JPS63190696A - Treatment of waste liquid of 'ruthener' electrolytic cell - Google Patents

Treatment of waste liquid of 'ruthener' electrolytic cell

Info

Publication number
JPS63190696A
JPS63190696A JP1829887A JP1829887A JPS63190696A JP S63190696 A JPS63190696 A JP S63190696A JP 1829887 A JP1829887 A JP 1829887A JP 1829887 A JP1829887 A JP 1829887A JP S63190696 A JPS63190696 A JP S63190696A
Authority
JP
Japan
Prior art keywords
solution
ferrite
electrolytic cell
ruthener
hexavalent chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1829887A
Other languages
Japanese (ja)
Inventor
Minoru Hoshino
実 星野
Yukihiro Yamazaki
山崎 幸広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1829887A priority Critical patent/JPS63190696A/en
Publication of JPS63190696A publication Critical patent/JPS63190696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To efficiently recover heavy metals, by adding ferrous sulfate to the solution of a 'Ruthener (phonetic)' electrolytic cell containing chromium and further adding alkali thereto to perform oxidation treatment. CONSTITUTION:Ferrous sulfate is added to the Na2SO4 solution of a 'Ruthener' electrolytic cell containing hexavalent chromium generated in a stainless steel pickling process so that a divalent iron/hexavalent chromium mol. ratio becomes 5-50. Subsequently, caustic soda is added to said Na2SO4 solution to adjust the pH thereof to 10+ or -1 and air is subsequently blown in the solution to form ferrite by oxidation. Then, ferrite is separated by centrifugal separation. By this method, a heavy metal is rendered harmless and the separated solution can be reutilized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ステンレス鋼酸洗工程で発生する6価クロム
含有のルスナー電解槽廃液の処理方法、すなわち廃液か
らフェライトを回収し、NazSO4を再利用する方法
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for treating waste liquid from a Lussner electrolyzer containing hexavalent chromium generated in a stainless steel pickling process, that is, recovering ferrite from the waste liquid and recycling NazSO4. It is about how to use it.

〈従来の技術〉 ステンレス鋼酸洗工程は、鋼種によりその酸洗方法は異
なるが、例えば第1楢は30%NazSO4によるルス
ナー電解法、第2槽は硫酸、第3槽は混酸というように
何種類かの酸を組合せて行われている。
<Prior art> In the stainless steel pickling process, the pickling method differs depending on the steel type, but for example, the first tank uses Lussner electrolysis with 30% NazSO4, the second tank uses sulfuric acid, and the third tank uses mixed acid. It is done by combining different types of acids.

ステンレス鋼酸洗のうち、ルスナー電解法から排出した
溶液中には脱離スケール、溶出金属特に6価クロムが多
く含有されている。
During stainless steel pickling, the solution discharged from the Rusner electrolysis process contains a large amount of detached scale and eluted metals, particularly hexavalent chromium.

ルスナー電解槽から排出された液の一部は、脱離スケー
ルを除去し、リサイクルされるが、一部はメイクアップ
のために廃液とされていた。
A portion of the liquid discharged from the Lussner electrolytic cell is recycled after removal of scale, but a portion is used as waste for make-up.

すなわち、このルスナー電解槽廃液は、従来水処理設備
で他の排水と共に処理され廃棄されていた。
That is, this Rusner electrolyzer waste liquid has conventionally been treated and discarded together with other wastewater in water treatment equipment.

なお、排水中のを害金属の除去方法として排水中に第1
鉄イオンを添加した後、アルカリによる中和、空気など
による酸化をして、第1鉄イオンをマグネタイトまたは
オキシ水酸化鉄としマグネタイト結晶格子中に該有害金
属イオンを取込むか、またはオキシ水酸化鉄に吸着させ
て除去する方法が特公昭51−22307号、特公昭5
1−39940号に開示されているが、Crイオンは結
晶格子中に取込みにく< 、Crイオンを除去するため
には、Crイオンの約100倍もの第1銖イオンが必要
であり、効率が悪く、また廃棄物の発生量が多く、その
処理費が嵩んでいた。
In addition, as a method of removing harmful metals from wastewater,
After adding iron ions, they are neutralized with alkali and oxidized with air to convert the ferrous ions into magnetite or iron oxyhydroxide, incorporating the harmful metal ions into the magnetite crystal lattice, or oxidizing them with oxyhydroxide. The method of removing iron by adsorption is described in Tokoku No. 51-22307 and Tokkoku No. 5
1-39940, Cr ions are difficult to incorporate into the crystal lattice, and in order to remove Cr ions, approximately 100 times as many first ion ions as Cr ions are required, resulting in low efficiency. Moreover, the amount of waste generated was large, and the cost of processing it was high.

〈発明が解決しようとする問題点〉 本発明は、従来ルスナー電解廃液からの重金属の回収は
されずに、また一部廃液は利用されず廃棄されていたの
で、このルスナー電解廃液中の重金属類を効率よく回収
し、さらに廃液をNazSO。
<Problems to be Solved by the Invention> The present invention solves the problem of heavy metals in the Rusner electrolytic waste, since conventionally the heavy metals were not recovered from the Rusner electrolytic waste and some of the waste was discarded without being used. is efficiently collected, and the waste liquid is converted into NazSO.

水溶液として再利用できる方法を提供するためになされ
たものである。
This was done to provide a method that can be reused as an aqueous solution.

〈問題点を解決するための手段〉 本発明者らは、幾多の研究を重ねた結果、従来の方法に
比べてより少ない量の第−銖イオン量でCrイオンを除
去できる方法を見い出し、この知見にもとづいて本発明
をなすに至った。
<Means for solving the problem> As a result of numerous studies, the present inventors have discovered a method that can remove Cr ions with a smaller amount of primary ions than conventional methods, and have developed this method. The present invention was made based on this knowledge.

本発明は、ステンレスEの酸洗工程で発生する6価りロ
ム含存のルスナー電解槽NazSO,溶液に2価鉄/ 
6 価クロムのモル比が5〜50になるように硫酸第1
鉄を添加し、つぎにこれに苛性ソーダを添加し、pHを
10立1に調整し、空気などの酸化性ガスを吹き込んで
酸化し、フェライトを生成させた後、このフェライトを
分離回収し、さらに分離液としてNazSO,溶液を回
収するルスナー電解槽廃液の処理方法である。
The present invention uses a Lussner electrolytic cell NazSO containing hexavalent rom generated in the pickling process of stainless steel E, and a solution containing divalent iron/
Add sulfuric acid first so that the molar ratio of hexavalent chromium is 5 to 50.
Iron is added, then caustic soda is added to this, the pH is adjusted to 10 to 1, and oxidizing gas such as air is blown in to oxidize to produce ferrite, and this ferrite is separated and recovered. This is a method for treating waste liquid from a Rusner electrolytic cell, in which NazSO is used as a separation liquid, and a solution is recovered.

く作 用〉 本発明の構成、作用について以下に説明する。For Kusaku The structure and operation of the present invention will be explained below.

ルスナー電解槽廃液中には、通常100〜1.000p
pmの6価クロムが含まれているが、ルスナー電解槽廃
液に添加する硫酸第1鉄の量としては、2価鉄(第1鉄
)76価クロムのモル比が5〜50になるように添加す
る。5より少ないと正常なフェライト、(スピネル型フ
ェライト)が生成しない。
Usually 100 to 1,000 p is contained in the Rusner electrolytic cell waste liquid.
PM of hexavalent chromium is included, but the amount of ferrous sulfate added to the Rusner electrolyzer waste liquid should be such that the molar ratio of divalent iron (ferrous iron) to 76-valent chromium is 5 to 50. Added. If it is less than 5, normal ferrite (spinel type ferrite) will not be produced.

50より多いと、処理液の総量が増え、好ましくない。When it is more than 50, the total amount of processing liquid increases, which is not preferable.

使用する硫酸第1鉄としては、ステンレス網硫酸酸洗槽
の廃液を使用することが工程上好ましいが、その他の目
板の酸洗、酸化チタン製造の際物として大量に発生する
硫酸第1銖を用いることもできる。
As the ferrous sulfate to be used, it is preferable to use the waste liquid from the stainless steel mesh sulfuric acid pickling tank, but other ferrous sulfuric acid pickling tanks, which are generated in large quantities during the pickling of battens and the production of titanium oxide, can also be used. You can also use

ついで、苛性ソーダを添加し、pHを10=1に調整す
る。これは、次工程の酸化工程でフェライトを効率よく
生成させるためである。
Then add caustic soda and adjust the pH to 10=1. This is to efficiently generate ferrite in the next oxidation step.

つぎの酸化工程で、酸化に用いるガスとしては酸化性の
ガスであれば何でもよいが最も容易に、かつ安価に供給
できるものとして空気が適当である。
In the next oxidation step, any oxidizing gas may be used as the gas for oxidation, but air is suitable as it can be supplied most easily and inexpensively.

また、フェライト化を促進するために酸化温度は70〜
90°Cにするのが好ましい。
In addition, in order to promote ferrite formation, the oxidation temperature is 70~
Preferably, the temperature is 90°C.

生成したフェライトを分離すると、分離後の濾液は、N
azSOa水溶液となる。
When the generated ferrite is separated, the filtrate after separation is N
This becomes an azSOa aqueous solution.

フェライトを分離するには遠心分離等の通常の固液分離
方法が適用出来る。
Normal solid-liquid separation methods such as centrifugation can be applied to separate ferrite.

また、磁気分離機を併用すれば、NazSOa水溶液中
の33分(金属酸化物)は10ppm以下にすることが
できる。
Furthermore, if a magnetic separator is used in combination, the 33% (metal oxide) in the NazSOa aqueous solution can be reduced to 10 ppm or less.

得られたNa2SO4水溶液は、pl+が約10である
のでこれを硫酸で中和する。中和したNazSO,水溶
液は、そのまま、あるいは濃度調整した後、ルスナー電
解液として再使用できる。
Since the obtained Na2SO4 aqueous solution has a pl+ of about 10, it is neutralized with sulfuric acid. The neutralized NazSO aqueous solution can be reused as a Lusner electrolyte as it is or after adjusting its concentration.

また、晶析装置で無水芒硝を晶析させ、晶析した結晶を
分離・乾燥して高品質の粉状無水芒硝とすることも可能
である。
Furthermore, it is also possible to crystallize anhydrous sodium sulfate in a crystallizer, and then separate and dry the crystallized crystals to obtain high-quality powdered anhydrous sodium sulfate.

〈実施例〉 以下に第1図にしたがって実施例を示す。<Example> An example will be shown below with reference to FIG.

L 、Mz共にステンレスFI酸洗廃液で6価クロム、
鉄、クロム、ニッケルを含むルスナー電解槽廃液り、と
鉄、クロム、ニッケルを含む硫酸廃液M zであり、こ
の雨水溶液L 、 Lをラインミキサーなどの混合器で
均一に混合する。調合、混合した水溶液は、中和槽1で
苛性ソーダ水溶液S、により水素イオン濃度10立1に
中和する。中和水溶液は中和酸化槽2に送られる。中和
酸化槽2は、撹拌機付きの反応槽で複数からなり、直列
に構成されている。水素イオン濃度10flに調整した
中和液を反応槽に連続供給し、複数の反応槽には2価鉄
イオン量に見合った空気S2を反応槽に供給して中和液
のフェライト化反応を進める。このフェライト化反応に
おいて適正な空気量、反応時間を与えることにより強磁
性フェライト(スピネル型フェライト)が生成する。第
1表に2価の鉄と6価クロムとの比(Fe”/Cr“)
を変えて試験じたときの初期条件を示した。
Both L and Mz are hexavalent chromium with stainless steel FI pickling waste liquid,
The rainwater solutions L and L are uniformly mixed using a mixer such as a line mixer. The prepared and mixed aqueous solution is neutralized to a hydrogen ion concentration of 10:1 in a neutralization tank 1 with a caustic soda aqueous solution S. The neutralized aqueous solution is sent to the neutralization oxidation tank 2. The neutralization oxidation tank 2 is a reaction tank equipped with a stirrer and is composed of a plurality of reactors arranged in series. A neutralizing solution adjusted to a hydrogen ion concentration of 10 fl is continuously supplied to the reaction tank, and air S2 corresponding to the amount of divalent iron ions is supplied to the plurality of reaction tanks to advance the ferrite reaction of the neutralizing solution. . In this ferrite-forming reaction, ferromagnetic ferrite (spinel type ferrite) is produced by providing an appropriate amount of air and reaction time. Table 1 shows the ratio of divalent iron to hexavalent chromium (Fe"/Cr")
The initial conditions for testing with different values are shown below.

第1表 なお、中和酸化槽の撹拌機は400rpcで回ビし、空
気吹込み量はlf/minであり、水溶液は、温度が7
0°C1水素イオン深度が10±1(Fe含有量が0.
1 mol / E )になるように維持した。この条
件下での反応時間とFe” 、  Cr”“、  Cr
“の総和量の変化との関係を第2図に示した。この結果
からFe” 、 Cr” 、 Cr″の総和■が当初の
約半分に減少していることが明らかである。
Table 1: The stirrer in the neutralization oxidation tank rotates at 400 rpm, the air blow rate is lf/min, and the aqueous solution has a temperature of 7.
0°C1 hydrogen ion depth is 10±1 (Fe content is 0.
1 mol/E). Reaction time under these conditions and Fe", Cr"", Cr
The relationship between changes in the total amount of "Fe", Cr", and Cr" is shown in FIG.

つぎに、フェライトスラリー溶液は、遠心分離機3によ
ってフェライトスラッジP、を排出する。
Next, the ferrite slurry solution is used to discharge ferrite sludge P by a centrifuge 3.

その分離液は、磁気分離機の中を通過することによって
分離液中のフェライトは磁気吸着され、清澄液かえられ
る。
When the separated liquid passes through a magnetic separator, the ferrite in the separated liquid is magnetically adsorbed, and the clarified liquid is changed.

この清澄液いarso4水溶液)は、水素イオン濃度が
10±1であるがp l HJi整槽5で硫酸S、によ
り水素イオン濃度を7±0.5に調整する。水素イオン
濃度を7±0.5に調整されたNazSOa溶液は濃縮
装置6に送られ、NatsOm濃度が20〜30%にな
るまで濃縮される。この濃縮水溶液の一部を必要に応し
てステンレスn第1槽すなわちルスナー電解槽P。
This clarified liquid (arso4 aqueous solution) has a hydrogen ion concentration of 10±1, but the hydrogen ion concentration is adjusted to 7±0.5 using sulfuric acid S in a p l HJi adjustment tank 5. The NazSOa solution whose hydrogen ion concentration has been adjusted to 7±0.5 is sent to the concentrator 6 and concentrated until the NatsOm concentration is 20 to 30%. A portion of this concentrated aqueous solution is transferred to the first stainless steel tank, ie, the Lussner electrolytic tank P, if necessary.

に供給する。また濃縮前の水溶液も補給水として一部を
pH調整槽5よりルスナー電解槽P3に供給される。余
剰の25〜30%Na2SO4水溶液からは、晶析装置
7において無水芒硝を晶析する。その結晶は、遠心分離
機8で分離され、乾燥機9で乾燥され高品質の粉状無水
芒硝P2がえられる。NazSO4水溶液の濃縮、晶析
装置としては、蒸気を熱源として用いる多重効用蒸発缶
などがある。
supply to. A portion of the aqueous solution before concentration is also supplied as make-up water from the pH adjustment tank 5 to the Rusner electrolytic cell P3. Anhydrous sodium sulfate is crystallized from the surplus 25-30% Na2SO4 aqueous solution in a crystallizer 7. The crystals are separated in a centrifuge 8 and dried in a dryer 9 to obtain high quality powdered anhydrous sodium sulfate P2. As an apparatus for concentrating and crystallizing NazSO4 aqueous solution, there is a multi-effect evaporator using steam as a heat source.

〈発明の効果〉 この発明の方法によると、従来投棄していたステンレス
鋼酸洗廃液から有害な6価クロム重金属を無害化しフェ
ライト(金属酸化物)を資源として回収することができ
、かつ分離液(Na、5Oat9液)はステンレス鋼酸
洗ルスナー電解液として再利用でき、さらに余剰分離液
から無水芒硝を回収することができる。
<Effects of the Invention> According to the method of the present invention, harmful hexavalent chromium heavy metals can be rendered harmless from the stainless steel pickling waste liquid that was conventionally disposed of, and ferrite (metal oxide) can be recovered as a resource, and the separated liquid can be (Na, 5Oat 9 solutions) can be reused as a stainless steel pickling Lusner electrolyte, and anhydrous sodium sulfate can be recovered from the excess separated solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる発明方法の工程図、第2図は
、中和酸化槽における反応時間とFe”+Cr’◆、 
Cr“の総和量との関係を示す特性図である。 1・・・中和槽、 2・・・中和酸化槽、 3・・・遠
心分離機、 4・・・磁気分離機、 5・・・pH調整
槽、6・・・濃縮装置、 7・・・晶析装置、 8・・
・遠心分離機、 9・・・乾燥機、 P、・・・フェライト(金属酸化物)、 Pt・・・無
水芒硝、PJ・・・ルスナー電解槽(中性塩溶i)、S
l・・・苛性ソーダ溶液、 S2・・・空 気、S、・
・・g  酸 特許出願人   川@製鉄株式会社 第  1  図 第  2  図
Fig. 1 is a process diagram of the inventive method according to the present invention, and Fig. 2 shows the reaction time in the neutralization oxidation tank and Fe''+Cr'◆,
It is a characteristic diagram showing the relationship with the total amount of Cr. 1... Neutralization tank, 2... Neutralization oxidation tank, 3... Centrifugal separator, 4... Magnetic separator, 5. ...pH adjustment tank, 6...concentrator, 7...crystallizer, 8...
・Centrifugal separator, 9...Dryer, P...Ferrite (metal oxide), Pt...Anhydrous mirabilite, PJ...Russner electrolytic cell (neutral salt solution I), S
l... Caustic soda solution, S2... Air, S,...
...g Acid patent applicant Kawa@Steel Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ステンレス鋼の酸洗工程で発生する6価クロム含有のル
スナー電解槽Na_2SO_4溶液に2価鉄/6価クロ
ムのモル比が5〜50になるように硫酸第1鉄を添加し
、つぎにこれに苛性ソーダを添加し、pHを10±1に
調整し、空気などの酸化性ガスを吹き込んで酸化しフェ
ライトを生成させた後、このフェライトを分離、回収し
、さらに分離液としてNa_2SO_4溶液を回収する
ことを特徴とするルスナー電解槽廃液の処理方法。
Ferrous sulfate is added to the Rusner electrolytic Na_2SO_4 solution containing hexavalent chromium generated in the pickling process of stainless steel so that the molar ratio of divalent iron/hexavalent chromium is 5 to 50, and then ferrous sulfate is added to this solution. Add caustic soda, adjust the pH to 10±1, blow in oxidizing gas such as air to oxidize and generate ferrite, then separate and collect this ferrite, and further collect Na_2SO_4 solution as a separated liquid. A method for treating Rusner electrolyzer waste liquid, characterized by:
JP1829887A 1987-01-30 1987-01-30 Treatment of waste liquid of 'ruthener' electrolytic cell Pending JPS63190696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1829887A JPS63190696A (en) 1987-01-30 1987-01-30 Treatment of waste liquid of 'ruthener' electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1829887A JPS63190696A (en) 1987-01-30 1987-01-30 Treatment of waste liquid of 'ruthener' electrolytic cell

Publications (1)

Publication Number Publication Date
JPS63190696A true JPS63190696A (en) 1988-08-08

Family

ID=11967702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1829887A Pending JPS63190696A (en) 1987-01-30 1987-01-30 Treatment of waste liquid of 'ruthener' electrolytic cell

Country Status (1)

Country Link
JP (1) JPS63190696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289336A (en) * 2004-09-27 2006-10-26 Mitsubishi Materials Corp Apparatus for treating heavy metal-containing water
JP2008168289A (en) * 2006-12-11 2008-07-24 Sumitomo Metal Ind Ltd Detoxification method of heavy metal-containing basic waste
JP2010042341A (en) * 2008-08-11 2010-02-25 Daiseki:Kk Method for reducing amount of waste liquid and method for treating waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289336A (en) * 2004-09-27 2006-10-26 Mitsubishi Materials Corp Apparatus for treating heavy metal-containing water
JP2008168289A (en) * 2006-12-11 2008-07-24 Sumitomo Metal Ind Ltd Detoxification method of heavy metal-containing basic waste
JP2010042341A (en) * 2008-08-11 2010-02-25 Daiseki:Kk Method for reducing amount of waste liquid and method for treating waste liquid

Similar Documents

Publication Publication Date Title
CN106745076B (en) A method of by the produced carnallite recycling of Industrial Wastewater Treatment
CN109250857B (en) Low-cost treatment method for ammonia nitrogen-containing wastewater of iron phosphate
CN110272144B (en) Treatment method of iron phosphate production wastewater
CN110331288A (en) A kind of method that waste lithium iron phosphate material selectivity mentions lithium
CN109536720A (en) The removal methods of chlorine in a kind of copper-bath
CN108584901B (en) Method for recovering ceramic-grade iron phosphate from polymetallic hazardous wastes
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
WO2018072499A1 (en) Method for recovering basic copper chloride from copper-containing waste liquid in sulfuric acid system
CN107162276A (en) A kind of method for removing chromium of ferric trichloride etching waste liquor
CN105906129A (en) Method for reutilization of water resources and transformation and utilization of salt in waste water
CN112850679A (en) Method for preparing iron phosphate by using waste acid
JPS63190696A (en) Treatment of waste liquid of &#39;ruthener&#39; electrolytic cell
CN107416863A (en) The method that the waste water of ferric phosphate production prepares technical grade ammonium salt
CN111424168A (en) Water-washing dechlorination system and method for metallurgical precipitator dust
US4104159A (en) Method of separation of fluoride ion from water
CA1094812A (en) Preparation of ferric iron solutions
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
US2618592A (en) Electrolytic process for recovering by-products from industrial waste liquors
JPH0369515A (en) Method for recovering high-purity iron sulfate from waste sulfuric acid pickling solution for stainless steel
JPS5858239A (en) Manufacture of metallic gallium
JP2000093739A (en) Treatment of magnesium sulfate-containing wastewater
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
JPH02124721A (en) Production of chromium chloride
CN104140126B (en) The method of trimanganese tetroxide is produced with Resorcinol by product manganese water
CN109775725A (en) The processing method of Waste Sulfuric Acid in a kind of graphene production process