the target object. It may be given pointing out of the tangential plane.

第5図はこれを説明する図であり、対象物表面が図示の
如く異常に変化している場合に、点P、からPbにハン
ドAが移動するときに表面にならって正確に追従可能な
制御であれば、x0方向に力指令を与えY0方向に移動
指令を与えて正確にならい動作をすることができる。し
かし、このときに点線で示すようにX、方向に力指令を
与え、Y、方向に移動指令を与えてしまうとY、方向の
力、さらにはYb方向の力によって対象物表面をかじる
ように作用するので表面やワークを損傷することになる
FIG. 5 is a diagram explaining this, and when the surface of the object changes abnormally as shown, it is possible to accurately follow the surface when the hand A moves from point P to Pb. For control, it is possible to accurately follow the motion by giving a force command in the x0 direction and a movement command in the Y0 direction. However, as shown by the dotted line, if a force command is given in the X direction and a movement command is given in the Y direction, the force in the Y direction and even the Yb direction will gnaw at the surface of the object. This will damage the surface and workpiece.

この場合に対象物表面を出来るだけ微視的にとらえて数
値化し、X方向の力指令とY方向の移動指令を出来るだ
け微細に制御すればある程度は回避することはできるが
、ある瞬間をとらえると上述と同様の問題を生ずること
になる。第8図は従来の構成例であり、力制御部21で
は後述する検出力F、と押しつけ力を示す力指令F0か
ら所定の演算を経て速度指令■、を出力し、また、位置
制御部22ではロボット座標系の現在位置X、と目標位
置X0とから速度指令V、を出力し、これらを加算して
速度指令■を出力している。図からも明らかなように、
力制御部においても、位置制御部においてもいかなるフ
ィードバック制御もなされていないことがわかる。この
ために対象物表面の異常に応じて速度指令Vに異常が生
じかじり等の損傷が生じていた。これについては後述す
る。
In this case, it can be avoided to some extent by capturing the surface of the object as microscopically as possible and quantifying it, and controlling the force command in the X direction and the movement command in the Y direction as finely as possible, but it is difficult to capture a certain moment. This results in the same problem as described above. FIG. 8 shows an example of a conventional configuration, in which a force control section 21 outputs a speed command ■ through a predetermined calculation from a detected force F, which will be described later, and a force command F0 indicating a pressing force, and a position control section 22 In this case, a speed command V is output from the current position X and the target position X0 of the robot coordinate system, and these are added to output a speed command ■. As is clear from the figure,
It can be seen that no feedback control is performed in either the force control section or the position control section. For this reason, an abnormality occurs in the speed command V in response to an abnormality on the surface of the object, resulting in damage such as galling. This will be discussed later.

本発明の目的は、対象物表面の異常に対して容易に対応
し、対象物表面あるいはワークに損傷を与えることのな
いならい制御方式を提供することにある。
An object of the present invention is to provide a profiling control method that easily responds to abnormalities on the surface of an object and does not damage the surface of the object or the workpiece.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理構成図である。図において、Aは
対象物表面の接平面方向の移動指令を制御する位置制御
手段、Bは対象物表面の法線方向の力指令を制御する力
制御手段、Cは前記力制御手段内に設けられ所定範囲の
力に対して不感帯として作用する不感帯演算手段である
FIG. 1 is a diagram showing the principle configuration of the present invention. In the figure, A is a position control means that controls movement commands in the tangential plane direction of the object surface, B is a force control means that controls force commands in the normal direction of the object surface, and C is provided within the force control means. This is a dead zone calculation means that acts as a dead zone for a predetermined range of force.

〔作 用〕 本発明では力検知手段により検出された力を座標変換し
て得られる検出力と、押しつけ力を示す力指令との偏差
を求め、力制御手段によりならい方向に対して垂直な方
向に速度指令を与え、かつ力制御手段内に備えられる不
感帯演算手段によって位置制御方向に作用する監視力を
演算し、さらにこの監視力が許容範囲内にあるか否かを
判定する。一方、位置制御手段により現在位置座標と目
標位置との偏差を求め、これをならい方向に速度指令と
して出力する。そして不感帯演算手段において、監視力
が所定の許容範囲を越えたときは速度指令に不感帯演算
手段の出力を加えるようにする。
[Operation] In the present invention, the deviation between the detected force obtained by coordinate transformation of the force detected by the force detection means and the force command indicating the pressing force is determined, and the deviation is determined by the force control means in a direction perpendicular to the tracing direction. A speed command is given to the force control means, a monitoring force acting in the position control direction is calculated by a dead zone calculating means provided in the force control means, and it is further determined whether this monitoring force is within an allowable range. On the other hand, the position control means determines the deviation between the current position coordinates and the target position, and outputs this as a speed command in the tracing direction. In the dead zone calculation means, when the monitoring force exceeds a predetermined allowable range, the output of the dead zone calculation means is added to the speed command.

〔実施例〕〔Example〕

第2図は、本発明に係るならい制御方式の一実施例ブロ
ック構成図である。図において、21aは力制御部、2
2は位置制御部である。このような構成において、なら
い動作ではならい方向の移動速度指令v0と、押し付は
力を示す力指令F0とロボット座標系で示した検出力F
、との偏差にもとづいて力制御部21aにて生成された
速度指令■、と、ある時点での目標位置X0とロボット
ハンドの現在位置X、との偏差にもとづいて位置制御部
22にて生成された速度指令V、と、に基づいてこれら
の和v、+v、+y、を速度指令Vとして出力する。
FIG. 2 is a block diagram of an embodiment of the profiling control method according to the present invention. In the figure, 21a is a force control unit;
2 is a position control section. In such a configuration, a moving speed command v0 in the tracing direction is used for tracing motion, a force command F0 indicating force for pressing, and a detected force F expressed in the robot coordinate system.
The speed command ■ is generated by the force control unit 21a based on the deviation between , and the position control unit 22 generates the speed command based on the deviation between the target position X0 and the current position Based on the speed commands V and , the sums v, +v, +y are output as the speed command V.

この場合、ロボット座標系等の基準座標系にて速度指令
Vを生成するためにマニピュレータの各関節の動作速度
々は後述する演算部2oにて算出され、マニピュレータ
の逆ヤコビ行列をJ−1とすると、δ=J−1・Vと表
わされる。ここで、第7図に示すように、対象物への押
しっけカを示す力指令F0で与えられる力制御方向の単
位ベクトルを“n”、ならい方向の移動速度指令V0で
与えられる位置制御方向の単位ベクトル“0”で表わし
たとき、位置制御されるさらにもう1つの直交ベクトル
“a″は、 a=nx。
In this case, in order to generate a speed command V in a reference coordinate system such as a robot coordinate system, the operating speeds of each joint of the manipulator are calculated by a calculation unit 2o, which will be described later, and the inverse Jacobian matrix of the manipulator is expressed as J-1. Then, it is expressed as δ=J-1·V. Here, as shown in Fig. 7, the unit vector in the force control direction given by the force command F0 indicating the pushing force on the object is "n", and the position control given by the movement speed command V0 in the tracing direction. When expressed as a unit vector "0" in the direction, yet another orthogonal vector "a" whose position is controlled is a=nx.

で与えられる。is given by

これをそれぞれ基準座標系による成分表示すると、 n=  (nx   nv   nz )”o=  (
oX   Gy   Oz )rとなる。ここで、Tは
転置行列を示す。一方、演算部1の座標変換Rは、 で与えられる。
If this is represented as a component using the reference coordinate system, n= (nx nv nz)"o= (
oX Gy Oz)r. Here, T indicates a transposed matrix. On the other hand, the coordinate transformation R of the calculation unit 1 is given by:

そして、演算部2は基準座標系で表示された力の偏差を
座標変換してならい座標系にて表示するもので、第7図
ではならい座標系X’Y’Z″において、X′方向を力
制御方向、Y′およびZ′方向を位置制御方向とするこ
とで、選択マドIノクス演算部3の選択マトリクスSf
は、 で与えられる。この場合、一般に、例え巳よねじ寒帝め
、缶の蓋締め、等押し付は方向の軸まわりGこトルクを
与えるのでトルクを与える場合にはs=1とし、与えな
い場合にはs=oとする。
The calculation unit 2 converts the force deviation displayed in the reference coordinate system and displays it in the coordinate system. By setting the force control direction and the Y' and Z' directions as position control directions, the selection matrix Sf of the selection matrix I node calculation unit 3
is given by . In this case, in general, pressing, such as tightening the lid of a can, etc., gives a torque around the axis in the direction, so if torque is given, s = 1, and if not, s = o.

カフィードバックゲイン演算部4ではカフィードバック
ゲインC1は基準座標系に関して、で与えられる。
In the feedback gain calculating section 4, the feedback gain C1 is given by:

また、位置フィードバックゲイン演算部6では、位置フ
ィードバックゲインC2は、同様にしてで与えられる。
Further, in the position feedback gain calculating section 6, the position feedback gain C2 is similarly given.

また、選択マトリクス演算部5の“I”は単位行列を表
わしている。
Further, "I" in the selection matrix calculation unit 5 represents a unit matrix.

以上の各式から、力制御部21aがら出力される速度指
令V、は、式(1)、(2)、(3)および検出力F、
と力指令F0との偏差によって、■f 冨Cr  RS
t  R丁  (Fr−F、”)   ・・・ (5)
また、位置制御部22から出力される速度指令■9は、
式(1)、(2)、(4)および現在位置X、。
From each of the above equations, the speed command V output from the force control unit 21a is calculated by equations (1), (2), (3) and the detected force F,
According to the deviation between the force command F0 and the force command F0, ■ f Tomi Cr RS
t R-cho (Fr-F,”) ... (5)
In addition, the speed command ■9 output from the position control section 22 is
Equations (1), (2), (4) and current position X.

と目標位置X0との偏差によって、 V、=CpR(1−3f ”)R”  (Xr−X、)
・・・(6) で与えられる。
According to the deviation between the target position X0 and the target position
...(6) is given by.

この場合に、本発明では力制御部21aにおい、て、位
置制御方向に作用する力も監視するために、選択マトリ
クス演算手段5と不感帯演算手段7を設ける。これらの
手段によって、ならい動作中に位置制御方向が対象物接
触点における接平面に一致していない場合に、対象物表
面に多大な摩擦力が生じて表面をかじり、対象物表面あ
るいはワークに損傷を与えるのを防止することができる
ものである。既ち、対象物の接触点に許容範囲以上の力
が作用したときには位置制御方向にもカフィードバック
を作用させるためである。
In this case, in the present invention, the force control section 21a is provided with a selection matrix calculation means 5 and a dead zone calculation means 7 in order to also monitor the force acting in the position control direction. By these means, if the position control direction does not match the tangential plane at the point of contact with the object during the tracing operation, a large frictional force will be generated on the object surface, which will bite the surface and cause damage to the object surface or workpiece. This is something that can be prevented from giving. This is because when a force exceeding an allowable range is applied to the contact point of the object, force feedback is also applied in the position control direction.

第2図において、位置制御方向に作用する力としての監
視力F erは、 FC,= (1−3r )R’  (Fr−F、)  
・ (7)で与えられ、ならい座標系で表示した力の許
容範囲Ut  (>O)を不感帯中と設定した不感帯演
算手段7において、 IFc、l≦U。
In Fig. 2, the monitoring force Fer as a force acting in the position control direction is FC, = (1-3r)R' (Fr-F,)
- In the dead zone calculation means 7, which is set to the force tolerance range Ut (>O) given by (7) and expressed in the tracing coordinate system as in the dead zone, IFc, l≦U.

のとき、既ち、監視力が力の許容範囲より小さいときは
、式(5)および(6)を加算した速度指令Vが得られ
、 l F cr l > U t のとき、既ち、監視力が力の許容範囲より大なるときは
、力制御部21aの速度指令Vfは、Vt =Ct R
(Sr R”  (Fo  Fr ) +FC,,,)
             ・・・(8)で与えられる
。この場合F craは、力の許容範囲と監視力との大
小に応じて、 Fcrm =Fcr  Ut  (Fcr> 0)=F
cr+Ur  (Fcr< O) で与えられる。当然、位置制御部22における速度指令
Vpは式(6)でよい。
In this case, if the monitoring force is already smaller than the allowable force range, the speed command V is obtained by adding equations (5) and (6), and if l F cr l > U t , the monitoring force is already When the force is larger than the allowable force range, the speed command Vf of the force control section 21a is Vt = Ct R
(Sr R” (Fo Fr) +FC,,,)
... is given by (8). In this case, Fcra is determined by Fcrm = Fcr Ut (Fcr > 0) = F
It is given by cr+Ur (Fcr<O). Naturally, the speed command Vp in the position control section 22 may be expressed by equation (6).

第3図は本発明の適用される制御装置の一実施例ブロッ
ク図である。図において、10はロボットのマニピュレ
ータ、11はサーボモータ、工2はタコメータ、13は
カウンタおよびエンコーダ、14は増幅器、15はD/
Aコンバータ、16は補償器、17は力覚センサ、18
は座標変換部、19は位置姿勢演算部、20は逆ヤコビ
行列演算部である。11〜16によって構成される系2
3はマニピュレータ10の自由度の数だけ備えられる速
度サーボ系である。
FIG. 3 is a block diagram of an embodiment of a control device to which the present invention is applied. In the figure, 10 is a robot manipulator, 11 is a servo motor, 2 is a tachometer, 13 is a counter and encoder, 14 is an amplifier, and 15 is a D/
A converter, 16 is a compensator, 17 is a force sensor, 18
19 is a coordinate transformation section, 19 is a position/orientation calculation section, and 20 is an inverse Jacobian matrix calculation section. System 2 composed of 11-16
3 is a speed servo system that is provided as many times as there are degrees of freedom of the manipulator 10.

マニピュレータIOは先端のハンドの一点に作用する力
は、ハンドの位置と、マニピュレータの自然長時の位置
とのオフセットにマニピュレータ対象物系の剛性を掛け
た値として表わされ、この作用力はマニピュレータの手
首部分に装着した力覚センサ17により検出される。第
6図に示すようなハンド座標系(Xh  、 Yh  
、 Zh )で検出した力Fhは座標変換部18におい
てロボット基準座標系(Xr、、Y、  、Z、、)の
検出力F、に変換されて力制御部21aに入力される。
The force acting on one point of the hand at the tip of the manipulator IO is expressed as the value obtained by multiplying the offset between the hand position and the position at the manipulator's natural length by the stiffness of the manipulator object system, and this acting force is This is detected by a force sensor 17 attached to the wrist of the person. The hand coordinate system (Xh, Yh
, Zh ) is converted into a detected force F of the robot reference coordinate system (Xr, , Y, , Z, , ) by the coordinate conversion unit 18, and is input to the force control unit 21a.

ハンドの位置姿勢Xrはエンコーダおよびカウンタ13
により検出された各関節角θ3から、位置姿勢演算部工
9にて算出される。ここでPfは力制御パラメータ、P
pは位置制御パラメータである。
The position and orientation of the hand Xr is determined by the encoder and counter 13.
The position/posture calculation section 9 calculates the joint angle θ3 from each joint angle θ3 detected by the above. Here, Pf is the force control parameter, P
p is a position control parameter.

前述の力制御部21aおよび位置制御部22から得られ
た速度指令Vは逆ヤコビ行列演算部20において、前述
の式θ=J−1・Vにもとづき、関節速度θが求められ
、この関節速度は補償器16に入力され、D/A変換さ
れた後増幅されてサーボモータを駆動する。
The speed command V obtained from the force control section 21a and the position control section 22 is used in the inverse Jacobian matrix calculation section 20 to calculate the joint speed θ based on the above formula θ=J-1·V. is input to the compensator 16, and after being D/A converted, it is amplified and drives the servo motor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、対象物表面の異
常によって、ならい方向に対象物やワークを損傷する恐
れのある異常な力が作用したときに、これを容易に回避
することができる。
As explained above, according to the present invention, when an abnormal force that may damage the object or workpiece is applied in the tracing direction due to an abnormality on the surface of the object, this can be easily avoided. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構成図、 第2図は本発明の一実施例構成図、 第3図は本発明を適用した制御装置ブロック図、第4図
は対象物表面の力方向を説明する図、第5図は対象物表
面の異常形状における力方向を説明する図、 第6図はロボット座標系とハンド座標系を説明する図、 第7図はロボット座標系における単位ベクトルを説明す
る図、および 第8図は従来の構成図である。 (符号の説明) 1.2・・・演算部、 3・・・選択マトリクス演算部、 4・・・カフィードバックゲイン演算部、5・・・選択
マトリクス演算手段、 6・・・位置フィードバックゲイン演算部、7・・・不
感帯演算手段、  21 、21 a・・・力制御部、
22・・・位置制御部。 、223 本発明を適用した制御装置ブロック図 第3yJ X 対象物表面の力方向を説明する図 第41 人C 対象物表面の異常形状における力方向を説明する図第5
5J 入r ロボット座標系とハンド座標系を説明する図@6図 r ロボット座標系における単位ベクトル全説明する図$7
Figure 1 is a diagram of the principle of the present invention; Figure 2 is a diagram of an embodiment of the present invention; Figure 3 is a block diagram of a control device to which the present invention is applied; Figure 4 illustrates the direction of force on the surface of an object. Figure 5 is a diagram explaining the force direction in the abnormal shape of the object surface. Figure 6 is a diagram explaining the robot coordinate system and hand coordinate system. Figure 7 is a diagram explaining the unit vector in the robot coordinate system. 8 and 8 are conventional configuration diagrams. (Explanation of symbols) 1.2... Calculation section, 3... Selection matrix calculation section, 4... Kafeedback gain calculation section, 5... Selection matrix calculation means, 6... Position feedback gain calculation Part, 7... Dead zone calculation means, 21, 21 a... Force control unit,
22...Position control unit. , 223 Block diagram of a control device to which the present invention is applied No. 3 yJ
5J Enter r Diagram explaining the robot coordinate system and hand coordinate system @Figure 6 r Diagram explaining all unit vectors in the robot coordinate system $7
figure

Claims (1)

【特許請求の範囲】 1、対象物表面に沿って加工するならい制御方式におい
て、 力検知手段により検出された力を座標変換して得られる
検出力(F_r)と押しつけ力を示す力指令(F_o)
との偏差に基づいて、ならい方向に垂直な法線方向に速
度指令(V_f)を出力する力制御手段(B)と、 前記力制御手段内に設けられ、位置制御方向に作用する
監視力(F_c_r)を演算する手段(5)と、前記監
視力(F_c_r)について所定の許容範囲を設定する
不感帯演算部(7)とを備える不感帯演算手段(C)と
、 現在位置座標(X_r)と目標位置(X_o)との偏差
に基づいて、ならい方向に速度指令(V_p)を出力す
る位置制御手段(A)とを備え、 前記不感帯演算手段において前記監視力が前記許容範囲
を越えたときに、前記速度指令(V_f)に前記不感帯
演算手段の出力を加えるようにしたことを特徴とするな
らい制御方式。
[Claims] 1. In a profiling control method for machining along the surface of an object, a detected force (F_r) obtained by coordinate transformation of the force detected by a force detection means and a force command (F_o )
a force control means (B) that outputs a speed command (V_f) in the normal direction perpendicular to the tracing direction based on the deviation from a dead zone calculating means (C) comprising means (5) for calculating F_c_r) and a dead zone calculating section (7) for setting a predetermined tolerance range for the monitoring force (F_c_r); and a position control means (A) that outputs a speed command (V_p) in the tracing direction based on the deviation from the position (X_o), and when the monitoring force exceeds the permissible range in the dead zone calculation means, A tracing control system characterized in that the output of the dead zone calculation means is added to the speed command (V_f).
JP30460687A 1987-12-03 1987-12-03 Profile control system Pending JPH01146645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30460687A JPH01146645A (en) 1987-12-03 1987-12-03 Profile control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30460687A JPH01146645A (en) 1987-12-03 1987-12-03 Profile control system

Publications (1)

Publication Number Publication Date
JPH01146645A true JPH01146645A (en) 1989-06-08

Family

ID=17935030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30460687A Pending JPH01146645A (en) 1987-12-03 1987-12-03 Profile control system

Country Status (1)

Country Link
JP (1) JPH01146645A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107358A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Control apparatus and control method for a robot arm, robot, control program for a robot arm, and electronic integrated circuit for controlling a robot arm
WO2011036865A1 (en) * 2009-09-28 2011-03-31 パナソニック株式会社 Control device and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
US9833897B2 (en) 2011-09-28 2017-12-05 Universal Robots A/S Calibration and programming of robots
US10195746B2 (en) 2014-09-26 2019-02-05 Teradyne, Inc. Grasping gripper
US10399232B2 (en) 2014-03-04 2019-09-03 Universal Robots A/S Safety system for industrial robot
US10850393B2 (en) 2015-07-08 2020-12-01 Universal Robots A/S Method for extending end user programming of an industrial robot with third party contributions
US11474510B2 (en) 2016-04-12 2022-10-18 Universal Robots A/S Programming a robot by demonstration
US11822355B2 (en) 2010-11-16 2023-11-21 Universal Robot A/S Programmable robot

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175749B2 (en) 2008-02-28 2012-05-08 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
JP2010137357A (en) * 2008-02-28 2010-06-24 Panasonic Corp Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
JP4531123B2 (en) * 2008-02-28 2010-08-25 パナソニック株式会社 Robot arm control device and control method, robot, robot arm control program, and integrated electronic circuit for robot arm control
JP4531126B2 (en) * 2008-02-28 2010-08-25 パナソニック株式会社 Robot arm control device and control method, robot, robot arm control program, and integrated electronic circuit for robot arm control
WO2009107358A1 (en) * 2008-02-28 2009-09-03 パナソニック株式会社 Control apparatus and control method for a robot arm, robot, control program for a robot arm, and electronic integrated circuit for controlling a robot arm
JPWO2009107358A1 (en) * 2008-02-28 2011-06-30 パナソニック株式会社 Robot arm control device and control method, robot, robot arm control program, and integrated electronic circuit for robot arm control
US8170719B2 (en) 2008-02-28 2012-05-01 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
US8175750B2 (en) 2009-09-28 2012-05-08 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and robot arm control-purpose integrated electronic circuit
WO2011036865A1 (en) * 2009-09-28 2011-03-31 パナソニック株式会社 Control device and control method for robot arm, robot, control program for robot arm, and integrated electronic circuit for controlling robot arm
US8290621B2 (en) 2009-09-28 2012-10-16 Panasonic Corporation Control apparatus and control method for robot arm, robot, control program for robot arm, and robot arm control-purpose integrated electronic circuit
US11822355B2 (en) 2010-11-16 2023-11-21 Universal Robot A/S Programmable robot
US9833897B2 (en) 2011-09-28 2017-12-05 Universal Robots A/S Calibration and programming of robots
US10399232B2 (en) 2014-03-04 2019-09-03 Universal Robots A/S Safety system for industrial robot
US10195746B2 (en) 2014-09-26 2019-02-05 Teradyne, Inc. Grasping gripper
US10850393B2 (en) 2015-07-08 2020-12-01 Universal Robots A/S Method for extending end user programming of an industrial robot with third party contributions
US11986962B2 (en) 2015-07-08 2024-05-21 Universal Robots A/S Method for extending end user programming of an industrial robot with third party contributions
US11474510B2 (en) 2016-04-12 2022-10-18 Universal Robots A/S Programming a robot by demonstration

Similar Documents

Publication Publication Date Title
TWI621004B (en) Robot system monitoring device
US7212886B2 (en) Robot control apparatus and method
US10864632B2 (en) Direct teaching method of robot
US9014853B2 (en) Calibration method and calibration system for robot
CN106625653A (en) Force feedback-based industrial robot auxiliary assembling and flexible docking method
JP7481097B2 (en) Robot Control Device
JP3286842B2 (en) Flexible control device for robot
JPH01146645A (en) Profile control system
US20210060794A1 (en) Robot system
JP4134369B2 (en) Robot control device
JP2691591B2 (en) Control system of force control robot
JPH04369004A (en) Method for controlling impedance of manipulator
Goto Forcefree control for flexible motion of industrial articulated robot arms
JP2560212B2 (en) Redundant manipulator hybrid control device
JP2613076B2 (en) Copying teaching control method
JP2713702B2 (en) Robot control method and device
JPH02279285A (en) Method and device for controlling master/slave manipulator
JP2592636B2 (en) Copying teaching control method
Zhang et al. An Approach of Direct Teaching Method Based on on Multi-axis Force Sensor
Mut et al. Tracking adaptive impedance robot control with visual feedback
JPH04300173A (en) Master slave manipulator
JPH05313746A (en) Controller for manipulator
JPH04178708A (en) Robot controller
JP2751967B2 (en) Copying control device
Karayiannidis et al. Robot force/position tracking on a surface of unknown orientation