JPS63190756A - Manufacture of high density diamond mass - Google Patents

Manufacture of high density diamond mass

Info

Publication number
JPS63190756A
JPS63190756A JP62020976A JP2097687A JPS63190756A JP S63190756 A JPS63190756 A JP S63190756A JP 62020976 A JP62020976 A JP 62020976A JP 2097687 A JP2097687 A JP 2097687A JP S63190756 A JPS63190756 A JP S63190756A
Authority
JP
Japan
Prior art keywords
diamond
powder
coated
volume
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62020976A
Other languages
Japanese (ja)
Inventor
勉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62020976A priority Critical patent/JPS63190756A/en
Publication of JPS63190756A publication Critical patent/JPS63190756A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば切削工具、掘削工具、ドレッサー
などの種々の工具に用いられるダイヤモンド増体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing diamond enrichment used in various tools such as cutting tools, excavating tools, dressers, and the like.

[従来の技術〕 現在、ダイヤモンドの含有串が70容吊%以−Fでダイ
ヤモンド粒子が互いに接合した焼結体が販売され、非鉄
金属、プラスチック、セラミックの切削、ドレッサー、
ドリルビット、伸線ダイスとして使用されている。
[Prior Art] Currently, sintered bodies in which diamond particles are bonded to each other with a diamond-containing skewer of 70% or more are sold, and are used for cutting non-ferrous metals, plastics, ceramics, dressers, etc.
Used as drill bits and wire drawing dies.

たとえば、特公昭52−12126号公報にはこの種の
焼結体の製法が開示されている。そこでは、ダイヤモン
ドの粉末をWC−Co超硬合金の成形体または焼結体に
接するように配置し、超硬合金の液相が生じる温度以上
の温度ならびに超高圧下で焼結が行なわれる。このとき
、超硬合金中のCOの一部は、ダイヤモンド粉末層中に
侵入し、結合金属として作用する。この先行技術に開示
された方法で作られたダイヤモンド焼結体は、約10〜
15容量%のCOを含有する。
For example, Japanese Patent Publication No. 52-12126 discloses a method for manufacturing this type of sintered body. There, diamond powder is placed in contact with a compact or sintered body of WC-Co cemented carbide, and sintering is performed at a temperature higher than the temperature at which the liquid phase of the cemented carbide occurs and under ultra-high pressure. At this time, a part of the CO in the cemented carbide penetrates into the diamond powder layer and acts as a bonding metal. The diamond sintered body made by the method disclosed in this prior art is about 10 to
Contains 15% CO by volume.

この焼結体は非鉄金属などの切削加工用工具としては十
分実用的な性能を有しているが、反面耐熱性が劣るとい
う欠点がある。たとえば、この焼結体を750℃以−ヒ
に加熱すると、耐摩耗性、強度の低下が見られ、900
℃以上では焼結体が破壊してしまう。この理由は、ダイ
ヤモンド粒子と結合材COの界面においてダイヤモンド
の黒鉛化が生じること、および両者の加熱時における熱
膨張率の差による熱応力が原因と考えられている。
Although this sintered body has sufficient practical performance as a cutting tool for non-ferrous metals, it has the disadvantage of poor heat resistance. For example, when this sintered body is heated to 750°C or higher, a decrease in wear resistance and strength is observed;
If the temperature exceeds ℃, the sintered body will be destroyed. The reason for this is thought to be that graphitization of the diamond occurs at the interface between the diamond particles and the binder CO, and thermal stress due to the difference in coefficient of thermal expansion when the two are heated.

また、このCOを結合材とした焼結体を酸処理して大部
分の結合金属相を除外したものは、焼結体の耐熱性が向
上することが知られている。たとえば、特開昭53−1
14589号公報には、耐熱性の改良されたダイヤモン
ド焼結体の製造法が開示されている。ところが、この場
合は除去された結合金属相の部分は空孔となるため、ど
うしても強度が低下してしまう。
Furthermore, it is known that when a sintered body using CO as a binder is treated with an acid to remove most of the binding metal phase, the heat resistance of the sintered body is improved. For example, JP-A-53-1
Japanese Patent No. 14589 discloses a method for producing a diamond sintered body with improved heat resistance. However, in this case, the removed portions of the bonded metal phase become pores, which inevitably leads to a decrease in strength.

一方、ダイt7−Eンドの粉末のみを超高圧下で焼結す
る試みもこれまでになされているが、ダイヤモンド粒子
が変形しにくいために粒子の間隙には圧力が伝達されず
、黒鉛化が生じ、ダイA7−黒鉛の々合体しか1qられ
ていない。
On the other hand, attempts have been made to sinter only the powder from die t7-End under ultra-high pressure, but since the diamond particles are difficult to deform, pressure is not transmitted to the gaps between the particles, resulting in graphitization. Only 1q of die A7-graphite coalescence was formed.

[発明が解決しようとする問題点] ダイヤモンド焼結体を工具用として用いる場合、特に硬
度の高い岩石の切削やセラミックの切削にダイヤモンド
焼結体を使用する場合、刃先となるダイヤモンド焼結体
には高い応力が付加されるとともに、温度が上昇する。
[Problems to be solved by the invention] When a diamond sintered body is used for a tool, especially for cutting hard rocks or ceramics, the diamond sintered body that becomes the cutting edge is high stress is applied and the temperature rises.

したがって、このような用途では、耐熱性があり強度お
よび耐摩耗性に富/υだ焼結体が要求される。
Therefore, in such applications, a sintered body that is heat resistant and has high strength and wear resistance is required.

ところが、上記従来の技術によるダイヤモンド焼結体で
は、それぞれ上述のような欠点を有しでおり、十分な耐
熱性、強度および耐摩耗性をイアする焼結体が得られな
かった。
However, the diamond sintered bodies according to the above-mentioned conventional techniques each have the above-mentioned drawbacks, and a sintered body with sufficient heat resistance, strength, and wear resistance cannot be obtained.

この発明の目的は、十分な耐熱性、強度および耐摩耗性
を有するダイヤモンド携体を提供することにある。
An object of the present invention is to provide a diamond carrier having sufficient heat resistance, strength, and wear resistance.

[問題点を解決するための手段] この発明は、ダイヤモンド粉末の個々の粒子表面を、無
電解めっき法により、0.1〜3.0容量%の鉄族金属
、Cr 、Mn 、Taおよびこれらの合金の1種以上
で被覆して被覆ダイヤモンド粉末を形成し、その被覆ダ
イヤモンド粉末にダイヤモンドが安定な超高圧・高温条
件下で焼結処理を施すことを特徴とする高密度ダイヤモ
ンド携体の製造方法rある。
[Means for Solving the Problems] The present invention provides 0.1 to 3.0% by volume of iron group metals, Cr, Mn, Ta, and other metals by electroless plating on the surfaces of individual particles of diamond powder. Production of a high-density diamond carrier characterized by coating it with one or more of the following alloys to form a coated diamond powder, and subjecting the coated diamond powder to a sintering treatment under ultra-high pressure and high temperature conditions in which the diamond is stable. There is a method.

なお、上記ダイヤモンド粉末が、個々の粒子の0.5〜
80容牽%が表面側から黒鉛となっている黒鉛化ダイヤ
モンド粉末であってもよい。また、上記被覆ダイヤモン
ド粉末をダイヤモンドが不安定な条件下で高温処理する
ことにより、個々の粒子の0.5〜80容量%を表面側
から黒鉛に相転移させた後、上記焼結処理を施すように
してもよい。
It should be noted that the diamond powder has an individual particle size of 0.5 to
It may be a graphitized diamond powder in which 80% by volume is graphite from the surface side. Further, by subjecting the coated diamond powder to a high temperature treatment under conditions where diamond is unstable, 0.5 to 80% by volume of each particle is phase-transformed from the surface side to graphite, and then the above-mentioned sintering treatment is performed. You can do it like this.

[手段の説明] この発明の出発原料であるダイヤモンド粉末は天然、合
成いずれでもよい。また、好ましくは、その粒子表面の
一部もしくは全部を黒鉛化したもの、さらに好ましくは
、その表面側から0.5〜8015FJ%を黒鉛化した
ものを用いる。
[Description of Means] The diamond powder which is the starting material of this invention may be either natural or synthetic. Preferably, part or all of the particle surface is graphitized, and more preferably, 0.5 to 8015 FJ% of the surface is graphitized.

ここで表面を黒鉛化したダイヤモンド粒子を原料として
用いることには、2つの理由がある。すなわち、■ダイ
−7−[ンドは塑性変形しにくいため、超高圧下におい
ても個々の粒子間に空隙が残り、部分的にダイヤモンド
にかかる圧力が不安定になって焼結性が低下する。しか
し、表面を黒鉛化しておくと、黒鉛化された部分が上記
空隙を充填するため実効圧力の低下が生じない。また、
■「炭素原料の結合材への溶解→ダイヤモンドとして析
出」の反応過程においては、ダイVモンドよりも黒鉛の
方が化学ボテンシトルが低いため、溶解する炭素原料は
結合材に溶解する能力が高く、反応速度が大きい。
There are two reasons for using diamond particles whose surfaces are graphitized as a raw material. That is, (1) the die is difficult to deform plastically, so voids remain between the individual particles even under ultra-high pressure, and the pressure applied to the diamond becomes partially unstable, resulting in a decrease in sinterability. However, if the surface is graphitized, the graphitized portion fills the voids, so no drop in effective pressure occurs. Also,
■In the reaction process of "dissolving the carbon raw material in the binder → precipitating as diamond", graphite has a lower chemical potency than diamond, so the dissolving carbon raw material has a higher ability to dissolve in the binder, High reaction speed.

これら効果が顕著に現われるためには、ダイVモンドの
粒子の0.5〜b 必要がある。なぜなら、黒鉛化mが0.5容吊%より少
ないと、充填密度の増加が不十分であり、合成された焼
結体中のダイヤモンド粒子同士の結合が弱くなるからで
ある。rした、80容墨%より多いと、黒鉛が残留した
低強度の焼結体しか得られないからである。
In order for these effects to be noticeable, it is necessary to have a particle size of 0.5 to 0.5 b. This is because if the graphitization m is less than 0.5% by volume, the increase in packing density is insufficient and the bond between diamond particles in the synthesized sintered body becomes weak. This is because if the amount is more than 80% by volume, only a low-strength sintered body with residual graphite will be obtained.

な、13、表面を黒鉛化したダイヤモンド粉末は、ダイ
ヤモンド粉末を真空中または不活性ガス雰囲気中で、1
400℃以上の高温にさらすことによって容易に得られ
る。
13. Diamond powder with a graphitized surface is prepared by drying diamond powder in vacuum or in an inert gas atmosphere.
It can be easily obtained by exposing it to high temperatures of 400°C or higher.

上記ダイヤモンド粉末は有機溶剤中で、脱脂洗浄を十分
に行なう。この粉末をめっき前処理液中に浸漬させて、
Pd 、Rhなどを数ppm析出させ活性化させる。該
処理粉末を水洗した後、鉄族金属、CrSMn1Taお
よびこれらの金属の1種以上からなる無電解めっき液に
浸漬させる。一定時間、所望の容器だけ各粉末上に該金
属または合金を析出させた模、回収する。告粉末に被覆
を均一に行なうためには、めっき処理中にめっき液を高
速攪拌することが有効である。また、めっきする金属ま
たは合金は上記のものが最も望ましいが、市販の無電解
めっき液のようにBあるいはPなどが含有されているも
のも、その組成比が焼結体の特性を損ねない範囲であれ
ば使用でざる。
The diamond powder is thoroughly degreased and washed in an organic solvent. This powder is immersed in a plating pretreatment solution,
Several ppm of Pd, Rh, etc. are precipitated and activated. After washing the treated powder with water, it is immersed in an electroless plating solution consisting of an iron group metal, CrSMn1Ta, and one or more of these metals. The metal or alloy is deposited on each powder in a desired container for a certain period of time, and then collected. In order to uniformly coat the powder, it is effective to stir the plating solution at high speed during the plating process. The metals or alloys to be plated are most preferably those listed above, but commercially available electroless plating solutions that contain B or P may also be used within a composition ratio that does not impair the properties of the sintered body. If so, don't use it.

このようにして1りられた041〜3.0容里%の鉄族
金属、Cr、Mn、Taおよびこれらの合金の1種以上
で被覆されたダイヤモンド粉末を、ベルト型装置などの
既知の高圧発生装置によって、熱力学的にダイヤモンド
が安定でかつ該結合材がダイt7″Eンド生成触媒作用
を呈する圧力・温度条件に数分間さらす。この間に、原
料ダイヤモンド粉末表面の黒鉛が該結合材に速やかに溶
解し、ダイヤモンドとして析出することによってダイヤ
モンド粒子間の結合が°進行する。
The diamond powder coated with 0.41 to 3.0 volume % of iron group metals, Cr, Mn, Ta, and one or more of these alloys thus obtained is subjected to a known high-pressure process such as a belt-type device. Using a generator, the diamond is exposed to pressure and temperature conditions for several minutes under which the diamond is thermodynamically stable and the binder exhibits a catalytic action to form a die.During this time, the graphite on the surface of the raw diamond powder is transferred to the binder. By rapidly dissolving and precipitating as diamond, bonding between diamond particles progresses.

回収されたダイヤモンド塊体では、ダイヤモンド粒子同
士が強固に結合しており、原料ダイ丸7モンド表面に被
覆された金属または合金が粒界に分散・点在した状態と
なる。得られた携体は、真空中1100℃で加熱しても
亀裂は入らず、高耐熱性である。
In the recovered diamond mass, the diamond particles are strongly bonded to each other, and the metal or alloy coated on the surface of the raw material Daimaru 7 is dispersed and dotted at the grain boundaries. The obtained carrier does not crack even when heated at 1100° C. in a vacuum, and has high heat resistance.

[実施例1] 出発原料に、平均粒度20μの合成ダイヤモンド粉末を
真空中(5xl Q−’ torr) 、1500℃で
30分間加熱処理したものを用いた。この粉末は、X線
解析による定ffi評価から、個々の粒子表面の20容
醇%が黒鉛となっていることが明らかどなった。この粉
末をトリクレンおよびエチルアルコールによって十分洗
浄した後、まずめっき前処理剤に投入してRdを3 p
pm析出させた。これを回収して水洗した後、第1表に
示した組成のめっき液に浸漬した。この液を50℃に保
って、60分間金属または合金の析出を行なった。
[Example 1] As a starting material, synthetic diamond powder having an average particle size of 20 μm was heat-treated at 1500° C. for 30 minutes in a vacuum (5xl Q-' torr). A constant ffi evaluation using X-ray analysis revealed that 20% by volume of each particle surface of this powder was graphite. After thoroughly washing this powder with trichlene and ethyl alcohol, it was first added to a plating pretreatment agent to reduce Rd by 3 p.
pm was precipitated. After collecting and washing with water, it was immersed in a plating solution having the composition shown in Table 1. This liquid was kept at 50°C and metal or alloy was deposited for 60 minutes.

回収された粉末の金属被画用を化学分析により測定した
結果も併せて第1表に示す。
Table 1 also shows the results of chemical analysis of the metal coating properties of the recovered powder.

(以下余白) これらの粉末をそれぞれTa製の容器に密閉し、ベルト
型超高圧装置を用いて圧カフ0Kb 、温度1600℃
で5分間保持し焼結した。
(Left below) Each of these powders was sealed in a container made of Ta, and using a belt-type ultra-high pressure device, the pressure cuff was 0 Kb and the temperature was 1600°C.
It was held for 5 minutes and sintered.

その結果、No、Eの粉末を除いて焼結体を回収できた
が、No、Eの粉末は十分な焼結体が得られなかった。
As a result, a sintered body was recovered except for the No. and E powders, but sufficient sintered bodies were not obtained for the No. and E powders.

得られた焼結体のX線解析を行なったところ、No、H
の粉末以外を用いたものは黒鉛の残留が認められなかっ
たが、NO,Eの粉末を用いたものは少量の黒鉛の残留
が認められた。これは、No、Eの粉末へのN1被覆吊
が本発明の¥J造方法の規定量以下であるため、黒鉛か
らダイヤモンドへの変換が十分に行なわれなかったもの
と考えられる。
When the obtained sintered body was subjected to X-ray analysis, it was found that No.
No graphite residue was observed in the samples using powders other than NO, but a small amount of graphite remained in the samples using NO and E powders. This is considered to be because the amount of N1 coated on the No. and E powders was less than the prescribed amount of the JJ manufacturing method of the present invention, so that the conversion from graphite to diamond was not sufficiently performed.

次に、NO,八〜Dよりなる焼結体を加工して切削チッ
プをyJ造し、ビッカース硬度2000のアルミナ焼結
体を切削して性能を評価した。
Next, a sintered body made of NO, 8 to D was processed to make a cutting tip yJ, and an alumina sintered body with a Vickers hardness of 2000 was cut to evaluate the performance.

第2表は、COを約10%含有する市販の焼結体を比較
材とし、工具逃げ面の摩耗幅を示したものである。なお
、切削速度50m/分、切込0゜5mm、送り0.05
++u++/rpm 、切削時間15分乾式の条件で切
削を行なったものである。
Table 2 shows the wear width of the tool flank using a commercially available sintered body containing about 10% CO as a comparative material. In addition, cutting speed 50m/min, depth of cut 0゜5mm, feed 0.05
Cutting was carried out under dry conditions at ++u++/rpm and cutting time of 15 minutes.

(以下余白) 焼結体NO,Cは、比較材よりもCo含有串が少ないた
め多少耐熱性・耐摩耗性は改善されている。
(The following is a blank space) The sintered bodies NO and C have less Co-containing skewers than the comparative materials, so their heat resistance and abrasion resistance are somewhat improved.

本発明の方法によるNo、A、B、Dは、いずれも飛躍
的に性能が向上していることがわかる。
It can be seen that the performance of Nos., A, B, and D obtained by the method of the present invention is dramatically improved.

[実施例2] 出発原料に、粒径10〜12μの天然グイ17T−ンド
粉末を用いた。これを実施例1と同様の方法でNi−C
o合金(組成比は容量で7:3)のめっき液中に投入し
て処理した。、第3表に回収された粉末への合金液1f
fiを示す。これらの粉末を真空中<4 X 1(1’
 torr)で加熱処理した。第3表には、その条件お
よび処理侵の粉末の黒鎗生成串をX線解析で定mした結
果も併せて示した。
[Example 2] Natural Guin 17T powder with a particle size of 10 to 12 μm was used as a starting material. This was treated with Ni-C in the same manner as in Example 1.
It was processed by putting it into a plating solution of o alloy (composition ratio: 7:3 by volume). , alloying liquid 1f to the powder recovered in Table 3
Indicates fi. These powders were prepared in vacuum at <4
torr). Table 3 also shows the results of determining the diameter of the black yari-forming skewer of the powder under the conditions and treatment using X-ray analysis.

これらの粉末をベルト型高圧発生装置により、60Kb
 、1500℃で30分間焼結した。
These powders are processed into 60Kb using a belt type high pressure generator.
, sintered at 1500°C for 30 minutes.

くの結果、No、Iでは黒鉛が残留して未焼結であった
が、他は強固な焼結体であった。第4表に、これらの焼
結体の密度をアルキメデス法により測定した結果を示す
。なお、NO,F、H,Jの焼結体はいずれも真空中(
2X 10− ’ torr)で1100℃の耐熱性を
示したが、合金含有量の多いNO,Gは亀裂が入った。
As a result, graphite remained in samples No. and I and the samples were unsintered, but the others were solid sintered bodies. Table 4 shows the results of measuring the density of these sintered bodies using the Archimedes method. Note that the sintered bodies of NO, F, H, and J are all stored in vacuum (
It showed heat resistance of 1100° C. at 2X 10-' torr), but cracks appeared in NO and G, which have a high alloy content.

[発明の効果] この発明の方法によれば、切削工具、掘削工具、伸線ダ
イス、ドレッサーなどの工具材料として優れた耐熱性、
耐摩耗性を有するダイヤモンド洗体を得ることができる
。特に、従来のダイヤモンド焼結体の欠点であった耐熱
性が、強度を下げることなく大幅に改善できるため、工
具材としての適用範囲、性能が飛躍的に向上する。
[Effects of the Invention] According to the method of the present invention, excellent heat resistance and excellent heat resistance as tool materials for cutting tools, drilling tools, wire drawing dies, dressers, etc.
A diamond cleaning body having wear resistance can be obtained. In particular, the heat resistance, which was a drawback of conventional diamond sintered bodies, can be significantly improved without reducing the strength, so the range of application and performance as tool materials are dramatically improved.

Claims (3)

【特許請求の範囲】[Claims] (1)ダイヤモンド粉末の個々の粒子表面を、無電解め
つき法により、0.1〜3.0容量%の鉄族金属、Cr
、Mn、Taおよびこれらの合金の1種以上で被覆して
被覆ダイヤモンド粉末を形成し、 その被覆ダイヤモンド粉末にダイヤモンドが安定な超高
圧・高温条件下で焼結処理を施すことを特徴とする高密
度ダイヤモンド塊体の製造方法。
(1) The surface of each individual particle of diamond powder is coated with 0.1 to 3.0 volume % of iron group metal, Cr, etc. by electroless plating method.
, Mn, Ta, and one or more of these alloys to form a coated diamond powder, and the coated diamond powder is subjected to a sintering treatment under ultra-high pressure and high temperature conditions in which the diamond is stable. A method for producing a dense diamond mass.
(2)上記ダイヤモンド粉末が、個々の粒子の0.5〜
80容量%が表面側から黒鉛となっている黒鉛化ダイヤ
モンド粉末である特許請求の範囲第1項記載の高密度ダ
イヤモンド塊体の製造方法。
(2) The diamond powder has an individual particle size of 0.5 to
2. The method for producing a high-density diamond mass according to claim 1, wherein the powder is graphitized diamond powder in which 80% by volume is graphite from the surface side.
(3)上記被覆ダイヤモンド粉末をダイヤモンドが不安
定な条件下で高温処理することにより個々の粒子の0.
5〜80容量%を表面側から黒鉛に相転移させた後、上
記焼結処理を施す特許請求の範囲第1項記載の高密度ダ
イヤモンド塊体の製造方法。
(3) The coated diamond powder is treated at high temperature under conditions where diamond is unstable, so that individual particles can be reduced to zero.
2. The method for producing a high-density diamond mass according to claim 1, wherein the sintering treatment is performed after 5 to 80% by volume undergoes a phase transition to graphite from the surface side.
JP62020976A 1987-01-31 1987-01-31 Manufacture of high density diamond mass Pending JPS63190756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020976A JPS63190756A (en) 1987-01-31 1987-01-31 Manufacture of high density diamond mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020976A JPS63190756A (en) 1987-01-31 1987-01-31 Manufacture of high density diamond mass

Publications (1)

Publication Number Publication Date
JPS63190756A true JPS63190756A (en) 1988-08-08

Family

ID=12042193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020976A Pending JPS63190756A (en) 1987-01-31 1987-01-31 Manufacture of high density diamond mass

Country Status (1)

Country Link
JP (1) JPS63190756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371546A (en) * 1991-06-17 1992-12-24 Tatsuro Kuratomi Diamond-based sintered body and production thereof
EP0714695A2 (en) 1994-11-30 1996-06-05 Sumitomo Electric Industries, Ltd. Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371546A (en) * 1991-06-17 1992-12-24 Tatsuro Kuratomi Diamond-based sintered body and production thereof
EP0714695A2 (en) 1994-11-30 1996-06-05 Sumitomo Electric Industries, Ltd. Diamond sintered body having high strength and high wear-resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
JP3832596B2 (en) Multilayer metal-coated diamond abrasive with electrolessly deposited metal
KR960002338B1 (en) Method for processing diamond particles
EP0155066B1 (en) Hard diamond sintered body
EP0503974B1 (en) Multigrain abrasive particles
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
JPH11106948A (en) Electrode rod for spark deposition, its manufacture and covering method of layer containing super-fine abrasive
JP2766661B2 (en) Boron treated hard metal
JPH0530897B2 (en)
JP2000234136A (en) Cemented carbide, coated cemented carbide and production thereof
JPS6140722B2 (en)
JPS63190756A (en) Manufacture of high density diamond mass
JPS5811389B2 (en) Kenma Zaino Metalization
JP2003527293A (en) Adhesive composite coating for diamond and diamond-containing materials and method for producing said coating
JP4903566B2 (en) Boron coated abrasive
JPH058153B2 (en)
JPH01116048A (en) High hardness sintered diamond and its manufacture
JPH0577638B2 (en)
JPS6319585B2 (en)
JPS6034514B2 (en) Manufacturing method of diamond sintered body
JPS62105911A (en) Hard diamond mass and production thereof
JPS6137221B2 (en)
CN1051691A (en) Chemically combined super hard abrasive
JPS6146540B2 (en)
JPH08225875A (en) Diamond sintered compact having high strength and high wear resistance and its production