JPS631899A - Delay control circuit for fluid - Google Patents

Delay control circuit for fluid

Info

Publication number
JPS631899A
JPS631899A JP14418486A JP14418486A JPS631899A JP S631899 A JPS631899 A JP S631899A JP 14418486 A JP14418486 A JP 14418486A JP 14418486 A JP14418486 A JP 14418486A JP S631899 A JPS631899 A JP S631899A
Authority
JP
Japan
Prior art keywords
valve
pressure
reducing valve
secondary side
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14418486A
Other languages
Japanese (ja)
Inventor
Noritaka Ishida
憲孝 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON S T JOHNSON SHOKAI KK
Original Assignee
NIPPON S T JOHNSON SHOKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON S T JOHNSON SHOKAI KK filed Critical NIPPON S T JOHNSON SHOKAI KK
Priority to JP14418486A priority Critical patent/JPS631899A/en
Publication of JPS631899A publication Critical patent/JPS631899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)

Abstract

PURPOSE:To soften the sharp pressure variation by arranging a buffer tank in the feedback passage of a reducing valve. CONSTITUTION:A fluid feeding source 1 is connected with the primary side of a reducing valve 2, and a solenoid valve 4 is installed into a feeding passages 3 on the secondary side 14, and the secondary side of the solenoid valve 4 is branched to a feedback passage 5 and a feeding passage 6. While, the other side is connected with the second chamber 17 of the reducing valve 2 through a filter 7, needle valve 8, and a buffer tank 9. When the valve for the fluid feeding source 1 is opened in the state where the solenoid valve 4 is closed, a pressure P is generated at the point A on the secondary side 14 of the reducing valve 2. Though, when the solenoid valve 4 is opened in this state, the pressure at the B point on the secondary side of the valve 4 immediately becomes P, each pressure rise at the C and D points and in the second chamber 17 of the reducing valve 2 is suppressed by the buffer tank 9 and the restriction of the inflow of gas by the needle valve 8, and the pressure starts to gently increase, and a valve piece 13 starts to open slowly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は流体の供給弁を開閉制御するための遅延制御回
路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a delay control circuit for controlling the opening and closing of a fluid supply valve.

[従来の技術] 流体の供給路中に電磁弁だけをi9置したものでは、流
体の供給時に電磁弁を開くと、第3図(e)の特性のよ
うに、被供給側の圧力が急激に上昇して被供給側の装置
に擾乱などの悪影響を与えたり、可燃性ガスを供給する
場合などには危険がともなったりする。これを防止する
ために、従来は弁開閉用モータと開閉弁の開位置、閉位
置にリミットスイッチを設けたり、リミットスイッチを
使用せずに、サーボモータを使用したりして、開閉弁を
徐々に開放していた。また空気圧によって作動するエア
シリンダで開閉弁を徐々に開放する方法も行なわれてい
た。
[Prior Art] In a system in which only a solenoid valve is placed in a fluid supply path, when the solenoid valve is opened during fluid supply, the pressure on the supplied side suddenly increases as shown in the characteristic shown in Fig. 3(e). This can cause adverse effects such as disturbance on equipment on the supplied side, and can be dangerous when supplying flammable gas. In order to prevent this, conventional methods have been to provide limit switches at the open and closed positions of the valve opening/closing motor and the opening/closing valve, or to use a servo motor instead of a limit switch to gradually close the opening/closing valve. It was open to the public. Another method used was to gradually open the on-off valve using an air cylinder operated by pneumatic pressure.

[発明が解決しようとする問題点コ モータによって開閉弁を開閉しようとする場合、前述の
ようにリミットスイッチを用いて開閉弁の停止位置を設
定しているが、開閉弁の開閉速度は一定である。これを
必要な速度に可変するためには、減速機が必要で開閉弁
の開閉制御装置が複雑かつ高価になる。サーボモータを
使用した場合は。
[Problem to be Solved by the Invention] When a commuter is used to open and close an on-off valve, a limit switch is used to set the stop position of the on-off valve as described above, but the opening/closing speed of the on-off valve is constant. . In order to vary this speed to the required speed, a speed reducer is required, making the opening/closing control device for the opening/closing valve complicated and expensive. When using a servo motor.

開閉速度は自由に設定できるが、サーボモータを制御す
るための制御回路が必要となる。同様に空気圧によって
作動するエアシリンダを用いても機械的動作部分が多く
なり信頼性や寿命の点で問題があり、さらに、モータや
エアシリンダは外部からのエネルギーを必要とする。ま
た開閉弁が略−定の開閉速度でゆっくりと開くと、被供
給装置が必要とする最低圧に達するまでに時間がかかり
すぎて制御系が不安定になるなどの問題があった。
Although the opening and closing speed can be set freely, a control circuit is required to control the servo motor. Similarly, even if an air cylinder operated by pneumatic pressure is used, there are many mechanically moving parts, which causes problems in terms of reliability and lifespan.Moreover, the motor and air cylinder require external energy. Further, if the on-off valve opens slowly at a substantially constant opening/closing speed, there is a problem that it takes too much time for the supplied device to reach the minimum pressure required, making the control system unstable.

[問題点を解決するための手段] 本発明は、前述のような問題点を解決するために、極力
機械的動作部分を取り除き、減圧弁、ニードル弁、開閉
弁およびバッファタンクなどの堅牢で信頼性の確立のさ
れた部品によって構成したものである。すなわち、流体
の供給源と被供給側とを連結する供給路中に、開閉弁と
減圧弁を介在し、この減圧弁の2次側を、ニードル弁と
バッファタンクを介して前記減圧弁に連結してなるもの
である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention eliminates as many mechanically moving parts as possible, and makes pressure reducing valves, needle valves, on-off valves, buffer tanks, etc. robust and reliable. It is constructed from parts whose properties have been established. That is, an on-off valve and a pressure reducing valve are interposed in a supply path connecting a fluid supply source and a supplied side, and the secondary side of this pressure reducing valve is connected to the pressure reducing valve via a needle valve and a buffer tank. This is what happens.

[作用] 開閉弁を開くと、流体の供給源より供給された流体圧力
で減圧弁を開き2次側に被供給装置の必要最低圧まで直
ちに昇圧し流体を供給する。このとき、2次側の流体は
ニードル弁によって規制されつつバッファタンクに流入
し、バッファタンクの圧力は徐々に上昇する。バッファ
タンクの圧力が上昇すれば、減圧弁にフィードバックさ
れる圧力も上昇し、減圧弁は徐々に開かれ、ニードル弁
にかかる圧力も上昇し、流体はさらにバッファタンクに
流入する。このようにして減圧弁内において圧力が平衡
に達するまで上昇し、平衡に達すると定圧で供給される
[Operation] When the on-off valve is opened, the pressure reducing valve is opened by the fluid pressure supplied from the fluid supply source, and the pressure is immediately increased to the minimum pressure required by the supplied device to supply fluid to the secondary side. At this time, the fluid on the secondary side flows into the buffer tank while being regulated by the needle valve, and the pressure in the buffer tank gradually increases. As the pressure in the buffer tank increases, the pressure fed back to the pressure reducing valve also increases, the pressure reducing valve is gradually opened, the pressure on the needle valve also increases, and more fluid flows into the buffer tank. In this way, the pressure within the pressure reducing valve increases until it reaches equilibrium, and when equilibrium is reached, it is supplied at a constant pressure.

[実施例コ 第1図から第3図に基づいて本発明の詳細な説明する。[Example code] The present invention will be explained in detail based on FIGS. 1 to 3.

第1図において、(1)は高圧ガスボンベなどの流体供
給源で、この流体供給源(1)は減圧弁(2)の1次側
に連結されている。この減圧弁(2)は第2図に示すよ
うに1次側(12)が弁体(13)を経て2次側(14
)に連通している。この2次側(14)は供給路(3)
に連結されるとともに第1導入口(15)を経て第1チ
ヤンバ(16)に連通している。この減圧弁(2)の2
次側(14)の供給路(3)には開閉弁としての電磁弁
(4)が設けられ、この電磁弁(4)の2次側は帰還路
(5)と供給路(6)の2本に分岐し、−方の帰還路(
5)にはフィルタ(7)、ニードル弁(8)、バッファ
タンク(9)を直列に連結し、前記減圧弁(2)の第2
チヤンバ(17)の第2導入口(23)に連結されてい
る。他方の供給路(6)にはニードル弁(lO)を介し
て被供給装置(11)が連結されている。
In FIG. 1, (1) is a fluid supply source such as a high-pressure gas cylinder, and this fluid supply source (1) is connected to the primary side of a pressure reducing valve (2). As shown in Fig. 2, this pressure reducing valve (2) has a primary side (12) passing through a valve body (13) and a secondary side (14).
). This secondary side (14) is the supply path (3)
and communicates with the first chamber (16) via the first inlet (15). 2 of this pressure reducing valve (2)
The supply path (3) on the next side (14) is provided with a solenoid valve (4) as an on-off valve, and the secondary side of this solenoid valve (4) is connected to the return path (5) and the supply path (6). Branching out into books, the return path on the negative side (
5) is connected in series with a filter (7), a needle valve (8), and a buffer tank (9).
It is connected to the second inlet (23) of the chamber (17). A supplied device (11) is connected to the other supply path (6) via a needle valve (lO).

次に前記減圧弁(2)は第2図に示すようにダイアフラ
ム(18)が第1チヤンバ(16)と第2チヤンバ(1
7)を分割し、第2チヤンバ(17)側には弁体(13
)を開放する方向に付勢するはね(19)が設けられ、
第1チヤンバ(16)側には前記弁体(13)が固着さ
れ、前記ばね(19)の上部にはアジャストねじ(20
)が設けられ、ばね(19)の押圧力を調整できるよう
になっている。さらに本体の上部にはキャップ(21)
が0リング(22)を挟んで気密に取り付けられている
Next, the pressure reducing valve (2) has a diaphragm (18) with a first chamber (16) and a second chamber (1) as shown in FIG.
7) is divided, and a valve body (13) is installed on the second chamber (17) side.
) is provided with a spring (19) that urges it in the direction of opening.
The valve body (13) is fixed to the first chamber (16), and an adjustment screw (20) is attached to the upper part of the spring (19).
) is provided so that the pressing force of the spring (19) can be adjusted. Furthermore, there is a cap (21) on the top of the main body.
is airtightly attached with an O-ring (22) in between.

以上の構成による本発明の作用を以下に説明する。まず
電磁弁(4)を閉じた状態で10時に流体供給源(1)
の弁を開く、すると、この減圧弁(2)の2次側(14
)のA点においてはアジャストねじ(20)によって調
整されている圧力Pになる。この圧力Pは低圧に過ぎる
と、制御系が追従しないことがあるため、被供給装置(
11)に悪影響を与えない範囲で高い値に設定すること
が望ましい、この状態で18時に電磁弁(4)を開放す
ると、この電磁弁(4)の2次側(14)のB点の圧力
は第3図(b)に示すように、直ちにA点と等しい圧力
Pとなり、この圧力Pがニードル弁(10)を介したE
点においては被供給装置(11)の立上りの圧力P′に
なる。C,D点および減圧弁(2)の第2チヤンバ(1
7)の圧力は、ニードル弁(8)によってガスの流入が
規制され、バッファタンク(9)によって圧力上昇速度
が抑えられているため、第3図(c)に示すようにゆっ
くり上昇し始める。第2チヤンバ(17)の圧力が上昇
を始めると第1チヤンバ(16)の圧力に抗してダイア
フラム(18)が下降し、弁体(13)がさらに開き、
減圧弁(2)の2次圧、すなわちA、B点の圧力が上昇
する。このようにして本回路内の圧力は上昇し、第1チ
ヤンバ(16)と第2チヤンバ(17)の圧力が平衡に
達するまで上昇を続け、平衡に達した12時にA、B、
C,D点の圧力はP工となり圧力上昇は停止する。この
ようにしてB点の圧力が徐々に上昇するので、被供給装
置(II)へのE点における供給圧力は第3図(d)に
示すような特性をもって上昇する。この第3図(d)の
特性線において、電磁弁(4)を開いた直後(命□)の
立ち上りの圧力は減圧弁(2)のアジャストねじ(20
)調整により設定される。またT1からT2までの傾斜
特性はニードル弁(8)の開度によりバッファタンク(
9)に流入するガスの流量を調整して行う、ニードル弁
(1o)はE点の最終圧力を調整する。
The operation of the present invention with the above configuration will be explained below. First, with the solenoid valve (4) closed, turn on the fluid supply source (1) at 10 o'clock.
When the valve is opened, the secondary side (14) of this pressure reducing valve (2) is opened.
) at point A, the pressure is P, which is adjusted by the adjustment screw (20). If this pressure P is too low, the control system may not be able to follow it;
It is desirable to set it to a high value within a range that does not have a negative effect on As shown in Fig. 3(b), the pressure immediately becomes equal to the pressure P at point A, and this pressure P becomes E through the needle valve (10).
At this point, the pressure of the supplied device (11) becomes P'. Points C and D and the second chamber (1) of the pressure reducing valve (2)
The pressure in step 7) begins to rise slowly as shown in FIG. 3(c) because the inflow of gas is regulated by the needle valve (8) and the rate of pressure rise is suppressed by the buffer tank (9). When the pressure in the second chamber (17) begins to rise, the diaphragm (18) moves down against the pressure in the first chamber (16), and the valve body (13) further opens.
The secondary pressure of the pressure reducing valve (2), that is, the pressure at points A and B increases. In this way, the pressure in this circuit increases and continues to increase until the pressures in the first chamber (16) and the second chamber (17) reach equilibrium.
The pressure at points C and D becomes P and the pressure rise stops. As the pressure at point B gradually increases in this way, the supply pressure at point E to the supplied device (II) increases with the characteristics shown in FIG. 3(d). In the characteristic line shown in Fig. 3(d), the pressure that rises immediately after opening the solenoid valve (4) (life □) is determined by the adjustment screw (20) of the pressure reducing valve (2).
) set by adjustment. In addition, the slope characteristic from T1 to T2 is determined by the opening degree of the needle valve (8) in the buffer tank (
The needle valve (1o), which adjusts the flow rate of the gas flowing into 9), adjusts the final pressure at point E.

この実施例では開閉弁としての電磁弁(4)を減圧弁(
2)の2次側に設けたが、減圧弁(2)の1次側に設け
てもよい、さらにバッファタンク(9)はニードル弁(
8)と減圧弁(2)の間の帰還路が必要な容量をもって
いれば省略することができる。
In this embodiment, the solenoid valve (4) as an on-off valve is replaced with a pressure reducing valve (
Although the buffer tank (9) is provided on the secondary side of the pressure reducing valve (2), it may also be provided on the primary side of the pressure reducing valve (2).
8) and the pressure reducing valve (2) can be omitted if the return path has the necessary capacity.

[発明の効果] 本発明は以上のように構成したので、開閉弁の開閉によ
る急激な圧力変化を緩和して目的の特性をもって開放で
き、しかも被供給装置への立上りの圧力を、高圧による
悪影響と低圧による制御系追従不能のない範囲で自由に
設定できる。また構成部品も従来からある信頼性、耐久
性の確立されたものを使用しているため信頼性も高く、
圧力変化を自在に設定でき、かつ安価に作成できるなど
の効果を有するものである。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to relieve sudden pressure changes due to opening and closing of the on-off valve and open the valve with the desired characteristics, and to reduce the rising pressure to the supplied device without adverse effects caused by high pressure. It can be set freely within a range that does not cause the control system to be unable to follow due to low pressure. In addition, the reliability is high because the component parts used are those that have been established for reliability and durability.
This has the advantage of being able to freely set pressure changes and being inexpensive to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は本発明の
回路に使用した減圧弁の断面図、第3図は第1図に示す
回路の圧力変化を示す特性図である。 (1)・・・高圧ガスボンベなどの流体供給源、(2)
・・・減圧弁、(4)・・・電磁弁、(5)・・・帰還
路、(8)・・・ニードル弁、(9)・・・バッファタ
ンク、(10)・・・ニードル弁、(11)・・・被供
給装置、(13)・・・弁体、 (15)・・・第1導
入口、 (16)・・・第1チヤンバ、(17)・・・
第2チヤンバ、(18)・・・ダイアフラム、(19)
・・・ばね、(20)・・・アジャストねじ、(23)
・・・第2導入口。
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is a sectional view of a pressure reducing valve used in the circuit of the present invention, and Fig. 3 is a characteristic diagram showing pressure changes in the circuit shown in Fig. 1. . (1)...Fluid supply source such as high pressure gas cylinder, (2)
...pressure reducing valve, (4) ... solenoid valve, (5) ... return path, (8) ... needle valve, (9) ... buffer tank, (10) ... needle valve , (11)... device to be supplied, (13)... valve body, (15)... first inlet, (16)... first chamber, (17)...
Second chamber, (18)...Diaphragm, (19)
...Spring, (20) ...Adjustment screw, (23)
...Second introduction port.

Claims (3)

【特許請求の範囲】[Claims] (1)流体の供給源と被供給装置との間の供給路に開閉
弁を設けて、流体の供給制御を行う回路において、前記
供給路に減圧弁を介在し、この減圧弁の2次側の供給路
を分岐した帰還路中にニードル弁とバッファタンクを介
してこの減圧弁圧力調整チャンバに連結してなることを
特徴とする流体の遅延制御回路。
(1) In a circuit that controls fluid supply by providing an on-off valve in a supply path between a fluid supply source and a supplied device, a pressure reducing valve is interposed in the supply path, and a secondary side of this pressure reducing valve is provided. A fluid delay control circuit characterized in that a pressure reducing valve is connected to a pressure regulating chamber through a needle valve and a buffer tank in a return path that branches off from a supply path.
(2)開閉弁は減圧弁の1次側に設けたことを特徴とす
る特許請求の範囲第1項記載の流体の遅延制御回路。
(2) The fluid delay control circuit according to claim 1, wherein the on-off valve is provided on the primary side of the pressure reducing valve.
(3)開閉弁は減圧弁の2次側に設けたことを特徴とす
る特許請求の範囲第1項記載の流体の遅延制御回路。
(3) The fluid delay control circuit according to claim 1, wherein the on-off valve is provided on the secondary side of the pressure reducing valve.
JP14418486A 1986-06-20 1986-06-20 Delay control circuit for fluid Pending JPS631899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14418486A JPS631899A (en) 1986-06-20 1986-06-20 Delay control circuit for fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14418486A JPS631899A (en) 1986-06-20 1986-06-20 Delay control circuit for fluid

Publications (1)

Publication Number Publication Date
JPS631899A true JPS631899A (en) 1988-01-06

Family

ID=15356153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14418486A Pending JPS631899A (en) 1986-06-20 1986-06-20 Delay control circuit for fluid

Country Status (1)

Country Link
JP (1) JPS631899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886739A (en) * 2010-05-12 2010-11-17 云南大红山管道有限公司 Ore slurry pipeline transport device and anti-blocking control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886739A (en) * 2010-05-12 2010-11-17 云南大红山管道有限公司 Ore slurry pipeline transport device and anti-blocking control method thereof

Similar Documents

Publication Publication Date Title
US5735503A (en) Servo pressure regulator for a gas valve
US6263908B1 (en) Slow opening gas valve
US4087231A (en) Slow-opening gas valve
US6386509B1 (en) Back pressure control valve
US4188972A (en) Gas valve assembly
US6705342B2 (en) Modulating gas valve with natural/LP gas conversion capability
US4842013A (en) Droop compensated direct acting pressure regulator
US3115068A (en) Valve operating mechanism
US843174A (en) Pressure-controlling system.
JPS631899A (en) Delay control circuit for fluid
US3525641A (en) Fuel cell control
EP0188024A1 (en) Device for controlling the fluid flow rate through a pipe
US5669409A (en) Gas-pressure controller
US2593557A (en) Pilot controlled gas pressure regulator
JPS59117970A (en) Gas valve
US3528452A (en) Diaphragm operated flow control device
JPH04297906A (en) Fluid pressure controller
AU6015680A (en) Liquid supply valve assembly
JPH01174819A (en) Flow control valve for gas
JPS58149517A (en) Solenoid valve provided with pressure adjusting mechanism
CA1138299A (en) Gas valve assembly
SU615307A1 (en) Adjusting valve
GB849267A (en) Fluid pressure regulator
SU1314315A1 (en) Pressure regulator
SU1709279A1 (en) Pressure regulator