JPS63188773A - Voltage measuring instrument - Google Patents
Voltage measuring instrumentInfo
- Publication number
- JPS63188773A JPS63188773A JP62021377A JP2137787A JPS63188773A JP S63188773 A JPS63188773 A JP S63188773A JP 62021377 A JP62021377 A JP 62021377A JP 2137787 A JP2137787 A JP 2137787A JP S63188773 A JPS63188773 A JP S63188773A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- field detection
- voltage
- detection element
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電界を光学的に検出して、高電圧を高精度で測
定する電圧測定器に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a voltage measuring instrument that optically detects an electric field and measures high voltage with high precision.
高電圧を測定する装置としては、例えば、対向させた2
枚の箔電極間に高電圧を与えて、その箔電極の反発力を
利用して指針を1辰らせる静電電圧計が知られている。As a device for measuring high voltage, for example, two
An electrostatic voltmeter is known in which a high voltage is applied between a pair of foil electrodes and the pointer is moved by one arm using the repulsive force of the foil electrodes.
これとは別に、例えば実開昭59−106068号等に
より、電界を与えた場合に、ある種の結晶の屈折率テン
ソルが電界強度に比例して変化する、所謂ポンケルス効
果を利用して、電界強度を光学的に測定する電界検出器
が知られている。Separately, for example, Utility Model Application Publication No. 59-106068, etc., utilizes the so-called Ponkels effect, in which when an electric field is applied, the refractive index tensor of a certain type of crystal changes in proportion to the electric field strength. Electric field detectors that optically measure intensity are known.
前述した静電電圧計は、50kV程度の高電圧を測定で
きるが、対向した箔電極相互の反発力により指針を駆動
する構造であるため高い測定積度が得られず、特に振動
が加わった場合には測定誤差が多くなる等の問題がある
。The electrostatic voltmeter mentioned above can measure high voltages of about 50 kV, but because it has a structure in which the pointer is driven by the repulsive force between opposing foil electrodes, it is difficult to obtain a high measurement volume, especially when vibration is applied. has problems such as increased measurement errors.
一方の電界検出器は高い測定精度が得られるが、電界が
生している空間にこれを配置して該空間の電界強度をU
Q定するものであって、測定すべき電圧を電界検出器に
直接課電して、電圧を測定する用途には通用できない問
題がある。On the other hand, an electric field detector can obtain high measurement accuracy, but if it is placed in a space where an electric field is generated, the electric field strength in that space can be measured by U.
This method has a problem in that it cannot be used in applications where the voltage to be measured is directly applied to an electric field detector to measure the voltage.
c問題点を解決するための手段〕
本発明は斯かる問題に鑑みてなされたものであって、測
定すべき電圧を直接に課電し、課電された電圧をポッケ
ルス効果を利用して高ネn度に測定し得る、小型軽量の
電圧測定器を提供することを目的とする。Means for Solving Problem c] The present invention has been made in view of the above problem, and it applies the voltage to be measured directly and increases the applied voltage by using the Pockels effect. It is an object of the present invention to provide a small and lightweight voltage measuring device that can measure voltages with ease.
本発明に係る電圧測定器は、測定すべき電圧を課電すべ
く配設した測定電極と、該測定電極間に配設され、入射
しだ円偏光波が電界により楕円偏光波となって出射する
電界検出素子と、前記測定電極及び前記電界検出素子相
互の間に介装している誘電体と、前記電界検出素子に入
射すべき光を発する発光部、電界検出素子が出射した光
を捉えて光電変換する受光部及び受光部で得た信号を、
前記測定電極間の電圧値情報に変換する電圧測定部を設
けた測定器本体とを備えたことを特徴とする。The voltage measuring device according to the present invention includes a measuring electrode arranged to apply a voltage to be measured, and a measuring electrode arranged between the measuring electrodes, and an incident elliptical polarized light wave is output as an elliptically polarized light wave by an electric field. a dielectric interposed between the measurement electrode and the electric field detection element, a light emitting part that emits light that should be incident on the electric field detection element, and a light emitting part that captures the light emitted by the electric field detection element. The photodetector converts photoelectrically and the signal obtained by the photodetector.
The measuring device is characterized by comprising a measuring device main body provided with a voltage measuring section that converts into voltage value information between the measuring electrodes.
(作用〕
電界検出素子に入射した円偏光波は、該電界検出素子を
透過する。(Operation) The circularly polarized light wave incident on the electric field detection element is transmitted through the electric field detection element.
測定すべき電圧を測定電極に課電すると、測定電極間に
配設されている電界検出素子には電界が作用する。この
電界検出素子内の円偏光波は、その電界により電界検出
方向を大径とし、それと直交する方向を小径とする楕円
偏光波となる。この楕円偏光波の偏平度は電界強度が強
い程大きく、また電界強度が弱い程小さくなるから、そ
の楕円偏光波の特定方向の大きさを検出することにより
電界強度が求まり、その電界強度に電極間距離に相当す
る係数を乗じて電圧値を得る。When a voltage to be measured is applied to the measurement electrodes, an electric field acts on the electric field detection element disposed between the measurement electrodes. The circularly polarized light wave within this electric field detection element becomes an elliptically polarized light wave that has a large diameter in the electric field detection direction and a small diameter in the direction perpendicular to the electric field detection direction due to the electric field. The degree of flatness of this elliptically polarized light wave increases as the electric field strength increases, and decreases as the electric field strength weakens.The electric field strength can be determined by detecting the size of the elliptically polarized light wave in a specific direction, and the electric field strength can be adjusted to Multiply by a coefficient corresponding to the distance between the two to obtain the voltage value.
Ullll極電極電界検出素子相互間には誘電体を介装
させているから、電界検出素子は高電圧に耐え、高電圧
が高精度に測定される。Since a dielectric material is interposed between the Ullll electrode electric field detection elements, the electric field detection elements can withstand high voltage and high voltage can be measured with high precision.
以下本発明をその実施例を示す図面によって詳述する。 The present invention will be described in detail below with reference to drawings showing embodiments thereof.
第1図は50kvまで測定できる本発明に係る電圧測定
器を示す断面図である。第1図において例えばセラミ7
りからなる円筒状の遮光筒体1の軸方向の両端部の夫々
には、適宜の絶縁物からなる蓋体2A、 2Bを螺合し
て取付けている。一方の蓋体2Aの中心には球状の測定
用端子3を取付けているネジ軸4がt@通しており、こ
のネジ軸4は該ネジ軸4に螺合し蓋体2Aの内、外側に
夫々位置している長寸ナフト5とナツト6とにより蓋体
2Aに固定されている。前記長寸ナツト5の先端側には
、周面が円弧状である円板状の測定電極7の中心に突設
させたネジ軸8を螺入している。このネジ軸8にはナツ
ト9が螺合されていて、このナツト9の締付けにより測
定電極7を長寸ナツト5に固定でき、測定電極7が蓋体
2Aに固定されている。他方の蓋体2Bの中心には、前
記測定用端子3と同寸同形状の測定用端子10を取付け
たネジ軸11が挿通しており、このネジ軸11は該ネジ
軸11に蚊合し、蓋体2Bの内、外側に夫々位置してい
るナツト12とナノH3とにより蓋体2Bに固定されて
いる。ネジ軸11の先端には前記測定電極7と同寸同形
状の測定電極14を螺合させて取付けている。この測定
電極I4は、前記測定電極7と同心的で且つ、対向して
おり、対向した面同士が平行している。なお、測定電極
7及び14の直径はともに3cI!1であり、その対向
間距離は3cmに選定されている。それ故、この両測定
電極7,14に課電すると、それらの間には測定電極7
,14の対向している面に平行な電界が生じ、測定電極
7.14の中心部は平等電界となる。FIG. 1 is a sectional view showing a voltage measuring device according to the present invention that can measure up to 50 kV. In Fig. 1, for example, ceramic 7
Covers 2A and 2B made of a suitable insulator are screwed and attached to both axial ends of the cylindrical light-shielding tube 1 made of aluminum. A screw shaft 4 to which a spherical measuring terminal 3 is attached passes through the center of one lid 2A, and this screw shaft 4 is screwed onto the screw shaft 4 and extends inside and outside the lid 2A. It is fixed to the lid body 2A by a long napft 5 and a nut 6 located respectively. A threaded shaft 8 is screwed into the tip end of the long nut 5, and the screw shaft 8 projects from the center of a disk-shaped measuring electrode 7 whose circumferential surface is arcuate. A nut 9 is screwed onto this screw shaft 8, and by tightening this nut 9, the measuring electrode 7 can be fixed to the long nut 5, and the measuring electrode 7 is fixed to the lid 2A. A screw shaft 11 with a measuring terminal 10 of the same size and shape as the measuring terminal 3 is inserted through the center of the other lid body 2B, and this screw shaft 11 is fitted with the screw shaft 11. , is fixed to the lid body 2B by a nut 12 and a nano H3 located on the inside and outside of the lid body 2B, respectively. A measuring electrode 14 having the same size and shape as the measuring electrode 7 is screwed onto the tip of the screw shaft 11. This measuring electrode I4 is concentric with and facing the measuring electrode 7, and the facing surfaces are parallel to each other. Note that the diameters of the measurement electrodes 7 and 14 are both 3 cI! 1, and the distance between the opposing sides is selected to be 3 cm. Therefore, when electricity is applied to both measurement electrodes 7 and 14, measurement electrode 7 is placed between them.
, 14 are generated parallel to each other, and a uniform electric field is generated at the center of the measurement electrodes 7.14.
遮光筒体1の軸方向中央部には、狭幅で短寸の開口部1
aが、遮光筒体1の軸方向と直角に形成されている。こ
の開口部1aには、電界検出部16を取付けた電界検出
部支持体15が螺合して取付けられている。電界検出部
支持体15及び電界検出部I6は第2図に斜視図で示す
如く構成されている。電界検出部支持体15は直方体状
であって、電界検出部16が位置する側面15aは遮光
筒体1の内周面に10う円弧状に形成されていて、電界
検出部16の周辺の電界を乱さないようにしている。こ
の電界検出部支持体15は例えばセラミックからなり、
この電界検出部支持体15内には保護チューブ16cを
外嵌した2本の光ファイバ16a、 16bを貫通させ
ている。A narrow and short opening 1 is provided in the axial center of the light-shielding cylinder 1.
a is formed perpendicular to the axial direction of the light shielding cylinder 1. An electric field detection part support 15 having an electric field detection part 16 attached thereto is screwed and attached to this opening 1a. The electric field detection part support 15 and the electric field detection part I6 are constructed as shown in a perspective view in FIG. The electric field detection unit support 15 has a rectangular parallelepiped shape, and a side surface 15a on which the electric field detection unit 16 is located is formed in the shape of a 10-circular arc on the inner peripheral surface of the light-shielding cylinder 1, and the electric field around the electric field detection unit 16 is I try not to disturb it. This electric field detection part support body 15 is made of ceramic, for example,
Two optical fibers 16a and 16b each having a protective tube 16c fitted therethrough are passed through the electric field detection portion support 15.
そして光ファイバ16a、 16bの先端側には遮光性
の保護管16d、 16eが接続されており、一方の保
護管16d内には後述するレンズ系21.偏光子22、
補償板23が配設され、他方の保護管16e内には後述
する検光子25が配設されている。更に、保護管16d
。Light-shielding protection tubes 16d and 16e are connected to the distal ends of the optical fibers 16a and 16b, and a lens system 21. polarizer 22,
A compensating plate 23 is provided, and an analyzer 25, which will be described later, is provided inside the other protective tube 16e. Furthermore, the protection tube 16d
.
16eの先端側には、それらに跨っており水晶からなる
電界検出素子16fが一体的に取付けられている。An electric field detection element 16f made of crystal is integrally attached to the distal end side of the element 16e so as to straddle them.
電界検出素子16fは前記測定電極7と14とが対向す
る間の中央で測定電極7.14の略中心に位置させ(第
1図参照)、電界検出素子16Fと測定電極7.14と
が平行し対向している。そして、遮光筒体l内には、電
界検出素子16fが水晶である場合は、その水晶の誘電
率ε=4に略等しい誘電率ε=3.5である例えばポリ
ウレタン樹脂の誘電体17を注入して、測定電極7,1
4及び電界ヰ★出素子16fをモールドしている。この
誘電体17によるモールドは、例えば一方の蓋体2Aを
取外してその開口部から誘電体17を注入し、蓋体2八
を取付けた場合に遮光筒体l内に位置する深さだけ残し
た状態で蓋体2Aを取付けて開口部を閉じ、注入した誘
電体17を硬化させている。The electric field detection element 16f is located approximately at the center of the measurement electrode 7.14 at the center between the opposed measurement electrodes 7 and 14 (see FIG. 1), and the electric field detection element 16F and the measurement electrode 7.14 are parallel to each other. They are facing each other. When the electric field detection element 16f is made of crystal, a dielectric material 17 made of polyurethane resin, for example, having a dielectric constant ε=3.5, which is approximately equal to the dielectric constant ε=4 of the crystal, is injected into the light-shielding cylinder l. Then, the measurement electrodes 7, 1
4 and an electric field output element 16f are molded. The mold made of this dielectric material 17 is made by, for example, removing one lid body 2A and injecting the dielectric material 17 through its opening, leaving only a depth that will be located inside the light-shielding cylinder l when the lid body 28 is attached. In this state, the lid 2A is attached to close the opening, and the injected dielectric 17 is cured.
第3図は電界検出部と測定器本体とを示す模式図である
。第3図において、測定器本体30の発光部20が発し
た光(ランダムな方向に1辰動成分をもっている)〔第
4図(al参照〕は、光ファイバ16aからレンズ系2
1を経て偏光子22に入射させている。FIG. 3 is a schematic diagram showing the electric field detection section and the main body of the measuring instrument. In FIG. 3, the light emitted by the light emitting section 20 of the measuring instrument main body 30 (having one linear component in a random direction) [FIG. 4 (see al)] is transmitted from the optical fiber 16a to the lens system 20.
1 and enters the polarizer 22.
そして、偏光子22に入射した光は、ここで直線偏光さ
せられ〔第4図(b)参照〕、直線偏光された光を補償
板23、例えばn+%波長板(n =0.1.2−’)
へ入射させており、これを透過する間に円偏光させるよ
うになっている〔第4図(C1参照〕。この補償板23
の出射側には直角二等辺三角柱状のプリズム24Aがそ
の直角部を形成する一方の短辺側の而241を接触させ
て設けており、プリズム2.IAに入射した光は、直角
部と対向している側面24mにて直角に反射するように
している。そしてプリズム24Aの直角部を形成する他
方の短辺側の面24nから出射した光を水晶からなる電
界検出素子16fに入射させている。The light incident on the polarizer 22 is linearly polarized here [see FIG. 4(b)], and the linearly polarized light is transferred to the compensator 23, for example, an n+% wavelength plate (n = 0.1.2 -')
The compensating plate 23
A right-angled isosceles triangular prism-shaped prism 24A is provided on the output side of the prism 2. The light incident on the IA is reflected at a right angle on the side surface 24m facing the right angle part. The light emitted from the other short side surface 24n forming the right angle portion of the prism 24A is made incident on the electric field detection element 16f made of crystal.
電界検出素子16fはZ軸方向、即ちその長寸方向に対
して垂直にカントした両端面を有し、Z軸方向に長い直
方体となっており、その円偏光波は電界検出素子16f
のZ軸方向に透過する間に電界を受けると楕円偏光波と
なり〔第4図(d+参照〕、その状態で回転しつつ出射
側へ進行するようになっている。電界検出素子16Fの
出射側には、直角二等辺三角柱状のプリズム24Bが、
直角部を形成する一方の短辺側の面24pを接触させて
設けており、プリズム24Bに入射した光は直角部と対
向する面24Qで反射するようになっている。プリズム
24Bの直角部を形成する他方の短辺側の面24rには
、それに接触させて検光子25を設けており、プリズム
24Bから出射した光を検光子25に入射させている。The electric field detection element 16f has both end faces canted perpendicularly to the Z-axis direction, that is, its long direction, and is a rectangular parallelepiped long in the Z-axis direction, and the circularly polarized light wave is transmitted to the electric field detection element 16f.
When it receives an electric field while transmitting in the Z-axis direction, it becomes an elliptically polarized wave [see Fig. 4 (d+)], and in that state, it rotates and travels toward the output side.The output side of the electric field detection element 16F , a right-angled isosceles triangular prism-shaped prism 24B,
The surfaces 24p on one short side forming the right angle portion are provided in contact with each other, and the light incident on the prism 24B is reflected by the surface 24Q facing the right angle portion. An analyzer 25 is provided in contact with the other short side surface 24r forming the right angle portion of the prism 24B, and the light emitted from the prism 24B is made to enter the analyzer 25.
検光子25は一方向の偏光波のみを反射し〔第4図(e
l参照〕、この直線偏光波を光ファイバ16bに入射さ
せている。光ファイバ16bを通過した光は受光部26
で捉えて充電変換素子により電気信号に変換し、その電
気信号を電圧測定部27に入力している。The analyzer 25 reflects only polarized waves in one direction [Fig. 4(e)
1], this linearly polarized light wave is made incident on the optical fiber 16b. The light that has passed through the optical fiber 16b is sent to the light receiving section 26.
The voltage is captured and converted into an electrical signal by a charging conversion element, and the electrical signal is input to the voltage measuring section 27.
電圧測定部27は入力された電気信号に基づいて、受光
部26の入射光の振幅測定を行う回路及び入射光の強度
レベルと電界強度との相関係数、また電界強度から電圧
値を算出するための測定電極間距離に相応する相関係数
を記憶している演算回路を備えている。このような構成
により電圧測定部27は入力された電気信号から受光部
26における入射光の強度、即ち直線偏光波の振幅に基
づき電界強度P (kV/am)を算出し、この電界強
度Pに測定電極間距離の前記数値に相応する係数3を乗
じたPX3により、測定電極に課電されている測定すべ
き電圧V (kν)を算出して、図示しない表示部に表
示するよう構成している。また電界検出素子16fは、
高い絶縁性を有し電界検出素子16fの誘電率と略等し
い誘電率のポリウレタン樹脂からなる誘電体17で測定
電極7.14とともにモールドされているから、電界検
出素子16fは測定電極7゜14に課電された高電圧か
ら絶縁され、また電界素子16fの周辺に電界の乱れ及
び部分放電が生じず、高精度で高電圧を測定することが
できる。The voltage measurement unit 27 calculates a voltage value from a circuit that measures the amplitude of the incident light on the light receiving unit 26, a correlation coefficient between the intensity level of the incident light and the electric field intensity, and the electric field intensity based on the input electric signal. It is equipped with an arithmetic circuit that stores a correlation coefficient corresponding to the distance between the measurement electrodes. With this configuration, the voltage measurement unit 27 calculates the electric field strength P (kV/am) based on the intensity of the incident light at the light receiving unit 26, that is, the amplitude of the linearly polarized wave, from the input electric signal, and The voltage V (kν) to be measured, which is applied to the measurement electrodes, is calculated by PX3, which is obtained by multiplying the value of the distance between the measurement electrodes by a coefficient 3, and is displayed on a display section (not shown). There is. Further, the electric field detection element 16f is
The electric field detection element 16f is molded with the measurement electrode 7.14 using a dielectric material 17 made of polyurethane resin which has high insulation properties and has a dielectric constant substantially equal to that of the electric field detection element 16f. It is insulated from the applied high voltage, and no electric field disturbance or partial discharge occurs around the electric field element 16f, making it possible to measure high voltage with high accuracy.
なお、電界検出素子16fのZ軸方向長さは、その長さ
に応じて偏光波の振動面のねじれ角が異なり、検光子7
にて最短径方向の成分を取出すように定める。つまり、
楕円偏光波の電界検出素子16fの入射側端面と出射側
端面との偏光波の振動面のねじれ角度が90度の整数倍
となるようにする。Note that the length of the electric field detection element 16f in the Z-axis direction varies depending on the length, and the twist angle of the vibration plane of the polarized light varies.
The component in the shortest diameter direction is determined at . In other words,
The twist angle of the vibration plane of the polarized light between the input side end face and the output side end face of the elliptically polarized wave electric field detection element 16f is set to be an integral multiple of 90 degrees.
このように構成した電圧測定器により電圧測定を行う場
合は、発光部20から光を出射させるとともに、測定用
端子3,3間に測定ずへき高電圧を与えるゆこれにより
対向している測定電極7,14間には平等電界が発生し
、その電界は電界検出素子16fに作用する。そして電
界検出素子16f内を透過する光は透過する間に電界強
度に応じた楕円偏光波となる。この楕円偏光波の偏平度
は電界強度が強い程大きく、また電界強度が弱い程小さ
くなり、このような電界の強度と相関があることは公知
である。従って、楕円偏光波の最短径方向成分を検光子
25で検出し、その光を受光部26で受光して、その光
の強弱に基づき電界強度を算出して、それに係数を乗す
ることにより電圧が測定される。When measuring voltage with a voltage measuring instrument configured in this way, the light emitting part 20 emits light, and a high voltage is applied between the measurement terminals 3 and 3 without measurement. An equal electric field is generated between 7 and 14, and this electric field acts on the electric field detection element 16f. The light passing through the electric field detection element 16f becomes an elliptically polarized light wave according to the electric field strength while passing through the electric field detection element 16f. It is well known that the degree of flatness of this elliptically polarized light wave increases as the electric field strength increases, and decreases as the electric field strength decreases, and that there is a correlation with the strength of the electric field. Therefore, the shortest axis direction component of the elliptically polarized light wave is detected by the analyzer 25, the light is received by the light receiving section 26, the electric field strength is calculated based on the strength of the light, and the electric field strength is multiplied by a coefficient to generate a voltage. is measured.
この電圧測定器は電界検出部16と測定器本体30とが
光ファイバ16a、 16bで接続されているのみであ
るから、外来の電、磁界の誘導を受けず、感電する虞れ
もなく安全に測定できる。そのため、高電圧を光学的に
高精度で測定でき、また電圧測定器は小型、軽量である
。In this voltage measuring instrument, the electric field detecting section 16 and the measuring instrument main body 30 are connected only by optical fibers 16a and 16b, so it is not induced by external electric or magnetic fields and is safe without the risk of electric shock. Can be measured. Therefore, high voltage can be optically measured with high precision, and the voltage measuring device is small and lightweight.
また水晶は通常ポッケルス素子として良く用いられるB
SO,LNOなどと較べるとそのポッケルス定数が1桁
以上小さい。本発明はこの特性を逆に利用しているため
50kV程度の高電圧まで直線性良く測定できるのであ
る。In addition, crystal is commonly used as a Pockels element.
Compared to SO, LNO, etc., its Pockels constant is one order of magnitude smaller. Since the present invention utilizes this characteristic inversely, it is possible to measure voltages as high as about 50 kV with good linearity.
なお、本実施例に示した高電圧測定器では50kVまで
の測定を可能としたが測定電極の対向距離を変更するこ
とにより、測定し得る電圧の範囲を適宜変更できるのは
勿論である。Although the high voltage measuring device shown in this embodiment is capable of measuring up to 50 kV, it is of course possible to change the measurable voltage range as appropriate by changing the facing distance of the measuring electrodes.
また、本実施例では誘電体にポリウレタン樹脂を用いた
が、誘電率が略等しい他の樹脂を用いてもよいのは勿論
であり、測定電極及び電界検出素子をモールドせず、液
体の誘電体内に配設してもよいのは言うまでもない。更
に、測定電極はその対向する間に平等電界を生じさせ得
るものであればよく、球状又はその他の形状であっても
よい。Furthermore, although polyurethane resin was used as the dielectric material in this example, it is of course possible to use other resins having approximately the same dielectric constant, and instead of molding the measurement electrode and the electric field detection element, Needless to say, it may be placed in Furthermore, the measuring electrodes may be of any shape as long as they can generate an equal electric field between the opposing electrodes, and may be spherical or of any other shape.
一方、電昇検出素子の素材が水晶以外の場合には、その
素材の誘電率に略等しい誘電率である適宜の誘電体を用
いる。また誘電体は硬化後にその外面に遮光塗料を塗布
する等して遮光し得た場合は戸先筒体を使用しなくてよ
い。On the other hand, when the material of the voltage increase detection element is other than crystal, an appropriate dielectric material having a dielectric constant approximately equal to that of the material is used. Further, if the dielectric material can be shielded from light by applying a light-shielding paint to its outer surface after curing, the door-end tube may not be used.
以上詳述したように本発明は、測定すべき電圧を課電す
るための測定電極及び電界検出素子相互の間に誘電体を
介装しているから、電界検出素子は測定電極に課電され
た高電圧から絶縁される。As detailed above, in the present invention, a dielectric material is interposed between the measurement electrode and the electric field detection element for applying the voltage to be measured, so that the electric field detection element does not charge the measurement electrode. isolated from high voltages.
従って測定電極に課電された測定すべき高電圧を光学的
に測定でき、機械的振動による影響を全くうけずに高精
度で測定できる。また電界検出部と測定器本体とが離れ
ているから測定器本体側にて感電する虞れがない。更に
、電界検出部で電界を検出した光がall定器本体に達
する間で外来の電磁界の影響をうけないから測定積度が
低下する虞れがない。それ故、高電圧を高精度で測定し
得て、小型、軽9の電圧測定器を提供できる優れた効果
を奏する。Therefore, the high voltage to be measured applied to the measurement electrode can be optically measured, and can be measured with high precision without being affected by mechanical vibrations at all. Furthermore, since the electric field detection section and the measuring device main body are separated, there is no risk of electric shock on the measuring device main body side. Furthermore, since the light detected by the electric field detection section is not affected by an external electromagnetic field while reaching the main body of the all meter, there is no possibility that the measurement density will decrease. Therefore, it is possible to measure high voltage with high precision, and has an excellent effect of providing a small and light voltage measuring device.
第1図は本発明の電圧測定器の断面図、第2図は電界検
出部の斜視図、第3図は電界検出部及びペリ定器本体の
模式的説明図、第4図は電界検出部における光の偏光形
聾を示す説明図である。
1・・・遮光筒体 7.14・・・測定電極 16・・
・電界検出部 16a、 16b・・・光ファイバ 1
6f・・・電界検出素子 20・・・発光部 22・・
・偏光子 24A、24B・・・プリズム 25・・・
検光子
特 許 出願人 三菱電線工業株式会社代理人 弁理
士 河 野 登 夫募 3 図
算 4 図Fig. 1 is a sectional view of the voltage measuring device of the present invention, Fig. 2 is a perspective view of the electric field detection section, Fig. 3 is a schematic illustration of the electric field detection section and the main body of the perimeter, and Fig. 4 is the electric field detection section. FIG. 1... Light-shielding cylinder 7.14... Measuring electrode 16...
・Electric field detection unit 16a, 16b...Optical fiber 1
6f... Electric field detection element 20... Light emitting part 22...
・Polarizer 24A, 24B... Prism 25...
Analyzer patent Applicant Mitsubishi Cable Industries Co., Ltd. Agent Patent attorney Noboru Kono 3 Illustrations 4 Illustrations
Claims (1)
該測定電極間に配設され、入射した円偏光波が電界によ
り楕円偏光波となって出射する電界検出素子と、前記測
定電極及び前記電界検出素子相互の間に介装している誘
電体と、前記電界検出素子に入射すべき光を発する発光
部、電界検出素子が出射した光を捉えて光電変換する受
光部及び受光部で得た信号を、前記測定電極間の電圧値
情報に変換する電圧測定部を設けた測定器本体とを備え
たことを特徴とする電圧測定器。 2、前記測定電極は電界検出素子配設域に平等電界を形
成すべき形状を有する特許請求の範囲第1項に記載した
電圧測定器。 3、誘電体の誘電率は、電界検出素子の誘電率と略等し
い特許請求の範囲第1項に記載した電圧測定器。[Claims] 1. A measuring electrode arranged to apply a voltage to be measured;
an electric field detection element disposed between the measurement electrodes, from which an incident circularly polarized wave becomes an elliptical polarization wave due to an electric field and is emitted; and a dielectric interposed between the measurement electrodes and the electric field detection element. , a light emitting section that emits light to be incident on the electric field detection element, a light receiving section that captures and photoelectrically converts the light emitted by the electric field detection element, and a signal obtained by the light receiving section that is converted into voltage value information between the measurement electrodes. A voltage measuring device comprising: a measuring device main body provided with a voltage measuring section. 2. The voltage measuring device as set forth in claim 1, wherein the measuring electrode has a shape to form a uniform electric field in the area where the electric field detection element is disposed. 3. The voltage measuring device according to claim 1, wherein the dielectric constant has a substantially equal dielectric constant to that of the electric field detection element.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62021377A JPS63188773A (en) | 1987-01-30 | 1987-01-30 | Voltage measuring instrument |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62021377A JPS63188773A (en) | 1987-01-30 | 1987-01-30 | Voltage measuring instrument |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS63188773A true JPS63188773A (en) | 1988-08-04 |
Family
ID=12053401
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62021377A Pending JPS63188773A (en) | 1987-01-30 | 1987-01-30 | Voltage measuring instrument |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS63188773A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009115497A (en) * | 2007-11-02 | 2009-05-28 | Ntt Docomo Inc | Electro-optic probe |
| JP2009139351A (en) * | 2007-12-11 | 2009-06-25 | Nec Corp | Electro-optical sensing probe and electric field intensity measuring method |
-
1987
- 1987-01-30 JP JP62021377A patent/JPS63188773A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009115497A (en) * | 2007-11-02 | 2009-05-28 | Ntt Docomo Inc | Electro-optic probe |
| JP2009139351A (en) * | 2007-12-11 | 2009-06-25 | Nec Corp | Electro-optical sensing probe and electric field intensity measuring method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6107791A (en) | Non-disturbing electric field sensor using piezoelectric and converse piezoelectric resonances | |
| Hidaka | Progress in Japan of space charge field measurement in gaseous dielectrics using a Pockels sensor | |
| US4524322A (en) | Fiber optic system for measuring electric fields | |
| CN103477232B (en) | The method of exchange or DC transmission system and measurement voltage | |
| EP0458255B1 (en) | Polarimetric directional field sensor | |
| JPH112648A (en) | Electrooptic voltage sensor with optical fiber | |
| EP0641444B1 (en) | Optical voltage and electric field sensor based on the pockels effect | |
| JPS63188773A (en) | Voltage measuring instrument | |
| US9146358B2 (en) | Collimator holder for electro-optical sensor | |
| WO1997001100A1 (en) | High voltage measuring device | |
| US5635831A (en) | Optical voltage and electric field sensor based on the pockels effect | |
| KR100606420B1 (en) | Detector insertion type photovoltage detector | |
| Bosselmann | Electric and magnetic field sensing for high-voltage applications | |
| JPH0322595B2 (en) | ||
| JPH0560818A (en) | Optical electric field measuring instrument | |
| JP2887829B2 (en) | Optical voltmeter | |
| JPS59151071A (en) | Optical sensor for magnetic field measurement | |
| JP2921367B2 (en) | Optical voltmeter | |
| KR100327975B1 (en) | Electrostatic Force Detecting Sensor and Optical Fiber Voltage Measuring Apparatus using the same | |
| JPH09251036A (en) | Optical electric-field sensor and transformer for optical instrument using sensor thereof | |
| FI107472B (en) | Optical voltage and electric field sensors, which are based on the Pockels phenomenon | |
| JPH03235064A (en) | Optical voltage sensor | |
| Yi et al. | Development of 500-kV combined optical current and voltage measurement system | |
| JPS60210770A (en) | Optical electromagnetic measuring device | |
| WO2024226311A1 (en) | Devices and methods for an electro-optic dual crystal voltage sensor |