JPS63189904A - Correcting system for circular orbit - Google Patents

Correcting system for circular orbit

Info

Publication number
JPS63189904A
JPS63189904A JP2038687A JP2038687A JPS63189904A JP S63189904 A JPS63189904 A JP S63189904A JP 2038687 A JP2038687 A JP 2038687A JP 2038687 A JP2038687 A JP 2038687A JP S63189904 A JPS63189904 A JP S63189904A
Authority
JP
Japan
Prior art keywords
radius
axis
equality
command
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2038687A
Other languages
Japanese (ja)
Inventor
Masahiko Oda
小田 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP2038687A priority Critical patent/JPS63189904A/en
Publication of JPS63189904A publication Critical patent/JPS63189904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cut out a true circule at a high speed by inputting an arc command with a radius expressed by an equality I when it is defined that positional loop gain is Kp, the objective radius of a tool track is R is and a feeding angular speed is omega. CONSTITUTION:The coordinates Xe, Ye of a starting point and the coordinates Xc, Yc of a center are respectively inputted and a computing means 4 calculates a radius R from the input data on the basis of an equality II. Then, a feeding speed F is inputted and the means 4 calculates an angular speed omega=F/R from the previously obtained radius R and the feeding speed F. A corrected radius R1 is calculated on the basis of the equality I and R1conomegat and R1sinomegat are respectively set up in an X-axis function generating means 6 and a Y-axis function generating means 7. Then, the means 6, 7 respectively output X-axis and Y-axis command pulses to X-axis and Y-axis servo mechanisms 8, 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNC装置における円弧指令方式に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an arc command method in an NC device.

(従来の技術) 従来、NC工作機械で円弧を切削するため位置決めサー
ボ系に円弧指令を与えた場合、送り速度が大きいときや
円弧の半径が小さいときには、切削されたワークの形状
が、指令された通りの半径にならないことが経験的にわ
かっていた。そのため、指令された半径の円弧を得るた
めに送り速度を低くおさえて切削を行なう方式がとられ
ていた。
(Prior art) Conventionally, when an arc command is given to the positioning servo system to cut an arc with an NC machine tool, when the feed rate is high or the radius of the arc is small, the shape of the cut workpiece is not the same as the command. I knew from experience that the radius would not be as expected. Therefore, in order to obtain a circular arc with a commanded radius, a method has been adopted in which cutting is performed by keeping the feed rate low.

(発明が解決しようとする問題点) 上述した従来の円弧指令方式は、高速の円弧切削ができ
ないばかりでなく、切削と半径の測定とを繰返しながら
所望の形状に近づけなければならないという欠点がある
(Problems to be Solved by the Invention) The conventional arc command method described above not only cannot perform high-speed arc cutting, but also has the disadvantage that it requires repeated cutting and radius measurement to approach the desired shape. .

本発明は、半径を自動的に補正し、その補正されたt径
の円弧指令をサーボ系に与えることにより、サーボ系の
許す限りの高速で真円を切削することを可能にする円軌
道補正方式を提供することを目的とする。
The present invention automatically corrects the radius and gives a circular arc command of the corrected t diameter to the servo system, thereby making it possible to cut a perfect circle as fast as the servo system allows. The purpose is to provide a method.

(問題点を解決するための手段) 本発明の円軌道補正方式は、2つの1次サーボ系で近似
できる2次位置決めサーボ系において、位置ループゲイ
ンをKP+工具軌跡の目標半径をR1送り角速度をωと
するとき、R,=RxFCL;7/に、で表わされる半
径の円弧指令を前記位置決めサーボ系に入力することを
特徴とする。
(Means for Solving the Problems) The circular trajectory correction method of the present invention uses a secondary positioning servo system that can be approximated by two primary servo systems, where the position loop gain is KP + the target radius of the tool path is R1, and the feed angular velocity is When ω, R,=RxFCL;7/ is characterized in that a circular arc command with a radius expressed as R,=RxFCL;7/ is input to the positioning servo system.

(作用) 速度ループゲインを位置ループゲインに比べて十分大き
くとっであるサーボ系においては、2次系位置ループを
第4図に示されているような2つの独立な1次系位置ル
ープで近似することができる。ここで、X+ (s) 
、 31+ (s) 、はそれぞれサーボ系の人力X+
 (t) 、 ’I+ (L)のラプラス変換、Xo(
S)。
(Function) In a servo system where the velocity loop gain is set sufficiently larger than the position loop gain, the secondary system position loop can be approximated by two independent primary system position loops as shown in Figure 4. can do. Here, X+ (s)
, 31+ (s) , are the human power of the servo system X+
(t), 'I+ Laplace transform of (L), Xo(
S).

yo(s)はそれぞれサーボ系の出力xo(t)、 y
o(t)のラプラス変換、にII)I (S) *にp
y (S)は位置ループゲインである。第4図から明ら
かなように次式が成立つ。
yo(s) are the outputs of the servo system xo(t) and y, respectively
Laplace transform of o(t), to II) I (S) * to p
y(S) is the position loop gain. As is clear from FIG. 4, the following equation holds.

式(+)より次式が成立つ。From equation (+), the following equation holds true.

xo(s) =山汁師Xt(S) いま、x、(t) =Rcosωt、 y、(t)=R
sinωt、 t<0で×。(t) =yo(t) =
 0としてX+(t) 右よび3F+ (t)をラプラ
ス変換し、さらに部分分数展開をすると、次式が得られ
る。
xo(s) = Mountain soup master Xt(S) Now, x, (t) = Rcosωt, y, (t) = R
sinωt, × at t<0. (t) = yo(t) =
By performing Laplace transform on X+(t) and 3F+(t) assuming 0, and further performing partial fraction expansion, the following equation is obtained.

xo(S)=f千市岡甲・口仔酊 ここで、K□(S)、にpy (S)がSに依存しない
定数に、□に□であるとして逆ラプラス変換をすると、
×。(s) =428x、(−に、、1)、十一台一丁
(に、、cos ωL+ωsin ωt)4←(1)C
O8ωt+にp、sinωL)式(4)の両式の第1項
は非定常解で過渡状態に対応し、t→ωで0に収束する
。また、第2項は定常解で定常状態に対応する。したが
って、初期時1=0から十分時間がたった時点では Xo(1)=Tづ―r(に、、cos ωt+m5in
 ωt)となる。通常、X軸とY軸の位置ループゲイン
は調整等により等しくとれるので、これを翼、8・ら。
xo (S) = f Senichi Oka Kou Kuchizai 酊Here, K □ (S), py (S) is a constant that does not depend on S, and □ is □, and if we perform the inverse Laplace transform, we get
×. (s) = 428x, (-ni,, 1), 11 units (ni,, cos ωL + ωsin ωt) 4←(1)C
p in O8ωt+, sinωL) The first term of both equations (4) is an unsteady solution and corresponds to a transient state, and converges to 0 at t→ω. Further, the second term is a steady solution and corresponds to a steady state. Therefore, when enough time has passed since the initial time 1=0, Xo(1)=Tzu-r(,, cos ωt+m5in
ωt). Normally, the position loop gains of the X and Y axes can be made equal by adjustment, etc., so this is the wing, 8. et al.

=に、とすると。= .

Xo(1)−k(K pcosωを令ωsin  ωt
)よって ×。(1)” + yo (t)” = e     
 −(7)式(6) より出力×a (t) −yo 
(t)の軌跡はRX K。
Xo(1)-k(K pcosω as commandωsinωt
) Therefore, ×. (1)" + yo (t)" = e
−(7) From equation (6), output×a (t) −yo
The trajectory of (t) is RX K.

/JT21;1−なる半径の円弧である。/JT21; It is a circular arc with a radius of 1-.

すなわち、位置ゲインに、がωに比較して十分に大きけ
ればに、/J1フク;1−→1であるので問題はないが
、ωが大きい場合には目標半径Rより小さな半径の円弧
になってしまう。例えば1パルス=1μの位置決めサー
ボ系でに、= 507sec、送り速度F= 1 m/
a+in、 R= 10c−場合ω= += 10’ 
X 1/60x 10−’rad/secこのときに、
/ FLT−己= 0.9999944でありRx O
,9999944= 99999.44−となり、約1
パルスの誤差を生じる。
In other words, if the position gain is sufficiently large compared to ω, there is no problem since /J1fuku;1−→1, but if ω is large, the arc will have a radius smaller than the target radius R. It ends up. For example, in a positioning servo system where 1 pulse = 1 μ, = 507 sec, feed rate F = 1 m/
a+in, R= 10c- case ω= += 10'
X 1/60x 10-'rad/sec At this time,
/ FLT-Self = 0.9999944 and Rx O
,9999944=99999.44-, which is about 1
This causes pulse errors.

に、= 507sec、 F = 1 m/sin、 
R= 1 cmの場合には、(13= 10’ X 1
/60x 1G″″’=5/3 rad/sec。
, = 507 sec, F = 1 m/sin,
For R= 1 cm, (13= 10' x 1
/60x 1G''''=5/3 rad/sec.

になり、このとき、Kp/−rζη”T;V = 0.
999449であり、Rx 0.999449= 99
94.49−となって5パルス分小さい半径になる。
At this time, Kp/−rζη”T; V = 0.
999449 and Rx 0.999449=99
The radius becomes 94.49-, which is 5 pulses smaller.

通常、指令パルスで制御可能な最小補間距離(分解能)
は1指令パルスに相当する距離δである。したがって、
R−Rxに、/ F−工を璽>aである場合には、あら
かじめ半径Rに補正因子FCη;1/に、を乗算し”C
Rr = RX nQ]7/l。
Normally, the minimum interpolation distance (resolution) that can be controlled by command pulses
is the distance δ corresponding to one command pulse. therefore,
If R-Rx is /F-Work > a, the radius R is multiplied in advance by the correction factor FCη;1/, and "C
Rr = RX nQ]7/l.

の半径の円弧指令をサーボ系に与えることにより、どの
ような角速度においても半径Hの円弧を実現できる。
By giving a circular arc command with radius H to the servo system, a circular arc with radius H can be realized at any angular velocity.

(実施例) 次に、本発明の実施例について図面を参照して説明する
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の真円補正方式が適用されたNC装置の
一実施例のブロック図、第2図は第1図の動作を示すフ
ローチャート、第3図は、工具加工端の補間通路を示す
図である。
Fig. 1 is a block diagram of an embodiment of the NC device to which the roundness correction method of the present invention is applied, Fig. 2 is a flow chart showing the operation of Fig. 1, and Fig. 3 shows the interpolation path of the tool machining end. FIG.

X軸現在位置レジスタ1、Y軸現在位置レジスタ2およ
び位置ループゲインレジスタ3はそれぞれ切削の始点2
3点の座標xs、 ymJ5よび位置ループゲインに、
を保持している。演算手段4は始点P、の座標×□y、
および位置ループゲインに、をそれぞれのレジスタ1.
2.3から読出し、また、入力手段5から入力された送
り速度F1円弧の中心pcの座標(x(+、 yc)お
よび円弧の始点P、の座R(xm、 ys)から、円弧
半径R1送り角速度ω、、および補正因子$/に、およ
び補正された半径R,= RX(月7;77に、)を計
算し、X関数発生手段6、Y軸間数発生手段7に、それ
ぞれR、cosωt。
X-axis current position register 1, Y-axis current position register 2 and position loop gain register 3 each indicate the starting point 2 of cutting.
The coordinates of the three points xs, ymJ5 and position loop gain are
is held. The calculation means 4 calculates the coordinates of the starting point P×□y,
and position loop gain for each register 1.
From the coordinates (x (+, yc)) of the center pc of the arc of the feed rate F1 read from 2.3 and also input from the input means 5 and the position R (xm, ys) of the starting point P of the arc, the arc radius R1 Calculate the feed angular velocity ω, and the correction factor $/, and the corrected radius R, = RX (on month 7; , cosωt.

II、sinωtを設定する。X軸間数発生手段6、Y
軸間数発生手段7はそれぞれR,cosωL。
II, set sinωt. X-axis number generation means 6, Y
The inter-axis number generating means 7 are R and cosωL, respectively.

II、sinωtに比例した指令パルスを、工具加工端
が終点pa(xa、 y、)に至るまで、X軸サーボ機
構8、Y軸サーボ機構9に出力する。X軸サーボ機構8
、Y軸サーボ機構9はそれぞれX軸出力、Y軸出力を出
力する。
II, a command pulse proportional to sinωt is output to the X-axis servo mechanism 8 and the Y-axis servo mechanism 9 until the tool machining end reaches the end point pa (xa, y,). X-axis servo mechanism 8
, Y-axis servo mechanism 9 outputs an X-axis output and a Y-axis output, respectively.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

まず、始点座標(xs、ya)、中心座標(X6.ye
)をそれぞれ入力する(ステップ21)。演算手段4は
これらの入力データから半径”  xm−xc  ” 
’1m−Ycを計算する(ステップ23)。
First, start point coordinates (xs, ya), center coordinates (X6.ye
) are input respectively (step 21). The calculation means 4 calculates the radius "xm-xc" from these input data.
'1m-Yc is calculated (step 23).

次に送り速度Fを入力する(ステップ24)。演算手段
4はステップ23で求めた半径Rと送り速度から角速度
ω= F/Rを計算しくステップ25)、さらに補正さ
れた半径R,= RxFLη;1/に、を計算しくステ
ップ26) 、X軸間数発生手段6にR,cos ωt
を、Y軸間数発生手段7にR,sin ωtをそれぞれ
設定する(ステップ27)。そして、X軸間数発生手段
6、Y軸間数発生手段7はそれぞれX軸サーボ機構8お
よびY軸サーボ機構9にX軸、Y軸指令パルスを出力す
る(ステップ28)。
Next, the feed rate F is input (step 24). The calculating means 4 calculates the angular velocity ω=F/R from the radius R and the feed rate obtained in step 23 (step 25), and further calculates the corrected radius R,=RxFLη;1/, step 26), R, cos ωt in the center number generation means 6
, R and sin ωt are respectively set in the Y-axis number generation means 7 (step 27). Then, the X-axis number generation means 6 and the Y-axis number generation means 7 output X-axis and Y-axis command pulses to the X-axis servo mechanism 8 and Y-axis servo mechanism 9, respectively (step 28).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、2次系サーボ系の位置ル
ープを、2つの1次系位置ループで近似し、解析して求
められた円弧半径の補正因子を、円弧指令をサーボ系に
出力する前に自動的に計算し、補正された半径の円弧指
令をサーボ系に与えることにより、サーボ系の速度ゲイ
ンの範囲内で、高速に真円を切削することができる効果
がある。
As explained above, the present invention approximates the position loop of the secondary servo system with two primary position loops, and outputs the arc radius correction factor determined by analysis to the servo system as an arc command. By automatically calculating and giving a corrected radius arc command to the servo system before cutting, it is possible to cut a perfect circle at high speed within the speed gain range of the servo system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の円軌道補正方式が適用されたNCvt
Wの一実施例のブロック図、第2図は第1図の装置の動
作を示すフローチャートを示す図、第3図は、工具加工
端の補間通路を示す図、第4図は2次系位置決めサーボ
系を近似する2つの1次系位置ループを示す図である。 1−X軸現在位置レジスタ、 2−Y軸現在位置レジスタ、 3− 位置ループゲインレジスタ、 4− 演算手段、 5− 人力手段、 6−X軸間数発生手段、 7−Y軸間数発生手段、 8−X軸サーボ機構1 、9− Y軸サーボ機構、 pc、 p、、 p、  −中心、始点および終点、(
×。、yc)−中心座標、 (Xm、y、)  −始点座標、 (xs、 ya)  −終点座標、 R−工具軌跡の目標半径。
Figure 1 shows an NCvt to which the circular orbit correction method of the present invention is applied.
A block diagram of an embodiment of W, FIG. 2 is a flowchart showing the operation of the device shown in FIG. 1, FIG. 3 is a diagram showing an interpolation path at the tool machining end, and FIG. FIG. 3 is a diagram showing two primary system position loops that approximate a servo system. 1-X-axis current position register, 2-Y-axis current position register, 3-position loop gain register, 4-arithmetic means, 5-human power means, 6-X-axis number generation means, 7-Y-axis number generation means , 8-X-axis servo mechanism 1, 9-Y-axis servo mechanism, pc, p,, p, - center, starting point and ending point, (
×. , yc) - center coordinates, (Xm, y,) - start point coordinates, (xs, ya) - end point coordinates, R - target radius of the tool path.

Claims (1)

【特許請求の範囲】 2つの1次サーボ系で近似できる2次位置決めサーボ系
において、 位置ループゲインをK_p、工具軌跡の目標半径をR、
送り角速度をωとするとき、R_1=R×√(K_p^
2+ω^2)/K_pで表わされる半径の円弧指令を前
記位置決めサーボ系に入力することを特徴とする円軌道
補正方式。
[Claims] In a secondary positioning servo system that can be approximated by two primary servo systems, the position loop gain is K_p, the target radius of the tool path is R,
When the feed angular velocity is ω, R_1=R×√(K_p^
2+ω^2)/K_p A circular orbit correction method characterized by inputting a circular arc command with a radius represented by 2+ω^2)/K_p to the positioning servo system.
JP2038687A 1987-02-02 1987-02-02 Correcting system for circular orbit Pending JPS63189904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2038687A JPS63189904A (en) 1987-02-02 1987-02-02 Correcting system for circular orbit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2038687A JPS63189904A (en) 1987-02-02 1987-02-02 Correcting system for circular orbit

Publications (1)

Publication Number Publication Date
JPS63189904A true JPS63189904A (en) 1988-08-05

Family

ID=12025589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2038687A Pending JPS63189904A (en) 1987-02-02 1987-02-02 Correcting system for circular orbit

Country Status (1)

Country Link
JP (1) JPS63189904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293107A (en) * 1991-03-20 1992-10-16 Fanuc Ltd Feed speed clamp system for numerical controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293107A (en) * 1991-03-20 1992-10-16 Fanuc Ltd Feed speed clamp system for numerical controller

Similar Documents

Publication Publication Date Title
US9715225B2 (en) Numerical controller for smoothing tool path in operation based on table format data
Lin et al. Modeling and analysis of servo dynamics errors on measuring paths of five-axis machine tools
CN100565407C (en) Synergetic control method of aircraft part pose alignment based on three steady arms
JP3407490B2 (en) Numerical control method and device
US20190041825A1 (en) Machining of workpieces with model-supported error compensation
JPS63229506A (en) Output system for axis speed
US4276503A (en) Method and apparatus for servo-controlling a rotating workpiece
JP2015035021A (en) Numerical control device
JPS63189904A (en) Correcting system for circular orbit
US4521721A (en) Numerical control method
JPS63308613A (en) Control system for servo motor
US3911346A (en) Numerical contouring control for a flamecutting tool
US3731175A (en) Servo system for velocity and position control
JPS59194206A (en) Control system for delay error correction of servo system in numerical control
JP2995812B2 (en) Tool path generation method by numerical controller
JP2000267712A (en) Method for detecting inversion of moving direction of mobile object, and servo control method and device using the method
JPS63157209A (en) Method and device for feed control of numerically controlled machine tool
JPS6029288A (en) Robot device
JPS5994105A (en) System for manual feed of optional angle
JPH06278060A (en) Method for controlling track of small-hole cutting unit
JPS64182B2 (en)
JP3894124B2 (en) Numerical control system
JPH01185705A (en) Servo system
JPH0291704A (en) Nc machine tool
JPH06348328A (en) Arc interpolating method of cnc controller