JPS631897B2 - - Google Patents

Info

Publication number
JPS631897B2
JPS631897B2 JP2865582A JP2865582A JPS631897B2 JP S631897 B2 JPS631897 B2 JP S631897B2 JP 2865582 A JP2865582 A JP 2865582A JP 2865582 A JP2865582 A JP 2865582A JP S631897 B2 JPS631897 B2 JP S631897B2
Authority
JP
Japan
Prior art keywords
resin
ion exchange
exchange resin
aldehydes
phenols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2865582A
Other languages
Japanese (ja)
Other versions
JPS58146448A (en
Inventor
Yoshiaki Iwaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2865582A priority Critical patent/JPS58146448A/en
Publication of JPS58146448A publication Critical patent/JPS58146448A/en
Publication of JPS631897B2 publication Critical patent/JPS631897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、ホり玠に察しお特異的な吞着胜を有
する新芏なキレヌト性むオン亀換暹脂以䞋キレ
ヌト暹脂ずいう。ずその補造方法及び吞着凊理
方法に関するものである。 ホり玠は、クラヌク数×10-3で地球䞊に広く
分垃しおおり、単䜓ずしおは倩然に存圚しおいな
いが、土壌、かん氎䞭にはホり酞もしくはホり酞
むオンずしお存圚し、たた海氎䞭にもメタホり酞
ずしお4.6ppmの割合で存圚しおいる。これがた
めに、蟲業甚氎ずしお利甚する堎合や海氎から採
取した塩化マグネシりムを原料ずするマグネシり
ム金属補錬などの産業分野においおは、埮量に存
圚するホり玠が皮々の圢で匊害を及がす。たた、
ホり玠は熱䞭性子捕獲胜にすぐれおいるため原子
力発電所における構造材料に甚いられおいる。そ
の構造材料や化孊物質のホり玠含量は䜎濃床であ
るこずが必芁である。さらに軜氎炉加圧型反応噚
の䞀次冷华氎から埮量のホり酞を陀去するのに匷
塩基性むオン亀換暹脂が甚いられおいる。しかし
ながら、これらの匷塩基性むオン亀換暹脂では、
ホり酞むオンに察しお遞択性がないので、他のア
ニオンが共存するずホり玠捕獲胜は著しく䜎䞋し
蚱容限床0.02ppm以䞋にするこずができな
い。 䞀方、これたでに、ホり玠を遞択的に吞着する
暹脂ずしおは、ロヌム・アンド・ハヌス瀟からア
ンバヌラむトIRA−743の商品名で垂販されおい
る䟋えば、トレむス・゚レメンツス・むシ・
ザ・゚ンバむロメントTrace Elements in the
Environment。123号、139〜143頁、1973幎参
照この公知の吞着剀は、ホり玠に察する遞択性
にはすぐれおいるが、スチレンを暹脂母䜓ずしお
いるため、芪氎性に乏しい欠点を巚倧網状化によ
り補぀おいるが、䞀般的に暹脂の機胜的匷床に欠
け、耐有機汚染性も䞍良で長期の䜿甚に耐えるも
のではない。たた、高分子反応により配䜍子を暹
脂母䜓に導入するので、必芁量以䞊に−メチル
−−グルカミンを消費し、か぀工皋が耇雑であ
るのでコスト的にも問題がある。 本発明者は、これらの実状に鑑み、特にホり玠
に察しおすぐれた遞択吞着胜を有し、芪氎性で吞
着速床が倧きく、機械的匷床及び耐有機汚染性に
すぐれたキレヌト暹脂を容易に、しかも安䟡に補
造するこずを目的ずしお鋭意研究した結果、アミ
ノポリアルコヌル類をプノヌル栞に導入した化
合物を暹脂化するこずにより、䞊蚘の目的がすべ
お達成されるこずを芋い出し、先に特蚱出願した
特願昭56−81475号。 しかしながらこの暹脂は、ホり玠に察しお高遞
択性であり、高い亀換容量を有しおいるものの、
耐熱、耐アルカリ性にやや劣る傟向があり、䜎濃
床偎での吞着特性が垂販品に比しお十分ではなか
぀た。 本発明者は、この点に鑑み、さらに研究を重ね
た結果、脂肪族ポリアミン類を䞀成分ずしお暹脂
化するず、耐熱、耐アルカリ性にすぐれ、䜎濃床
偎での吞着特性が改善されるこずを芋い出し、本
発明に到達した。 すなわち、本発明は、プノヌル類のプノヌ
ル栞にキレヌト基を導入したプノヌル系キレヌ
ト性むオン亀換暹脂においお、キレヌト基がアミ
ノポリアルコヌル類であり、か぀むオン亀換暹脂
を構成する暹脂母䜓がプノヌル類、アルデヒド
類及び脂肪族ポリアミン類からなる架橋重合䜓で
あるこずを特城ずするキレヌト性むオン亀換暹
脂、及びプノヌル類、アルデヒド類及びアミノ
ポリアルコヌル類を反応させおプノヌル栞にア
ミノポリアルコヌル類が導入された初期生成物を
埗、次いで埗られた初期生成物ず、プノヌル
類、アルデヒド類及び脂肪族ポリアミン類ずをア
ルカリ性觊媒の存圚䞋に重瞮合しお架橋䞉次元化
するこずを特城するキレヌト基がアミノポリアル
コヌル類であり、か぀むオン亀換暹脂を構成する
暹脂母䜓がプノヌル類、アルデヒド類及び脂肪
族ポリアミン類からなる架橋重合䜓であるキレヌ
ト性むオン亀換暹脂の補造方法ならびにかかるキ
レヌト暹脂を甚いお氎溶液䞭の重金属むオンを遞
択的に吞着するこずを特城ずする吞着凊理方法に
関するものである。 本発明に甚いられるプノヌル類ずしおは、た
ずえば、プノヌル、−゚チルプノヌル・
−゚チルプノヌル・−゚チルプノヌル・ビ
スプノヌル・−クレゟヌル・クレゟヌ
ル・−クレゟヌル・・−キシレノヌル・
・−キシレノヌル・・−キシレノヌル・
・−キシレノヌルなどのアルキル眮換プノ
ヌル、レゟルシン・カテコヌルなどの倚䟡プノ
ヌル、α−ナフトヌル、β−ナフトヌルなどのフ
゚ノヌル性氎酞基をも぀化合物があげられ、これ
らは単独あるいは混合しお甚いるこずができる
が、なかでもプノヌル、ビスプノヌル、
−クレゟヌル、−クレゟヌル、−クレゟヌ
ル、・−キシレノヌル、レゟルシン、カテコ
ヌルが奜たしく、特にプノヌルが奜たしい。 本発明に甚いられるアルデヒド類ずしおは、た
ずえば、ホルムアルデヒド、パラホルムアルデヒ
ド、ヘキサメチレンテトラミンなどのアルデヒド
誘導䜓、アセトアルデヒド、プロピオンアルデヒ
ドなどの脂肪族アルデヒド、ベンズアルデヒドに
代衚される芳銙族アルデヒド、フルフラヌルなど
の異節環アルデヒドなどがあげられ、これらは単
独あるいは混合しお甚いるこずができるが、なか
でもホルムアルデヒド、パラホルムアルデヒド、
ヘキサメチレンテトラミンが奜たしい。 本発明に甚いられるアミノポリアルコヌル類ず
しおは、同䞀分子内に個のアミノ基ず個以䞊
のアルコヌル性氎酞基を有するものであれば、い
かなるものでもよいが、なかでも−メチル−
グルカミン、−゚チル−−グルカミン、−
メチル−−マンノサミン、−゚チル−−マ
ンノサミンなどの䞀般匏 䜆し、R1は氎玠原子又は炭玠数〜のアル
キル基、は〜の敎数を衚わす。 で瀺される化合物、トリスヒドロキシルメチ
ルアミノメタン、トリスヒドロキシメチル
−−メチル−アミノメタン、トリスヒドロキ
シルメチル−−゚チルアミノメタンなどの䞀
般匏 䜆し、R2は氎玠原子又は炭玠数〜のアル
キル基を衚わす。で瀺される化合物が奜たしい。 本発明に甚いられる脂肪族ポリアミン類ずしお
は、たずえば、ゞ゚チレントリアミン、トリ゚チ
レンテトラミンなどの䞀般匏 H2NCH2 CH2 NHo CH2 CH2 NH2  䜆し、は〜10の敎数を衚わす。 で瀺される化合物、゚チレンゞアミン、トリメチ
レンゞアミンなどの䞀般匏 H2NCH2mNH2  䜆し、は〜10の敎数を衚わす。 で瀺される化合物が奜たしく甚いられる。 たた、線状もしくは分枝状のポリ゚チレンむミ
ンも甚いるこずができるが、その分子量ずしお
は、たずえば、300〜䞇が適圓であり、特に300
〜1800が奜たしい。 本発明のキレヌト暹脂を補造するには、たずえ
ば、次の方法で補造するこずができる。たず、第
段階ずしお、プノヌル類、アルデヒド類、及
びアミノポリアルコヌル類を各々、等モル量で反
応させおプノヌル栞にアミノポリアルコヌル類
が導入された初期生成物を合成する。その際の初
期生成物の合成反応の枩床条件ずしおは、䞀般に
30〜100℃、奜たしくは50〜90℃の枩床範囲で実
斜され、反応時間ずしおは、䞀般に〜時間で
十分であるが、これより長時間反応させおもよ
い。 次いで、第段階ずしお、第段階で埗られた
初期生成物に、アルデヒド類、脂肪族ポリアミン
類及びプノヌル類を添加しおアルカリ性觊媒の
存圚䞋で重瞮合しお架橋䞉次化する。その際に、
アルデヒド類ずしおは、アミノポリアルコヌル類
モルに察しお、〜10モル奜たしくは〜モ
ルの割合で添加すればよい。たた、脂肪族ポリア
ミノ類ずしおは、アミノポリアルコヌル類モル
に察しお、0.1〜2.0モル奜たしくは、0.3〜0.8モ
ルの割合で添加すればよい。さらにプノヌル類
ずしおは、アミノアルコヌルモルに察しお、
0.3〜2.0モル奜たしくは、0.7〜1.2モルの割合で
添加すればよい。 次に架橋䞉次元化反応に芁する枩床および時間
ずしおは、原料の皮類、反応溶媒の皮類、その他
の条件により必ずしも䞀定しないが、䞀般に40〜
150℃で〜10時間、奜たしくは60〜130℃で〜
時間の間を遞択すればよい。たた、暹脂の圢状
ずしおは、球状、粉末状、魂状、膜状、糞状等い
ずれの圢にも成型できるが、通垞は、小球状化す
るのが奜たしく、埓来公知の小球状のキレヌト暹
脂を補造する方法ず党く同様な方法を甚いお氎ず
混合しない有機溶剀䞭でパヌル重瞮合するこずに
より、造粒ず架橋䞉次元化ずを同時に実斜しお球
状のキレヌト暹脂ずするこずもできる。その際に
甚いる有機溶媒ずしおは、たずえば四塩化炭玠、
クロロホルム、トリクロル゚チレン、パヌクロル
゚チレン、クロラヌル、ゞクロル゚チレン、ゞク
ロル゚タン、・−ゞクロルプロパンなどのハ
ロゲン化脂肪族炭化氎玠類、クロルベンれン、
−ゞクロルベンれン、−ゞクロルベンれン、ブ
ロムベンれンなどのハロゲン化芳銙族炭化氎玠
類、ベンれン、トル゚ン、−キシレン、−キ
シレン、−キシレンなどの芳銙族炭化氎玠類、
シクロヘキサン、シクロプロパンなどの脂環匏炭
化氎玠類、シクロヘキサノヌル、シクロペンタノ
ヌルなどの環状アルコヌル類などがあげられる。
パヌル重瞮合時の反応枩床及び反応時間ずしおは
反応生成物の皮類、溶媒の皮類、その他の条件に
より必らずしも䞀定しないが、通垞は60〜150℃
で〜時間、奜たしくは90〜130℃で〜時
間の間を遞択すればよいが、できるだけ均䞀な組
成のキレヌト暹脂を埗るためには、重瞮合反応の
枩床を20〜90℃に制埡し、次いで、埐々に昇枩す
るこずが望たしい。最終的には、90〜130℃に保
ち還流䞋で反応を進行させ、所望の瞮合段階に到
れば、枛圧あるいは垞圧䞋で加熱するこずにより
脱氎し、目的ずする暹脂組成物を埗るこずができ
る。 たた、架橋䞉次元化反応を行うに際しお甚いら
れるアルカリ重合觊媒ずしおは、䟋えば氎酞化ナ
トリりム、氎酞化カリりム、氎酞化リチりム、氎
酞化カルシりムなどのアルカリおよびアルカリ土
類金属の氎酞化物類、アンモニア、トリメチルア
ミン、トリ゚チルアミンなどのアミン類、ピリゞ
ン、ピペリゞン、ピペラゞンなどの環状アミン類
があげられる。 以䞊のようにしお補造された暹脂は、そのたた
あるいは掗浄を行぀た埌、キレヌト暹脂ずしお䜿
甚される。 本発明のキレヌト暹脂は、金属むオン特にホり
玠に察しおすぐれた捕捉効果を瀺すので、党おの
ホり玠含有溶液、特に濃厚塩氎䞭に埮量に存圚す
るホり酞もしくはホり玠むオンを遞択的に吞着陀
去するこずができる。埓぀お、濃厚塩化マグネシ
りム䞭に埮量に存圚するホり玠の陀去や塵介焌华
堎掗煙排氎䞭に埮量に存圚するホり玠を陀去する
のに有甚である。たた、溶液での存圚圢態がホり
玠に類䌌しおいるヒ玠、テルルに察しおも吞着胜
があるので、同様に利甚できる。 本発明のキレヌト暹脂は、その圢状に応じお
皮々の方法での䜿甚が可胜であり、䟋えばカラム
たたは塔に充填し、これにホス玠その他の金属含
有液を通液するかあるいは本発明の暹脂を金属含
有溶液䞭に浞挬するなどの方法で甚いられる。こ
の堎合、金属含有溶液の枩床ずしお℃〜95℃の
間が適圓で、15℃〜50℃の間が奜たしく、金属む
オンを暹脂に接觊させる時間ずしお、分〜50時
間の間が適圓で、10分〜時間の間が奜たしい。
たた金属むオンを吞着した本発明の暹脂からの金
属むオンの回収は、䞀般垂販のキレヌト暹脂やむ
オン亀換暹脂ず同じように鉱酞氎溶液たたはアル
カリ性氎溶液ず接觊させるこずにより容易に行わ
れ、たた再生された暹脂は、䜕回もくり返し䜿甚
可胜である。 本発明のキレヌト暹脂は以䞊詳述しおきたよう
に簡単な補造法で埗られ、特殊金属捕捉効果、特
に䜎濃床のホり玠に察しおすぐれた捕捉効果を瀺
すものであり、アミノ基を含有しおいるので匱塩
基性むオン亀換暹脂ずしお利甚できる。しかも簡
単な酞凊理で䜕回でも再生䜿甚可胜なものである
から実甚的であり、今たでのキレヌト暹脂ずは異
なる新しい甚途に利甚し埗る新芏な暹脂である。 次に実斜䟋により本発明をさらに具䜓的に説明
する。尚、実斜䟋䞭のは重量を衚わす。 実斜䟋  プノヌル29.1、37ホルマリン25.0、
−メチル−−グルカミン60.0および氎10の
混合液を80℃で時間加熱撹拌しお初期生成物を
埗た。この初期生成物に22カセむ゜ヌダ氎溶液
56.1、゚チレンゞアミン11.2、37ホルマリ
ン100を添加しお30℃で時間撹拌したのち
〜20℃に冷华しながら、レゟルシン33.9を22
カセむ゜ヌダ氎溶液に溶かした溶液ず37ホルマ
リン113ずを加えお20℃で撹拌しお粘調な反応
液を埗た。 この反応液をパヌクロル゚チレンを溶剀ずしお
垞法によりパヌル重瞮合を行うず、180の小球
状に架橋䞉次元化しお暹脂が埗られた。 この暹脂を氎掗浄したのち、4.0塩酞で䞭和
し、次いで4.0カセむ゜ヌダ氎溶液で凊理した
のち、プノヌルフタレむンが無色を呈するたで
十分に氎掗凊理するず、黒耐色の暹脂ずなり、そ
の含氎率は50であ぀た。 実斜䟋  カテコヌル11.0、37ホルマリン8.4、
−メチル−−グルカミン20.0および氎の
混合液を90℃で時間加熱撹拌しお初期生成物を
埗た。この初期生成物に22カセむ゜ヌダ氎溶液
18.7、ゞ゚チレントリアミン6.4および37
ホルマリン33.3を添加しお40℃で時間撹拌し
たのち、〜20℃に冷华しながらレゟルシン11.3
を22カセむ゜ヌゟ氎溶液に溶かした溶液ず、
37ホルマリン37.0を加えお20℃で撹拌しお粘
調な反応液を埗た。この反応液をクロルベンれン
を溶剀ずしお、垞法によりパヌル重瞮合を行う
ず、60の小球状に架橋䞉次元化した暹脂が埗ら
れた。 この暹脂を実斜䟋ず同様にしお掗浄凊理する
ず黒耐色の暹脂が埗られた、その含氎率は52で
あ぀た。 実斜䟋  プノヌル9.7、37ホルマリン8.4、トリ
スヒドロキシメチルアミノメタン12.5およ
び氎10の混合液を70℃で時間加熱撹拌しお初
期生成物を埗た。この初期生成物に30カセむ゜
ヌダ氎溶液13.7、ポリ゚チレンむミン日本觊
媒化孊株補゚ポミンSP−0183.0および
37ホルマリン33.3を添加しお30℃で時間撹
拌したのち、〜20℃に冷华しながら、レゟルシ
ン8.8を30カセむ゜ヌダ氎溶液10.7に溶か
した溶液ず、37ホルマリン33.3を加えお20℃
で撹拌しお粘調な反応液を埗た。この反応液をパ
ヌクロル゚チレンを溶剀ずしお、垞法によりパヌ
ル重瞮合を行うず、46.5の小球状に架橋䞉次元
化した暹脂が埗られた。 この暹脂を実斜䟋ず同様にしお掗浄凊理する
ず、黒耐色の暹脂が埗られ、その含氎率は55で
あ぀た。 比范䟋  ゚チレンゞアミンを䜿甚しない以倖は、実斜䟋
ず党く同様にしおパヌル重瞮合を行い、168
の小球状に架橋䞉次元した暹脂を埗た。 この暹脂を実斜䟋ず同様にしお掗浄凊理する
ず、黒耐色の暹脂が埗られ、その含氎率は54で
あ぀た。 実斜䟋〜比范䟋〜 11.8mg濃床のホり玠を含有する濃厚塩氎溶
液50mlに、実斜䟋〜で補造されたキレヌト暹
脂を湿最状態で各々1.0ml添加し、振ずうさせな
がら25℃で24時間接觊させた。 その結果、凊理埌の氎溶液䞭のホり玠濃床を衚
に瀺す。 なお、氎溶液䞭のホり玠濃床は、クルクミン−
シナり酞法新実隓化孊講座、巻、䞞善、1975
幎、78−79頁により枬定した。たた、凊理前の
濃厚塩氎溶液の組成は次の通りであ぀た。
11.8mg、NaCl168、KCl22
、CaCl21.7、ZnCl20.62、pb
NO320.16 さらに比范䟋ずしお、比范䟋で補造した暹脂
垂販の匷塩基性むオン亀換暹脂および垂販のホ
り玠遞択性むオン亀換暹脂を同様にしお甚いお
枬定した。 その結果を第衚に瀺す。
The present invention relates to a novel chelating ion exchange resin (hereinafter referred to as chelate resin) having a specific adsorption ability for boron, a method for producing the same, and a method for adsorption treatment thereof. Boron has a Clarke number of 1 x 10 -3 and is widely distributed on the earth. Although it does not exist naturally as a simple substance, it exists in soil and brine as boric acid or borate ions, and in seawater. It also exists as metaboric acid at a rate of 4.6 ppm. For this reason, when water is used for agricultural purposes or in industrial fields such as magnesium metal smelting using magnesium chloride collected from seawater as a raw material, boron present in trace amounts can cause harmful effects in various ways. Also,
Boron is used as a structural material in nuclear power plants because of its excellent ability to capture thermal neutrons. The boron content of its structural materials and chemicals needs to be low. Furthermore, strongly basic ion exchange resins are used to remove trace amounts of boric acid from the primary cooling water of pressurized light water reactors. However, with these strongly basic ion exchange resins,
Since there is no selectivity for borate ions, the coexistence of other anions will significantly reduce the boron capture ability, making it impossible to reduce the boron capture ability to below the permissible limit (0.02 ppm). On the other hand, so far, resins that selectively adsorb boron have been commercially available from Rohm and Haas under the trade name Amberlite IRA-743 (for example, Trace Elementus Ishi-743).
The Environment (Trace Elements in the
Environment). 123, pp. 139-143, 1973) This known adsorbent has excellent selectivity for boron, but since it uses styrene as a resin matrix, it compensates for its poor hydrophilicity by forming a large network. However, the resin generally lacks functional strength, has poor organic stain resistance, and cannot withstand long-term use. Furthermore, since the ligand is introduced into the resin matrix through a polymer reaction, more N-methyl-D-glucamine is consumed than necessary, and the process is complicated, which poses a problem in terms of cost. In view of these circumstances, the present inventors have developed a chelate resin that has excellent selective adsorption ability, especially for boron, is hydrophilic, has a high adsorption rate, and has excellent mechanical strength and organic stain resistance. Moreover, as a result of intensive research with the aim of producing it at a low cost, we discovered that all of the above objectives could be achieved by turning a compound in which aminopolyalcohols are introduced into the phenol nucleus into a resin, and we have previously applied for a patent ( (Special Application No. 56-81475). However, although this resin is highly selective for boron and has a high exchange capacity,
They tended to have somewhat poor heat resistance and alkali resistance, and their adsorption properties at low concentrations were not as good as those of commercially available products. In view of this, the present inventor conducted further research and discovered that when aliphatic polyamines are made into a resin as one component, they have excellent heat resistance and alkali resistance, and the adsorption characteristics at low concentrations are improved. , arrived at the present invention. That is, the present invention provides a phenol-based chelating ion exchange resin in which a chelate group is introduced into the phenol nucleus of a phenol, in which the chelate group is an aminopolyalcohol, and the resin matrix constituting the ion exchange resin is a phenol or an aldehyde. A chelating ion exchange resin characterized by being a crosslinked polymer consisting of polyamines and aliphatic polyamines, and aminopolyalcohols introduced into the phenol nucleus by reacting phenols, aldehydes and aminopolyalcohols. An initial product is obtained, and then the obtained initial product is polycondensed with phenols, aldehydes, and aliphatic polyamines in the presence of an alkaline catalyst to form a three-dimensional crosslink. A method for producing a chelating ion exchange resin, which is a polyalcohol and in which the resin matrix constituting the ion exchange resin is a crosslinked polymer consisting of phenols, aldehydes, and aliphatic polyamines, and a method for producing a chelating ion exchange resin in an aqueous solution using such a chelate resin. The present invention relates to an adsorption treatment method characterized by selectively adsorbing heavy metal ions. Examples of the phenols used in the present invention include phenol, o-ethylphenol/m
-Ethylphenol, p-ethylphenol, bisphenol A, o-cresol, m-cresol, p-cresol, 2,3-xylenol,
2,5-xylenol, 3,4-xylenol,
Examples include alkyl-substituted phenols such as 3,5-xylenol, polyhydric phenols such as resorcinol and catechol, and compounds with phenolic hydroxyl groups such as α-naphthol and β-naphthol, and these can be used alone or in combination. However, among them, phenol, bisphenol A, o
-Cresol, m-cresol, p-cresol, 3,5-xylenol, resorcinol, and catechol are preferred, and phenol is particularly preferred. Examples of the aldehydes used in the present invention include formaldehyde, paraformaldehyde, aldehyde derivatives such as hexamethylenetetramine, aliphatic aldehydes such as acetaldehyde and propionaldehyde, aromatic aldehydes such as benzaldehyde, and heterocyclic aldehydes such as furfural. These include aldehydes, which can be used alone or in combination, but among them, formaldehyde, paraformaldehyde,
Hexamethylenetetramine is preferred. The aminopolyalcohols used in the present invention may be of any type as long as they have one amino group and two or more alcoholic hydroxyl groups in the same molecule, but especially N-methyl-D
Glucamine, N-ethyl-D-glucamine, N-
General formula () of methyl-D-mannosamine, N-ethyl-D-mannosamine, etc. (However, R1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 1 to 4.) Compounds represented by, tris(hydroxylmethyl)aminomethane, tris(hydroxymethyl)
-N-methyl-aminomethane, tris(hydroxylmethyl)-N-ethylaminomethane, etc. general formula () (However, R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.) Compounds represented by the formula are preferred. Examples of aliphatic polyamines used in the present invention include diethylenetriamine, triethylenetetramine, and the like having the general formula () H 2 N (CH 2 CH 2 NH) o CH 2 CH 2 NH 2 () (where n is 1 (represents an integer from 2 to 10), a compound represented by the general formula () H 2 N (CH 2 ) mNH 2 () () (where m represents an integer from 2 to 10) such as ethylenediamine, trimethylene diamine, etc. The compounds shown are preferably used. Linear or branched polyethyleneimine can also be used, but its molecular weight is, for example, 300 to 70,000, particularly 300,000 to 70,000.
~1800 is preferred. The chelate resin of the present invention can be produced, for example, by the following method. First, in the first step, phenols, aldehydes, and aminopolyalcohols are reacted in equimolar amounts to synthesize an initial product in which aminopolyalcohols are introduced into phenol nuclei. In general, the temperature conditions for the synthesis reaction of the initial product are
The reaction is carried out at a temperature range of 30 to 100°C, preferably 50 to 90°C, and a reaction time of 1 to 3 hours is generally sufficient, but the reaction may be carried out for a longer time. Next, in the second step, aldehydes, aliphatic polyamines, and phenols are added to the initial product obtained in the first step, and polycondensation is performed in the presence of an alkaline catalyst to effect tertiary crosslinking. At that time,
The aldehyde may be added at a ratio of 3 to 10 mol, preferably 4 to 9 mol, per 1 mol of the aminopolyalcohol. Further, the aliphatic polyamino compound may be added at a ratio of 0.1 to 2.0 mol, preferably 0.3 to 0.8 mol, per 1 mol of the aminopolyalcohol. Furthermore, as phenols, per mole of amino alcohol,
It may be added at a rate of 0.3 to 2.0 mol, preferably 0.7 to 1.2 mol. Next, the temperature and time required for the three-dimensional crosslinking reaction are not necessarily constant depending on the type of raw materials, the type of reaction solvent, and other conditions, but generally 40~
1-10 hours at 150℃, preferably 2-10 hours at 60-130℃
You can choose between 7 hours. In addition, the resin can be molded into any shape such as spherical, powdered, soul-like, membrane-like, or thread-like, but it is usually preferable to form it into small spheres, and conventionally known small sphere-shaped chelate resins can be used. By carrying out pearl polycondensation in an organic solvent that is immiscible with water using exactly the same method as the manufacturing method, granulation and three-dimensional crosslinking can be simultaneously performed to obtain a spherical chelate resin. Examples of organic solvents used in this case include carbon tetrachloride,
Halogenated aliphatic hydrocarbons such as chloroform, trichlorethylene, perchlorethylene, chloral, dichloroethylene, dichloroethane, 1,2-dichloropropane, chlorobenzene, o
- Halogenated aromatic hydrocarbons such as dichlorobenzene, p-dichlorobenzene, and bromobenzene; aromatic hydrocarbons such as benzene, toluene, o-xylene, m-xylene, and p-xylene;
Examples include alicyclic hydrocarbons such as cyclohexane and cyclopropane, and cyclic alcohols such as cyclohexanol and cyclopentanol.
The reaction temperature and reaction time during pearl polycondensation are not necessarily constant depending on the type of reaction product, type of solvent, and other conditions, but are usually 60 to 150°C.
1 to 7 hours at 90 to 130°C, preferably 2 to 5 hours at 90 to 130°C, but in order to obtain a chelate resin with as uniform a composition as possible, the temperature of the polycondensation reaction should be 20 to 90°C. It is desirable to control and then gradually increase the temperature. Finally, the reaction is allowed to proceed under reflux at a temperature of 90 to 130°C, and once the desired condensation stage is reached, dehydration is performed by heating under reduced pressure or normal pressure to obtain the desired resin composition. can. In addition, examples of alkaline polymerization catalysts used in the three-dimensional crosslinking reaction include alkali and alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and calcium hydroxide, ammonia, Examples include amines such as trimethylamine and triethylamine, and cyclic amines such as pyridine, piperidine, and piperazine. The resin produced as described above is used as a chelate resin as it is or after washing. Since the chelate resin of the present invention exhibits an excellent trapping effect on metal ions, particularly boron, it can selectively adsorb and remove boric acid or boron ions present in trace amounts in all boron-containing solutions, especially concentrated salt water. Can be done. Therefore, it is useful for removing trace amounts of boron present in concentrated magnesium chloride and for removing trace amounts of boron present in dust incinerator smoke washing wastewater. It also has the ability to adsorb arsenic and tellurium, which exist in a solution similar to boron, so they can be used in the same way. The chelate resin of the present invention can be used in various ways depending on its shape; for example, it can be packed in a column or tower and a liquid containing phosmine or other metals is passed therethrough, or the resin of the present invention can be used in a variety of ways. It is used by methods such as immersing the metal in a metal-containing solution. In this case, the temperature of the metal-containing solution is suitably between 5°C and 95°C, preferably between 15°C and 50°C, and the time for contacting the metal ions with the resin is suitably between 1 minute and 50 hours. , preferably between 10 minutes and 2 hours.
In addition, metal ions can be easily recovered from the resin of the present invention that has adsorbed metal ions by bringing them into contact with a mineral acid aqueous solution or an alkaline aqueous solution in the same way as commercially available chelate resins and ion exchange resins, and they can also be regenerated. The resin can be used over and over again. As detailed above, the chelate resin of the present invention can be obtained by a simple manufacturing method, exhibits a special metal trapping effect, particularly an excellent trapping effect for low concentrations of boron, and contains an amino group. It can be used as a weakly basic ion exchange resin. Moreover, it is practical because it can be recycled and reused many times with a simple acid treatment, and it is a new resin that can be used for new applications different from conventional chelate resins. Next, the present invention will be explained in more detail with reference to Examples. In addition, % in an example represents weight %. Example 1 Phenol 29.1g, 37% formalin 25.0g, N
A mixture of 60.0 g of -methyl-D-glucamine and 10 g of water was heated and stirred at 80°C for 2 hours to obtain an initial product. Add 22% caustic soda solution to this initial product.
After adding 56.1 g, 11.2 g of ethylenediamine, and 100 g of 37% formalin and stirring at 30°C for 1 hour,
While cooling to ~20℃, add 33.9g of resorcin to 22%
A solution dissolved in an aqueous solution of caustic soda and 113 g of 37% formalin were added and stirred at 20°C to obtain a viscous reaction liquid. When this reaction solution was subjected to pearl polycondensation using perchlorethylene as a solvent in a conventional manner, a three-dimensional crosslinked resin was obtained in the form of small spheres weighing 180 g. After washing this resin with water, it was neutralized with 4.0% hydrochloric acid, then treated with a 4.0% caustic soda aqueous solution, and then sufficiently washed with water until the phenolphthalein became colorless, resulting in a blackish brown resin with a water content of 50%. It was %. Example 2 Catechol 11.0g, 37% formalin 8.4g, N
A mixed solution of 20.0 g of -methyl-D-glucamine and 5 g of water was heated and stirred at 90°C for 1 hour to obtain an initial product. Add 22% caustic soda solution to this initial product.
18.7g, diethylenetriamine 6.4g and 37%
After adding 33.3 g of formalin and stirring at 40°C for 1 hour, add 11.3 g of resorcin while cooling to 5-20°C.
A solution of g dissolved in a 22% caustic acid aqueous solution,
37.0 g of 37% formalin was added and stirred at 20°C to obtain a viscous reaction liquid. This reaction solution was subjected to pearl polycondensation using a conventional method using chlorobenzene as a solvent, to obtain 60 g of a crosslinked three-dimensional resin in the form of small spheres. When this resin was washed in the same manner as in Example 1, a dark brown resin was obtained, and its water content was 52%. Example 3 A mixed solution of 9.7 g of phenol, 8.4 g of 37% formalin, 12.5 g of tris(hydroxymethyl)aminomethane and 10 g of water was heated and stirred at 70° C. for 3 hours to obtain an initial product. This initial product contains 13.7 g of 30% caustic soda aqueous solution, 3.0 g of polyethyleneimine (Epomin SP-018 manufactured by Nippon Shokubai Kagaku Co., Ltd.) and
After adding 33.3 g of 37% formalin and stirring at 30°C for 1 hour, a solution of 8.8 g of resorcinol dissolved in 10.7 g of a 30% caustic soda aqueous solution and 33.3 g of 37% formalin were added while cooling to 5 to 20°C. 20℃
A viscous reaction solution was obtained by stirring. This reaction solution was subjected to pearl polycondensation using perchloroethylene as a solvent in a conventional manner to obtain 46.5 g of a crosslinked three-dimensional resin in the form of small spheres. When this resin was washed in the same manner as in Example 1, a dark brown resin was obtained, and its water content was 55%. Comparative Example 1 Pearl polycondensation was carried out in the same manner as in Example 1 except that ethylenediamine was not used, and 168g
A three-dimensional crosslinked resin in the form of small spheres was obtained. When this resin was washed in the same manner as in Example 1, a dark brown resin was obtained, and its water content was 54%. Examples 4 to 6 Comparative Examples 2 to 4 1.0 ml of each of the chelate resins produced in Examples 1 to 3 was added in a wet state to 50 ml of a concentrated salt aqueous solution containing 11.8 mg/concentration of boron, and the mixture was shaken. Contact was carried out for 24 hours at 25°C. As a result, the boron concentration in the aqueous solution after treatment is shown in Table 1. In addition, the boron concentration in the aqueous solution is curcumin-
Oxalic acid method (New Experimental Chemistry Course, Volume 9, Maruzen, 1975)
2003, pp. 78-79). The composition of the concentrated salt aqueous solution before treatment was as follows. (B:
11.8mg/, NaCl; 168g/, KCl; 22g/
, CaCl 2 ; 1.7 g/, ZnCl 2 ; 0.62 g/, pb
(NO 3 ) 2 ; 0.16 g/) Further, as a comparative example, the resin produced in Comparative Example 1, a commercially available strong basic ion exchange resin A, and a commercially available boron selective ion exchange resin B were similarly used for measurement. The results are shown in Table 1.

【衚】 衚から本発明のキレヌト暹脂は、公知のホり
玠遞択性むオン亀換暹脂よりも䜎濃床偎でのホり
玠吞着胜が優れおおり、たた匷塩基性むオン亀換
暹脂では、陀去胜は党くないこずが明らかであ
る。 実斜䟋  10mg濃床のホり玠を含有する氎溶液
0.025MKH2PO4−K2HPO4緩衝溶液
でPH7.6に調敎したホり玠含有氎溶液〕50mlに
実斜䟋で補造されたキレヌト暹脂1.0mlを添加
し、振ずうしながら25℃で24時間接觊させた。 その結果、凊理埌の氎溶液䞭のホり玠は怜出さ
れなか぀た。
[Table] From Table 1, the chelate resin of the present invention has better boron adsorption ability at low concentrations than known boron-selective ion exchange resins, and has no removal ability at all with strongly basic ion exchange resins. That is clear. Example 7 Aqueous solution containing 10 mg/concentration of boron (boron-containing aqueous solution adjusted to PH = 7.6 with 0.025 MKH 2 PO 4 -K 2 HPO 4 (1:4) buffer solution) prepared in Example 1 in 50 ml 1.0 ml of chelate resin was added, and the solution was kept in contact with the solution for 24 hours at 25° C. while shaking. As a result, no boron was detected in the aqueous solution after the treatment.

Claims (1)

【特蚱請求の範囲】  プノヌル類のプノヌル栞にキレヌト基を
導入したプノヌル系キレヌト性むオン亀換暹脂
においお、キレヌト基がアミノポリアルコヌル類
であり、か぀むオン亀換暹脂を構成する暹脂母䜓
がプノヌル類、アルデヒド類及び脂肪族ポリア
ミン類からなる架橋重合䜓であるこずを特城ずす
るキレヌト性むオン亀換暹脂。  プノヌル類、アドデヒド類及びアミノポリ
アルコヌル類を反応させおプノヌル栞にアミノ
ポリアルコヌル類が導入された初期生成物を埗、
次いで埗られた初期生成物ず、プノヌル類、ア
ルデヒド類及び脂肪族ポリアミン類ずをアルカリ
性觊媒の存圚䞋に重瞮合しお架橋䞉次元化するこ
ずを特城するキレヌト基がアミノポリアルコヌル
類であり、か぀むオン亀換暹脂を構成する暹脂母
䜓がプノヌル類、アルデヒド類及び脂肪族ポリ
アミン類からなる架橋重合䜓であるキレヌト性む
オン亀換暹脂の補造方法。  キレヌト基がアミノポリアルコヌル類であ
り、か぀むオン亀換暹脂を構成する暹脂母䜓がフ
゚ノヌル類、アルデヒド類及び脂肪族ポリアミン
類からなる架橋重合䜓であるキレヌト性むオン亀
換暹脂を甚いお氎溶液䞭の金属むオンを遞択的に
吞着させるこずを特城ずする吞着凊理方法。
[Scope of Claims] 1. A phenolic chelating ion exchange resin in which a chelate group is introduced into the phenol nucleus of a phenol, in which the chelate group is an aminopolyalcohol, and the resin matrix constituting the ion exchange resin is a phenol, A chelating ion exchange resin characterized in that it is a crosslinked polymer comprising aldehydes and aliphatic polyamines. 2 Reacting phenols, adehydes and aminopolyalcohols to obtain an initial product in which aminopolyalcohols are introduced into the phenol nucleus,
Then, the obtained initial product is polycondensed with phenols, aldehydes and aliphatic polyamines in the presence of an alkaline catalyst to form a three-dimensional crosslinked chelate group, which is an aminopolyalcohol. and a method for producing a chelating ion exchange resin, wherein the resin matrix constituting the ion exchange resin is a crosslinked polymer consisting of phenols, aldehydes, and aliphatic polyamines. 3 Metal in an aqueous solution using a chelating ion exchange resin whose chelating group is an aminopolyalcohol and whose resin matrix is a crosslinked polymer consisting of phenols, aldehydes, and aliphatic polyamines. An adsorption treatment method characterized by selectively adsorbing ions.
JP2865582A 1982-02-23 1982-02-23 Chelating ion exchange resin and its manufacture and adsorption treatment Granted JPS58146448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2865582A JPS58146448A (en) 1982-02-23 1982-02-23 Chelating ion exchange resin and its manufacture and adsorption treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2865582A JPS58146448A (en) 1982-02-23 1982-02-23 Chelating ion exchange resin and its manufacture and adsorption treatment

Publications (2)

Publication Number Publication Date
JPS58146448A JPS58146448A (en) 1983-09-01
JPS631897B2 true JPS631897B2 (en) 1988-01-14

Family

ID=12254517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2865582A Granted JPS58146448A (en) 1982-02-23 1982-02-23 Chelating ion exchange resin and its manufacture and adsorption treatment

Country Status (1)

Country Link
JP (1) JPS58146448A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900012339A1 (en) 2019-07-19 2021-01-19 Consiglio Nazionale Ricerche Macroporous polymer cryogel based on N-alkyl-D-glucamine to retain and / or remove toxic contaminants
IT201900012624A1 (en) 2019-08-26 2021-02-26 Stazione Zoologica Anton Dohrn Method and kit for predicting cell death in response to biotic and / or abiotic stimuli

Also Published As

Publication number Publication date
JPS58146448A (en) 1983-09-01

Similar Documents

Publication Publication Date Title
JPS6051491B2 (en) Production method and adsorption treatment method for phenol/aldehyde/chelate resin
Lieberzeit et al. Polyvinyl chloride modifications, properties, and applications
US3969244A (en) Method of adsorbing heavy metals
US4250031A (en) Phenolic chelate resin and method of adsorption treatment
US4197391A (en) Phenolic chelate resin and method of adsorption treatment
JPS5817783B2 (en) Hetero-macrocyclic compounds supported on solid surfaces
DE2403158C2 (en) Process for the production of phenolic resins and their use as complexing agents for heavy metal ions
JPS631897B2 (en)
JPS6259729B2 (en)
US2373547A (en) Method of removing cations from liquid media
US2373549A (en) Method of removing cations from liquid media
JP3853361B2 (en) Method for separating cesium from industrial effluents containing other alkali metals using poly (hydroxyarylene) polymer resin
US2373548A (en) Process of removing cations from liquid media
JP3761601B2 (en) Method for regenerating sulfonated aromatic organic polymeric ion exchange resin beds with deactivated aminoorganomercaptan groups
JPS58101108A (en) Chelate-forming group-containing phenolic resin, its manufacture and adsorption treatment using the same
Akeroyd et al. Alkali adsorption by synthetic resins
RU2015996C1 (en) Process for preparing ion-exchange sorbent
JPS6160846B2 (en)
JPS5959715A (en) Chelate group-containing phenolic resin, its production and adsorption treatment
US3803059A (en) Snake-cage resins
US2582098A (en) Phenol-aldehyde-amine anion exchange resin
JP2549879B2 (en) Manufacturing method of chelating resin
JPH0218135B2 (en)
Castro et al. Heterogenization of copper catalyst for the oxidation of phenol, a common contaminant in industrial wastewater
JPS59215309A (en) Phenolic resin having ion exchange group, its production and adsorption treatment therewith