JPS63190755A - Zirconia-base solid electrolyte - Google Patents

Zirconia-base solid electrolyte

Info

Publication number
JPS63190755A
JPS63190755A JP62021214A JP2121487A JPS63190755A JP S63190755 A JPS63190755 A JP S63190755A JP 62021214 A JP62021214 A JP 62021214A JP 2121487 A JP2121487 A JP 2121487A JP S63190755 A JPS63190755 A JP S63190755A
Authority
JP
Japan
Prior art keywords
solid electrolyte
zirconia solid
oxide
zirconia
ceramic raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62021214A
Other languages
Japanese (ja)
Other versions
JPH0535693B2 (en
Inventor
山名 一男
静夫 中村
卓二 吉村
稔正 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62021214A priority Critical patent/JPS63190755A/en
Publication of JPS63190755A publication Critical patent/JPS63190755A/en
Publication of JPH0535693B2 publication Critical patent/JPH0535693B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスセンサ、燃料電池、酸素ポンプ等に好適な
耐熱衝撃性に優れ、電気抵抗が低く低温動作が可能なジ
ルコニア質固体電解質に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a zirconia solid electrolyte suitable for gas sensors, fuel cells, oxygen pumps, etc., which has excellent thermal shock resistance, low electrical resistance, and is capable of low-temperature operation.

利用して、ガスセンサ、燃料電池、酸素ポンプ等に用い
られるものであり、特に自動車空燃比制御用センナ、溶
鋼中酸素濃度検出用センサ、工業用炉排ガス用センナ等
の酸素センサとして、現在多ガス不透過性であれば、耐
Wp:衝撃性、低温動作性。
It is used in gas sensors, fuel cells, oxygen pumps, etc., and is currently used as an oxygen sensor for automobile air-fuel ratio control, sensors for detecting oxygen concentration in molten steel, sensors for industrial furnace exhaust gas, etc. If impermeable, Wp resistance: impact resistance, low temperature operation.

応答速度等に極めて優れた性能を有するのであるが、以
下に示す様に、従来のセラきツクス成形方法にては工業
的に横変よく生産するのは困難である。
Although it has extremely excellent performance such as response speed, as shown below, it is difficult to industrially produce it with good lateral variation using conventional ceramic molding methods.

即ち、加圧成型法は大1生産や高速成形が可能である反
面、均一に原料を充填するのが魁かしく、横変良く′R
膜化するのは困難であり、その為には、後加工による修
整が必要となる。
In other words, while the pressure molding method allows for large-scale production and high-speed molding, it is difficult to fill the raw material uniformly, and the lateral variation does not occur easily.
It is difficult to form a film, and for that purpose, post-processing is required.

(Kまた、簡単な操作で、歪のない複雑な成形体を容易
に得る方法として、泥漿」込み成形法がある。
(K) Also, a slurry molding method is a method for easily obtaining a complex molded body without distortion with simple operations.

しかし、この鋳込み成形法は作業速度が遅く、wk屋性
が劣る。更に高強度で高W度な焼結体を作りにくいとい
う問題がある。
However, this casting method has a slow working speed and poor quality. Furthermore, there is a problem that it is difficult to produce a sintered body with high strength and high W degree.

一方、成形と焼成を同時に行うホットプレス法やホット
アイソスタティックプレス法は焼結体の微構造のp4贅
や緻密化の促進を促すことができ、他の方法に比較し、
比較的短時間で、より低温で壕桔が完成できるので極め
て有効な手段である。
On the other hand, the hot press method and hot isostatic press method, which perform molding and firing at the same time, can promote P4 warts and densification of the microstructure of the sintered body, and compared to other methods,
This is an extremely effective method as trenches can be completed in a relatively short time and at a lower temperature.

しかし、複雑形状や薄物は困難であり、量産性がなく製
品コストが高くなるという傾向がある。
However, it is difficult to produce products with complex shapes and thinness, and there is a tendency that mass production is not possible and product costs are high.

シート成形法は薄物の焼結体を作製するのに極めて効果
的であるが、単純な板形状を得るものであって、複雑形
状品の作製は出来ない。
Although the sheet forming method is extremely effective for producing thin sintered bodies, it produces simple plate shapes and cannot produce products with complex shapes.

上述のように既存方法によりジルコニアを原料として用
い、高強度で櫃密な・焼結成形体を製造しようとすると
、複雑形状や薄物の作製が困難でありた。一方、複・離
形状や薄物を大看に作ることを目的にすると、高強度で
緻密な焼結体を作製できなかった。このように機械的強
度や微密化と、複雑形状や薄物の作製との間には、二律
相反的な関係がありた。
As mentioned above, when trying to manufacture a high-strength, dense, sintered body using zirconia as a raw material using the existing method, it was difficult to manufacture a complex shape or a thin body. On the other hand, when the purpose is to produce multiple, separated shapes or thin products, it has not been possible to produce high-strength, dense sintered bodies. In this way, there has been an antinomic relationship between mechanical strength and microdensity and the production of complex shapes and thin objects.

(発明が解決しようとする問題点) 本発明者らは、既存の方法が有する上記問題点に鑑み、
鋭意研究を重ねた結果本発明を完成し念ものであって、
その目的とするところは、高強度で極めて薄く、且つ緻
密でガス不透過性のジルコニア質固体電解質を提供する
にある。更に他の目的並びに効果は、以下の説明から明
らかにされよう。
(Problems to be solved by the invention) In view of the above-mentioned problems of existing methods, the present inventors have
As a result of intensive research, we have completed the present invention,
The objective is to provide a zirconia solid electrolyte that is highly strong, extremely thin, dense, and gas impermeable. Further objects and advantages will become apparent from the description below.

(問題点を解決するための手段) 上述の目的は、酸化ジルコニウム(4)と高々16モル
%配合されてなる酸化イツトリウム、酸化カルシウム及
び酸化マグネシウムの鮮から選ばれた少なくとも1種の
安定化剤(6)とを主成分とする平均粒子径1μm以下
のセラミック原料よシ成る仮焼成型物又は粉体乃至粉体
成型物を下記式にて示度が10 Kg/皿2皿上以上0
0’Cでの導電率が1O−4(Ω・cm)−1以上であ
るジルコニア質固体電解質によシ達成される。
(Means for Solving the Problems) The above object is to provide at least one stabilizer selected from the group consisting of yttrium oxide, calcium oxide, and magnesium oxide, which is blended with zirconium oxide (4) in an amount of at most 16 mol%. (6) A pre-fired molded product or a powder or a powder molded product made of a ceramic raw material with an average particle diameter of 1 μm or less, which has a main component of
This is achieved by using a zirconia solid electrolyte whose conductivity at 0'C is 1O-4 (Ω·cm)-1 or more.

P≧8X10−87X(1600−t )14+0.I
P≦5    t≦1600 本発明に係るセラミック原料は、酸化ジルコニウム(Z
r02)(:酸化イツトリウム(Y208 ) +酸化
カルシウム(C!aO)及び酸化マグネシウム(MgO
)群から選ばれた少なくとも1種の安定化剤(B)を添
加配合したものを主成分とするものであるが、通常セラ
ミック原料に添加される酸化アルミニウム。
P≧8X10-87X (1600-t)14+0. I
P≦5 t≦1600 The ceramic raw material according to the present invention is zirconium oxide (Z
r02) (: Yttrium oxide (Y208) + Calcium oxide (C!aO) and Magnesium oxide (MgO
The main ingredient is aluminum oxide, which is usually added to ceramic raw materials.

酸化硅素、酸化ビスマスに代表される焼結助剤等の添加
物、或いは、Sc、La、Pr、Nd、Pm、Sm。
Additives such as sintering aids represented by silicon oxide and bismuth oxide, or Sc, La, Pr, Nd, Pm, and Sm.

Eu、 Gd 、 Tb 、 Dy 、 EIo 、 
Er 、 Tm 、 Yb 、 Lu及びce等の希土
類の酸化物を少量宛適宜添加配合してもよいことはいう
塗でもない。酸化ジルコニウム(4)に配合する安定化
剤(B)の責は、目的物であるジルコニア質固体電解質
に要求される性質、配合する安定化剤(6)の4類等に
より異なるが、高々16モル%の範囲に留める必要があ
る。安定化剤の)は酸化ジルコニウムに酸素イオン導電
性を賦与するものであるが、16モル%を越えると導電
率が低くな9、更に塑性加工中に原料が粒子成長し、そ
の為塑性抵抗が増大して、塑性加工が困難となる。
Eu, Gd, Tb, Dy, EIo,
This does not mean that oxides of rare earth elements such as Er, Tm, Yb, Lu, and ce may be added and blended in small amounts as appropriate. The responsibility of the stabilizer (B) added to the zirconium oxide (4) varies depending on the properties required of the target zirconia solid electrolyte, the 4 types of stabilizer (6) to be mixed, etc., but at most 16 It is necessary to keep it within the range of mol%. The stabilizer () imparts oxygen ion conductivity to zirconium oxide, but if it exceeds 16 mol%, the conductivity becomes low.9 Furthermore, particles of the raw material grow during plastic processing, resulting in a decrease in plastic resistance. This increases, making plastic working difficult.

酸化ジルコニア質に配合する安定化剤(B)の好ましい
範囲を示すと、酸化イツトリウムでは2〜12モル%、
酸化カルシウム及び酸化マグネシウムでは4〜16モル
%程度である。セラミック原料の粒子径が大きいと、塑
性加工中に急激な粒子成長現象が起り、前記と同様、塑
性加工が事実上不可能となる。本発明に於いてセラミッ
ク原料の平均ν入子 粒子径は1μmであり、更にその粒度分布は均一である
のが好ましい。
The preferred range of the stabilizer (B) to be added to zirconia oxide is 2 to 12 mol% for yttrium oxide;
For calcium oxide and magnesium oxide, it is about 4 to 16 mol%. If the particle size of the ceramic raw material is large, a rapid particle growth phenomenon occurs during plastic working, and as mentioned above, plastic working becomes virtually impossible. In the present invention, it is preferable that the average ν core particle size of the ceramic raw material is 1 μm, and that the particle size distribution is uniform.

これらセラミック原料のg4製は公知の方法から適宜選
択して行えばよいが、その方法としては乾式法と湿式法
に大別される。乾式法としては、例えば酸化ジルコニウ
ムと酸化イツトリウム等の安定化剤の粉末を所定量ボー
ルミル等を用いて混合。
G4 production of these ceramic raw materials may be carried out by appropriately selecting from known methods, and the methods are broadly classified into dry methods and wet methods. In the dry method, for example, a predetermined amount of stabilizer powders such as zirconium oxide and yttrium oxide are mixed using a ball mill or the like.

粉砕した後熱処理を施し、引き続いて機械的に粉砕する
等の方法がある。また、湿式法としては、例えば次の様
な方法が挙げられる。
There are methods such as heat treatment after pulverization and subsequent mechanical pulverization. Furthermore, examples of the wet method include the following methods.

(1)  オキシ塩化ジルコニウム等の水溶性ジルコニ
ウム塩と、塩化イツトリウム等の安定化剤となる金1の
水溶性塩との混合水溶液にアンモニア等の沈殿剤”を添
加し、ジルコニウムとイツトリウム等の安定化剤との水
酸化物のゾルを生成させたf&濾過、洗浄、乾燥し、引
き続いて加熱処理する方法。
(1) A precipitant such as ammonia is added to a mixed aqueous solution of a water-soluble zirconium salt such as zirconium oxychloride and a water-soluble salt of gold 1, which serves as a stabilizer such as yttrium chloride, to stabilize the zirconium and yttrium. A method of forming a sol of hydroxide with a curing agent, followed by filtration, washing, drying, and subsequent heat treatment.

(共沈法) (2)上記共沈法と同様の混合水溶液を加熱し、水酸化
物等のゾルを生成せしめた後、濾過、洗浄。
(Coprecipitation method) (2) A mixed aqueous solution similar to the above coprecipitation method is heated to generate a sol such as hydroxide, and then filtered and washed.

乾燥し、引き続いて加熱処理する方法。(加水分解法) (3)  ジルコニウムイソプロポキシド等のジルコニ
ウムのアルコキシドと、イツトリウムイソプロポキシド
等の安定化剤を構成する金属元素のアルコキシドを有機
溶媒中に混合溶解し、該溶液に水を添加してアルコキシ
ドを加水分解してゾルを生成せしめた後、濾過、洗浄、
乾燥し、引き続いて加熱処理する方法。(アルコキシド
法) これらセラミック原料の調製方法としては、粒子が微細
で且つ粒径分布が狭く、均一な組成のものが得られる湿
式法が好適である。
A method of drying and subsequent heat treatment. (Hydrolysis method) (3) A zirconium alkoxide such as zirconium isopropoxide and a metal element alkoxide constituting a stabilizer such as yttrium isopropoxide are mixed and dissolved in an organic solvent, and water is added to the solution. After adding and hydrolyzing the alkoxide to produce a sol, filtration, washing,
A method of drying and subsequent heat treatment. (Alkoxide method) As a method for preparing these ceramic raw materials, a wet method is preferable since particles are fine, the particle size distribution is narrow, and a uniform composition can be obtained.

次にこの様にして調製したセラミック原料は、塑性加工
を施すための前駆体の製造に供せられる。
Next, the ceramic raw material prepared in this manner is used to produce a precursor for plastic working.

粉末を前駆体とする場合、セラミック原料をそのまま用
いてもよいが、流動性に優れた100〜200μm径の
顆粒状として用いるのが好ましい。
When a powder is used as a precursor, the ceramic raw material may be used as it is, but it is preferably used in the form of granules with a diameter of 100 to 200 μm, which have excellent fluidity.

顆粒ハポリビニルアルコール、ヒドロキシエチルセルロ
ース等の水溶性樹脂を含有するセラミック原料のスラリ
ーをスプレードライヤー等を用いて調製することが出来
る。
A slurry of a ceramic raw material containing a water-soluble resin such as granular polyvinyl alcohol and hydroxyethyl cellulose can be prepared using a spray dryer or the like.

粉末成形体を前駆体として使用する場合、前記の顆粒を
プレスする加圧成型法、セラミック原料のスラリーを石
膏等の鋳型に注入する鋳込成型法。
When using a powder compact as a precursor, there are two methods: a pressure molding method in which the granules are pressed, and a casting method in which a slurry of ceramic raw material is poured into a mold made of plaster or the like.

有機バインダー、セラミック原料及び水より成る可咽性
混合物を口金よシ押し出す押出成型法、セラミック原料
をそのまま又は顆粒をゴム型に充填し、圧力を等方的に
加圧する静水圧プレス成型法。
An extrusion molding method in which a pharyngeable mixture consisting of an organic binder, a ceramic raw material, and water is extruded through a die, and an isostatic press molding method in which the ceramic raw material is filled as it is or granules are filled into a rubber mold and pressure is applied isotropically.

熱可塑性樹脂とセラミック原料との混合物を加熱状態で
金型に押し出す射出成型法、樹脂バインダーとセラミッ
ク原料との混合物をドクターブレード等により薄膜化す
るシート成型法等公知の方法から適宜の方法を選定し、
粉末成形体を調製する。
Select an appropriate method from among known methods, such as injection molding, in which a mixture of thermoplastic resin and ceramic raw materials is extruded into a mold under heating, and sheet molding, in which a mixture of resin binder and ceramic raw materials is made into a thin film using a doctor blade, etc. death,
Prepare a powder compact.

仮焼成形物を前駆体として使用する場合、前記粉末成形
体を常圧にて600〜1200℃の温度で熱処理するこ
とにより仮焼成形物をUI4aする。
When the calcined product is used as a precursor, the powder compact is heat-treated at a temperature of 600 to 1200° C. under normal pressure to obtain UI4a.

通常熱部Jlは大気雰囲気等の酸化性雰囲気、窒素雰囲
気等の不活性雰囲気や真空雰囲気にて実施するが、含有
される有機物が焼却除去される酸化性雰囲気が有利であ
る。熱処理は電気炉、ガス炉。
The heating section Jl is usually carried out in an oxidizing atmosphere such as an air atmosphere, an inert atmosphere such as a nitrogen atmosphere, or a vacuum atmosphere, but an oxidizing atmosphere in which the organic substances contained therein are removed by incineration is advantageous. Heat treatment is done in electric furnace or gas furnace.

重油炉等の通常使用される高温炉を適宜選択使用して実
施する。通常の焼結体はパラフィン、等の有による切削
加工が極めて困雉であっ九。しかし、上記仮燐成物の場
合には、旋盤等による切削加工が容易でめるため、仮焼
成形物を切削して、おおよその形状に賦形し後続する塑
性加工で必要な部分t−延痕することにより燗単な操作
で能率よく複雑な形状の製品を製造できる利点がある。
The test is carried out by appropriately selecting and using commonly used high-temperature furnaces such as heavy oil furnaces. Normal sintered bodies are extremely difficult to cut due to the presence of paraffin, etc. However, in the case of the above-mentioned temporary phosphorus product, cutting processing using a lathe or the like can be easily performed, so the temporary phosphorous product is cut and shaped into an approximate shape, and the portion t- The advantage of extending the traces is that products with complex shapes can be manufactured efficiently with simple operations.

本発明において塑性加工は、下記式で示される温度t 
(’C)と圧力p (xgf/mm2 ) o条件下で
実施する。
In the present invention, plastic working is carried out at a temperature t expressed by the following formula.
('C) and pressure p (xgf/mm2) o.

P≧8X10−87X(1600−t )14+0.I
P≦5.     t≦1600 そして、か\る式にて示される範囲を図示すると第1図
の様になる。
P≧8X10-87X (1600-t)14+0. I
P≦5. t≦1600 The range represented by the above formula is illustrated in FIG. 1.

上記範囲を大きく逸脱すると、塑性加工抵抗が著しく高
くなり、工業的に緻密な焼結体を得るのが困難になった
り、煩雑な操作や、高価且つ複雑な設備機器が必要とな
る。塑性加工はアルミナ。
If it greatly deviates from the above range, the plastic working resistance will be extremely high, making it difficult to industrially obtain a dense sintered body, or requiring complicated operations and expensive and complicated equipment. Alumina is used for plastic processing.

炭化珪素、炭素等より成る治具を用いて、圧延。Rolling using a jig made of silicon carbide, carbon, etc.

押出、引抜、7椴造等の塑性変形を利用した加工を行う
ものである。例えば、通電加熱、ガス燃焼加熱、誘電加
熱等を用いた高温炉中で、大気雰囲気等の酸化性雰囲気
、窒素雰囲気等の不活性雰囲気。
Processing that utilizes plastic deformation such as extrusion, drawing, and 7-piece construction is performed. For example, in a high-temperature furnace using electrical heating, gas combustion heating, dielectric heating, etc., an oxidizing atmosphere such as atmospheric atmosphere, or an inert atmosphere such as nitrogen atmosphere.

真空豚囲気等の各flffi雰囲気にて、油圧機構等に
て引張力若しくは圧縮力を加える事により実施される。
This is carried out by applying tensile or compressive force using a hydraulic mechanism or the like in a flffi atmosphere such as a vacuum pig enclosure.

加熱方式、雰囲気等は公知の方法から適宜選択すればよ
い。
The heating method, atmosphere, etc. may be appropriately selected from known methods.

本発明に係るジルコニア質固体電解質Fi緻密体である
必要があり、その気孔率は8%以下であり、1%以下が
好ましい。気孔率が8%を越えると、薄幌化すると気孔
を通してのガス透過現象が顕著となり、気密性が失われ
る。例えば、ガスセンサとして使用した場合、被検ガス
と標準ガスがセンサを通して混合される事となり、測定
値が不正確となシ好ましくない。
The zirconia solid electrolyte according to the present invention needs to be a dense Fi body, and its porosity is 8% or less, preferably 1% or less. When the porosity exceeds 8%, gas permeation through the pores becomes noticeable when the hood is made thinner, and airtightness is lost. For example, when used as a gas sensor, the test gas and the standard gas will be mixed through the sensor, which is undesirable as the measured value will be inaccurate.

本発明に係るジルコニア質固体電解質の曲げ強度は10
 Kg/皿2皿上以上り、20 Kg/皿2皿上以上ま
しい。ジルコニア質固体電解質は通常、高温状態で使用
されるものであシ、急熱・急冷状態を経ても破損しない
、いわゆる耐熱衝撃性を具備する事が必要である。その
為に、ジルコニア質固体電解質の曲げ強度が10 Kg
/mm2未満では不満足である。
The bending strength of the zirconia solid electrolyte according to the present invention is 10
Kg/2 or more dishes, preferably 20 Kg/2 or more dishes. Zirconia solid electrolytes are usually used at high temperatures, so they must have so-called thermal shock resistance, which means they will not break even after rapid heating and cooling. Therefore, the bending strength of the zirconia solid electrolyte is 10 kg.
If it is less than /mm2, it is unsatisfactory.

一般にジルコニア質固体電解質は、高い導電率を有して
いるのが望ましい。即ち、ガスセンサにおいては、高感
度、低温動作性、迅速応答性が得られる。燃料電池にお
いては、内部抵抗の低下による取シ出し電力効率の向上
、酸素ポンプにおいても同様に、内部抵抗の低下による
酸素取り出し効率の向上を計ることが出来る。本発明に
係るジルコニア質固体電解質の導電率は800’Cで1
0−4 (Ω・Cm)−1以上f6す、1O−8(0゜
cm)−1以上が好ましい。
Generally, it is desirable that the zirconia solid electrolyte has high electrical conductivity. That is, in the gas sensor, high sensitivity, low temperature operability, and quick response can be obtained. In fuel cells, it is possible to improve the extraction power efficiency by lowering the internal resistance, and in the same way, in oxygen pumps, it is possible to improve the oxygen extraction efficiency by decreasing the internal resistance. The electrical conductivity of the zirconia solid electrolyte according to the present invention is 1 at 800'C.
0-4 (Ω·Cm)-1 or more f6, preferably 1O-8 (0° cm)-1 or more.

本発明に係るジルコニア質固体電解質は、その厚みがQ
、 8mm以下が好ましい。固体電解質の厚みが大であ
ると、系の内部抵抗が増大し、上述の導電率の作用に記
載し念と同様の理由で効率が低下する。更に厚みの増大
は、耐熱衝撃性の低下を来たし好ましくない。
The zirconia solid electrolyte according to the present invention has a thickness of Q
, preferably 8 mm or less. If the thickness of the solid electrolyte is large, the internal resistance of the system will increase, and the efficiency will decrease for the same reason as described in the effect of conductivity above. Further, an increase in thickness is undesirable because it causes a decrease in thermal shock resistance.

本発明に係るジルコニア質固体電解質は、塑性加工に用
いる治具の形状を適宜選択して板状等の単純形状は勿論
、薄物の複雑形状、素材の一部が薄物である複雑形状等
の各種形状にて製造することが出来る。
The zirconia solid electrolyte according to the present invention can be produced into various shapes such as simple shapes such as plate shapes, complex shapes where part of the material is thin, etc. by appropriately selecting the shape of the jig used for plastic working. It can be manufactured in any shape.

(発明の効果) 本発明のジルコニア質固体電解質は、気孔率が小さく、
緻密且つ高強度のものであり、後加工を施さすとも寸法
精度に優れ九極薄形状のものである。その為、本発明の
ジルコニア質固体電解質は耐熱衝撃性、低温作動性、応
答速度等に優れておシ、ガスセンサ、燃料電池、酸素ポ
ンプ等に好適である。
(Effects of the invention) The zirconia solid electrolyte of the present invention has a small porosity and
It is dense and has high strength, and even after post-processing, it has excellent dimensional accuracy and is extremely thin. Therefore, the zirconia solid electrolyte of the present invention has excellent thermal shock resistance, low-temperature operability, response speed, etc., and is suitable for use in gas sensors, fuel cells, oxygen pumps, and the like.

以下実施例にて、本発明を具体的に説明する。The present invention will be specifically explained below in Examples.

なお実施例中、曲げ強度、800℃での導′wt率。In addition, in the examples, bending strength and conductivity wt ratio at 800°C.

気孔率及び平均粒子径は、次の方法により測定した。The porosity and average particle size were measured by the following method.

(1)  曲げ強度 JI8 R1601に準拠し、4点曲げ試験法によシ求
め九。但し、試料は所定厚みの焼結体を4皿巾及び40
皿長さに切断したものを用いた。
(1) Bending strength: Determined using the 4-point bending test method in accordance with JI8 R1601. However, the sample is a sintered body of a predetermined thickness with a width of 4 plates and a diameter of 40 mm.
A plate cut to the length was used.

(2)800°Cでの導電率 所定寸法の焼結体の両面に白金スパッタリング法により
、電極を設は九。10〜107H2の周波数の交流にて
複素インビーブダンス解析を行ない、体積導電率をもっ
て、試料の導電率とした。なお、試料を大気雰囲気の8
00°Cに設定した電気炉に80分間保持した後、測定
を行なった@(3)気孔率 JI8 R2205に準拠して、5点の試料を20℃の
水中に浸漬する方法にて見掛気孔率?求め、その平均値
より算出した値である。
(2) Electrical conductivity at 800°C Electrodes were provided on both sides of the sintered body of a predetermined size by platinum sputtering. Complex in-beam dance analysis was performed using alternating current at a frequency of 10 to 107H2, and the volume conductivity was taken as the conductivity of the sample. In addition, the sample was placed in an air atmosphere at 8
After holding in an electric furnace set at 00°C for 80 minutes, measurements were conducted.@(3) Porosity In accordance with JI8 R2205, the apparent pores were measured by immersing 5 samples in water at 20°C. rate? This is the value calculated from the average value.

(4)  平均粒子径 試料を破断し、破断面を電子顕微鏡により観察し、50
個の粒子径を測定し、それらの平均値により算出した値
である。
(4) Break the average particle size sample and observe the broken surface with an electron microscope.
This is a value calculated from the average value of the measured particle diameters.

(5)セラミック原料の平均粒子径 セラミック原料の透過型電子顕微鏡観察を行ない、10
0閏の粒子の粒子径を測定し、その平均値により算出し
た値である。
(5) Average particle size of ceramic raw material Observe the ceramic raw material using a transmission electron microscope.
This is a value calculated from the average value of the measured particle diameters of particles with a 0-inclusion value.

実施例1 共沈法により製造した下記81表に示す各種配合量の酸
化イツトリウムを含有する粒子径0.05μmのセラミ
ック原料を型に入れ20℃で10Kg f/mm2 の
圧力で加圧成形した後、電気炉中で仮焼成形した。仮焼
成形Vil150°Cまで15°C/m i nの昇温
速度で昇温し、1150℃で60分間保持した後、15
°C/rn 1 nの冷却速度で冷却した。
Example 1 A ceramic raw material with a particle size of 0.05 μm containing various amounts of yttrium oxide as shown in Table 81 below, manufactured by coprecipitation method, was placed in a mold and pressure-molded at 20°C with a pressure of 10 kg f/mm2. , calcined and molded in an electric furnace. Temperature was increased to 150°C at a rate of 15°C/min, held at 1150°C for 60 minutes, and then heated to 150°C.
Cooling was performed at a cooling rate of °C/rn 1 n.

次いで該仮焼成形物を炭化珪素型に入れ電気炉中で12
00°Cまで25°C/min 、 1200°Cから
1500℃迄10°C/min  の昇温速度で昇温し
た後、i Kg f/mm2  の応力を負荷し、両面
から80分間加圧した。加圧の初期に、急激に収縮が起
こシ、・秋密化が進行した後、徐々に塑性変形が起った
Next, the calcined molded product was placed in a silicon carbide mold and heated for 12 hours in an electric furnace.
After raising the temperature at a rate of 25°C/min to 00°C and 10°C/min from 1200°C to 1500°C, a stress of i Kg f/mm2 was applied and pressure was applied from both sides for 80 minutes. . At the beginning of the pressurization, rapid contraction occurred, and after densification progressed, plastic deformation gradually occurred.

除圧後、15°C/min  の冷却速度で冷却し、厚
さQ、 l mmのジルコニア質固体電解質を作製し、
その物性を測定した。結果を第1表に示す。
After depressurizing, it was cooled at a cooling rate of 15°C/min to produce a zirconia solid electrolyte with a thickness of Q, 1 mm,
Its physical properties were measured. The results are shown in Table 1.

(以下′余白) 上記第1表から明らかな通シ、酸化イツトリウムの配合
量が多くなるにつれて、塑性加工工程における粒子の成
長度合が大きくなり、塑性変形抵抗が順次大きくなる。
(Hereinafter referred to as 'margins') As is clear from Table 1 above, as the amount of yttrium oxide compounded increases, the degree of grain growth in the plastic working process increases, and the plastic deformation resistance gradually increases.

その為、気孔率の増加及び曲げ強度の低下が認められ、
Run7にて特にその影響が著しい。
Therefore, an increase in porosity and a decrease in bending strength were observed,
The effect is particularly noticeable in Run 7.

実施例2 実施例1において、酸化イブ11ウムに代替して、下記
第2表に記載の酸化カルシウム及び酸化マグネシウムを
含有するセラミック原料を用いる以外は、実施例1と同
様にしてジルコニア質固体電解質を作製した。結*を第
2表に示す。−(以下票白) 上表から、酸化イツトリウムに代替して、安定化剤とし
て酸化カルシウム及び酸化マグネシウムを使用しても、
酸化イツトリウムと同様の傾向を示すことがわかる。
Example 2 A zirconia solid electrolyte was prepared in the same manner as in Example 1, except that ceramic raw materials containing calcium oxide and magnesium oxide listed in Table 2 below were used in place of ib-11um oxide. was created. The results * are shown in Table 2. - (Hereinafter blank) From the above table, even if calcium oxide and magnesium oxide are used as stabilizers instead of yttrium oxide,
It can be seen that it shows the same tendency as yttrium oxide.

実施例8 アルコキシド法によシ製造し九酸化イツトリウムを6モ
ル%含有する各種粒子径のセラミック原料を型に入れ2
0°Cで10 Kg f/mm2  の圧力で加圧成形
した後、電気炉中で仮焼成形した。仮焼成形は1100
°C迄10℃/min  の昇温速度で昇温し、110
0’Cで80分間保持した後、15−C/minの冷却
速度で冷却した。
Example 8 Ceramic raw materials of various particle sizes produced by the alkoxide method and containing 6 mol% of yttrium nonaoxide were placed in a mold.
After pressure molding at 0°C and a pressure of 10 Kg f/mm2, calcination molding was performed in an electric furnace. Calcination molding is 1100
The temperature was raised at a heating rate of 10°C/min to 110°C.
After being held at 0'C for 80 minutes, it was cooled at a cooling rate of 15-C/min.

次いで実施例1において、塑性加工温度を1400℃と
する以外は実施例1と同様に塑性加工を実施して、ジル
コニア質固体電解質を作製した。結果を第8表に示す。
Next, in Example 1, plastic working was carried out in the same manner as in Example 1 except that the plastic working temperature was 1400° C. to produce a zirconia solid electrolyte. The results are shown in Table 8.

上表から、明らかな通り、用いるセラミック原料の粒子
径が大きくなると、塑性加工工程における粒子の成長度
合が大きくなり、塑性変形抵抗が順次大きくなる。その
為、塑性加工成形体の気孔率が順次大きくなる。
As is clear from the above table, as the particle size of the ceramic raw material used increases, the degree of particle growth in the plastic working process increases, and the plastic deformation resistance gradually increases. Therefore, the porosity of the plastically worked molded body gradually increases.

比較例1 実施例I Run No、 3において、セラミック原
料を加工成形した後、仮焼成の条件下ではなく、150
0°Cで4時間常圧焼成し、所謂焼成物とした前駆体を
用い、その他の条件は実施例1と同様に塑性加工を試み
たが、塑性変形抵抗が極めて大きく、塑性加工を行なう
事は不可能であった。
Comparative Example 1 In Example I Run No. 3, after the ceramic raw material was processed and formed, it was not under the pre-firing condition but under 150
Plastic working was attempted using a precursor that was baked at 0°C under normal pressure for 4 hours and made into a so-called fired product, and other conditions were the same as in Example 1, but the plastic deformation resistance was extremely large and plastic working was not possible. was impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明におれる塑性加工時の好ましい条件の
範囲を示す線図であり、横軸は温度L(”c >を、縦
軸は負荷応力P(にg −f/s” )を表す。 出廓人 山名−男 同 鐘紡株式会社
FIG. 1 is a diagram showing the range of preferable conditions during plastic working according to the present invention, where the horizontal axis represents the temperature L("c>" and the vertical axis represents the applied stress P(g-f/s). ) Represents the outsourcer Yamana-Ododo Kanebo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)酸化ジルコニウム(A)と、高々16モル%配合
されてなる酸化イットリウム、酸化カルシウム及び酸化
マグネシウムの群から選ばれた少なくとも1種の安定化
剤(B)とを主成分とする平均粒子径1 μm以下のセラミック原料より成る仮焼成形物又は粉体
乃至粉体成形物を、下記式にて示される温度t(℃)及
び負荷応力P(Kgf/mm^2)の条件下で塑性加工
してなる気孔率が8%以下、曲げ強度が10Kg/mm
^2以上、800℃での導電率が10^−^4(Ω・c
m)^−^1以上であるジルコニア質固体電解質。 P≧8×10^−^8^7×(1600−t)^1^4
+0.1P≦5、t≦1600
(1) Average particles whose main components are zirconium oxide (A) and at least one stabilizer (B) selected from the group of yttrium oxide, calcium oxide, and magnesium oxide in a proportion of at most 16 mol%. A calcined molded product, powder, or powder molded product made of a ceramic raw material with a diameter of 1 μm or less is made plastic under the conditions of temperature t (°C) and applied stress P (Kgf/mm^2) shown by the following formula. Processed porosity is 8% or less, bending strength is 10Kg/mm
^2 or more, conductivity at 800℃ is 10^-^4 (Ω・c
m) A zirconia solid electrolyte having a pH of ^-^1 or more. P≧8×10^-^8^7×(1600-t)^1^4
+0.1P≦5, t≦1600
(2)ジルコニア質固体電解質が、厚みが0.3mm以
下のものである特許請求の範囲第(1)項記載のジルコ
ニア質固体電解質。
(2) The zirconia solid electrolyte according to claim (1), wherein the zirconia solid electrolyte has a thickness of 0.3 mm or less.
(3)ジルコニア質固体電解質が気孔率1%以下のもの
である特許請求の範囲第(1)項又は第(2)項に記載
のジルコニア質固体電解質。
(3) The zirconia solid electrolyte according to claim (1) or (2), wherein the zirconia solid electrolyte has a porosity of 1% or less.
(4)ジルコニア質固体電解質が曲げ強度20Kg/m
m^2以上のものである特許請求の範囲第(1)項〜第
(3)項の何れかに記載のジルコニア質固体電解質。
(4) Zirconia solid electrolyte has a bending strength of 20 kg/m
The zirconia solid electrolyte according to any one of claims (1) to (3), which has a zirconia solid electrolyte of m^2 or more.
(5)ジルコニア質固体電解質が800℃での導電率が
10^−^8(Ω・cm)^−^1以上のものである特
許請求の範囲第(1)項〜第(4)項の何れかに記載の
ジルコニア質固体電解質。
(5) Claims (1) to (4) in which the zirconia solid electrolyte has an electrical conductivity of 10^-^8 (Ωcm)^-^1 or more at 800°C. The zirconia solid electrolyte according to any one of the above.
JP62021214A 1987-01-31 1987-01-31 Zirconia-base solid electrolyte Granted JPS63190755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62021214A JPS63190755A (en) 1987-01-31 1987-01-31 Zirconia-base solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62021214A JPS63190755A (en) 1987-01-31 1987-01-31 Zirconia-base solid electrolyte

Publications (2)

Publication Number Publication Date
JPS63190755A true JPS63190755A (en) 1988-08-08
JPH0535693B2 JPH0535693B2 (en) 1993-05-27

Family

ID=12048750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62021214A Granted JPS63190755A (en) 1987-01-31 1987-01-31 Zirconia-base solid electrolyte

Country Status (1)

Country Link
JP (1) JPS63190755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007992A (en) * 1989-05-15 1991-04-16 Weber Daniel K Method and apparatus for removing oxygen from a semiconductor processing reactor
JP2003051321A (en) * 2001-08-06 2003-02-21 Toho Gas Co Ltd Low-temperature sintering solid electrolyte material and solid oxide type fuel cell using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544913A (en) * 1977-06-14 1979-01-16 Ngk Spark Plug Co Method of making zirconia sintered body having highhstrength and oxygen ion conductivity
JPS61174169A (en) * 1985-01-25 1986-08-05 株式会社神戸製鋼所 Manufacture of high strength partially stabilized zirconia sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544913A (en) * 1977-06-14 1979-01-16 Ngk Spark Plug Co Method of making zirconia sintered body having highhstrength and oxygen ion conductivity
JPS61174169A (en) * 1985-01-25 1986-08-05 株式会社神戸製鋼所 Manufacture of high strength partially stabilized zirconia sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007992A (en) * 1989-05-15 1991-04-16 Weber Daniel K Method and apparatus for removing oxygen from a semiconductor processing reactor
JP2003051321A (en) * 2001-08-06 2003-02-21 Toho Gas Co Ltd Low-temperature sintering solid electrolyte material and solid oxide type fuel cell using the same

Also Published As

Publication number Publication date
JPH0535693B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
JPH0218309B2 (en)
EP1858098A1 (en) Elctrolyte sheet for solid oxide fuel battery, process for producing the same, and solid oxide fuel battery cell
US4113928A (en) Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
US7833922B2 (en) Method of forming aluminum oxynitride material and bodies formed by such methods
KR101470322B1 (en) Aluminum Nitride ceramics with high strength and the method of low temperature sintering thereof
JPS63190755A (en) Zirconia-base solid electrolyte
CA1099497A (en) METHOD OF PREPARING DENSE, HIGH STRENGTH, AND ELECTRICALLY CONDUCTIVE CERAMICS CONTAINING .beta.- ALUMINA
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP5036110B2 (en) Lightweight ceramic sintered body
KR101436468B1 (en) High strength Aluminum Nitride ceramics and the method of low temperature sintering thereof
JPH0511063B2 (en)
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JPH0258232B2 (en)
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
JP2984208B2 (en) Molded body for ceramic sintered body, method for producing the same, ceramic sintered body using the molded body, and method for producing the same
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP3109341B2 (en) MgO partially stabilized ZrO2 sintered body and method for producing the same
JPH0515666B2 (en)
JP4017226B2 (en) Method for producing porous alumina sintered body for gas flow restriction material
JPH0717928B2 (en) Method for producing porous Cu alloy sintered body
RU2167415C1 (en) Method for manufacturing sensing element of solid- electrolyte oxygen concentration transducer
KR20170060970A (en) Porous silicon nitride sintered body and method for manufacturing the same
CN117105638A (en) Alumina ceramic with high bending strength and preparation method thereof
JPS62202703A (en) Method of molding ceramics
Sakurada et al. Direct Casting of Aqueous Alumina Slurries Using Increase of Ionic Strength by addition of Yttria