JPS63188109A - Distributed refractive index optical system - Google Patents

Distributed refractive index optical system

Info

Publication number
JPS63188109A
JPS63188109A JP1992287A JP1992287A JPS63188109A JP S63188109 A JPS63188109 A JP S63188109A JP 1992287 A JP1992287 A JP 1992287A JP 1992287 A JP1992287 A JP 1992287A JP S63188109 A JPS63188109 A JP S63188109A
Authority
JP
Japan
Prior art keywords
optical system
refractive index
light emitting
plano
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1992287A
Other languages
Japanese (ja)
Inventor
Masayuki Suzuki
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1992287A priority Critical patent/JPS63188109A/en
Publication of JPS63188109A publication Critical patent/JPS63188109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently correct aberrations by providing the first area which has a convex and consists of a uniform medium, the second area which is brought into contact with the first area on the side opposite to the convex and has a refractive index distribution in the direction approximately vertical to the optical axis, and the third area which is brought into contact with the second area on the opposite side of the first area and consists of a uniform medium. CONSTITUTION:Plano-convex lenses 1 and 2 consisting of a uniform medium and an optical member 3 which has a refractive index distribution in the direction approximately vertical to an optical axis AX and has planes in both ends (luminous flux incidence and exit faces) constitute a spherical lens. The plane-convex lens 1 is closely brought into contact with the plane on the opposite side of a light emitting element 4 of the optical member 3, and the face on the side opposite to te light emitting element 4 of the plano-convex lens 2 is closely brought into contact with the plane on the side of the light emitting element 4 of the optical member. Consequently, the light emitting element 4 is closely brought into contact with the convex of the plano- convex lens 2 and a light emission point 4a of the light emitting element 4 is placed near the apex of the convex of the plano-convex lens 2. Thus, the spherical aberration and the coma are corrected.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光学系の光通過領域内に屈折率分布を備えた
領域を有する屈折率分布型光学系に関し、特に光源から
射出した発散光を平行光に変換したり、平行光を集斂先
に変換したりするのに好適な屈折率分布型光学系に関す
る。
Detailed Description of the Invention [Technical Field] The present invention relates to a refractive index distribution type optical system having a region with a refractive index distribution within a light passage region of the optical system, and in particular, converts divergent light emitted from a light source into parallel light. The present invention relates to a refractive index distribution type optical system suitable for converting parallel light into a converging target.

〔従来技術〕[Prior art]

従来この種の屈折率分布型光学系は、光学系の構成要素
、例えばレンズを光源又は受光素子から所定距離だけ離
した状態で使用するのが一般的である。
Conventionally, this type of refractive index gradient optical system is generally used with a component of the optical system, such as a lens, separated from a light source or a light receiving element by a predetermined distance.

特開昭58−205122号公報には上述の屈折率分布
型光学系が示されている。この光学系は均質媒質から成
る平凸レンズと両端平面の屈折率分布型レンズとから構
成されるものである。
JP-A-58-205122 discloses the above-mentioned refractive index distribution type optical system. This optical system is composed of a plano-convex lens made of a homogeneous medium and a gradient index lens with flat surfaces at both ends.

しかしながら特開昭58−205132号公報に示され
る如き従来の光学系は、各要素間の位置合わせに加え、
例えば光源や受光素子と光学系との間隔調整が必要であ
り、組立及び調整作業に多くの時間を費していた。
However, in the conventional optical system as shown in Japanese Patent Application Laid-open No. 58-205132, in addition to alignment between each element,
For example, it is necessary to adjust the distance between the light source, the light receiving element, and the optical system, and a lot of time is spent on assembly and adjustment work.

一方、上述の問題を解消する一つの手段として、光源や
受光素子を光学系の要素に密着させて使用する形態が青
えられる。
On the other hand, as one means of solving the above-mentioned problems, it is possible to use a light source or a light receiving element in close contact with an element of an optical system.

この形態の一例として例えば特開昭58−68990号
公報や特開昭60−9181号公報に示される様に、球
レンズに発光素子等の光源を密着させる方法がある。こ
の方法によれば球レンズの媒質として屈折率2.0前後
のものを使用することにより、発光素子からの発散光を
ほぼ平行な光束に変換出来る。
As an example of this form, there is a method in which a light source such as a light emitting element is brought into close contact with a ball lens, as shown in, for example, Japanese Patent Laid-Open Nos. 58-68990 and 60-9181. According to this method, by using a medium with a refractive index of around 2.0 as the medium of the ball lens, it is possible to convert the divergent light from the light emitting element into a substantially parallel beam of light.

しかしながら、この種の光学系では、実用上必要な開口
数NAを得ようとすると残存収差が大きくなり精密な目
的には使用出来なくなる。
However, in this type of optical system, when trying to obtain a practically necessary numerical aperture NA, residual aberration becomes large, making it impossible to use it for precise purposes.

又、上述の残存収差を補正する為に球レンズ端面を非球
面化する方法も考えられるが、球面収差及びコマ収差を
良好に補正するにはレンズ内部に絞りを設ける必要が生
じ、作製が困難であると共に収差自体の補正も十分とは
言えない。
Another possibility is to make the end face of the spherical lens aspherical in order to correct the residual aberrations mentioned above, but in order to properly correct spherical aberration and coma aberration, it is necessary to provide an aperture inside the lens, which is difficult to manufacture. At the same time, the correction of aberrations themselves cannot be said to be sufficient.

〔発明の概要〕[Summary of the invention]

本発明の目的は上記従来の問題点に鑑み、組立調整が容
易で高性能を有する屈折率分布型光学系を提供すること
にある。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, an object of the present invention is to provide a gradient index optical system that is easy to assemble and adjust and has high performance.

上記目的を達成する為に本発明に係る屈折率分布型光学
系は、凸面を有し均質媒質から成る第1の領域と、前記
凸面とは反対側で第1の領域と接し且つ光軸と略垂直方
向に屈折率分布を有する第2の領域と、前記第1の領域
とは反対側で第2の領域と接し且つ均質媒質から成る第
3の領域とを有することを特徴としている。
In order to achieve the above object, a gradient index optical system according to the present invention includes a first region having a convex surface and made of a homogeneous medium, and a first region that is in contact with the first region on the opposite side of the convex surface and that is aligned with the optical axis. It is characterized by having a second region having a refractive index distribution in a substantially vertical direction, and a third region that is in contact with the second region on the opposite side from the first region and is made of a homogeneous medium.

本発明によれば、実用上十分な開口数NAを有し、且つ
又充分に収差補正を行うことが可能な光学系を提供出来
る。
According to the present invention, it is possible to provide an optical system that has a practically sufficient numerical aperture NA and can sufficiently correct aberrations.

とりわけ光学系の要素の端面に発光素子や受光素子を密
着させて使用することが出来る為、組立調整が容易とな
る。又、本発明の屈折率分布型光学系は実質的に単一構
造を有する為、光学系自体の組立調整が容易で量産性に
も富むものである。
In particular, since the light-emitting element and the light-receiving element can be used in close contact with the end face of the optical system element, assembly and adjustment are facilitated. Further, since the refractive index gradient optical system of the present invention has a substantially single structure, the optical system itself can be easily assembled and adjusted, and is highly suitable for mass production.

更に前記第1.第2.第3の領域を各々異なる部材で構
成し、互いに貼り合わせて単一構造の光学系とすること
も可能である。この場合、各貼り合わせ面の形状を平面
とする様に夫々の部材の形状を選択するのが好ましい。
Furthermore, the above-mentioned No. 1. Second. It is also possible to construct the third regions from different members and bond them together to form an optical system with a single structure. In this case, it is preferable to select the shape of each member so that each bonding surface has a flat shape.

本発明の更なる特徴は下記実施例に記載されている。Further features of the invention are described in the Examples below.

(実施例) 第1図は本発明に係る屈折率分布型光学系の一実施例を
示す断面図である。
(Example) FIG. 1 is a sectional view showing an example of a gradient index optical system according to the present invention.

図中、1及び2は均質媒質から成る平凸レンズ、3は光
軸AXに略垂直な方向に屈折率分布を有する両端(光束
人出射面)平面の光学部材であり、平凸レンズ1.2と
光学部材3とで球状レンズを構成している。4は発光素
子、4aは発光素子4の発光点、Aは平行光束を示す。
In the figure, 1 and 2 are plano-convex lenses made of a homogeneous medium, 3 is an optical member having a refractive index distribution in a direction substantially perpendicular to the optical axis AX, and having flat surfaces at both ends (light exit surface). The optical member 3 constitutes a spherical lens. 4 is a light emitting element, 4a is a light emitting point of the light emitting element 4, and A is a parallel light beam.

尚d+、di、  s、は本光学系のパラメータを示す
符号で、各面間の軸上間隔を表わしている。
Note that d+, di, and s are symbols indicating parameters of this optical system, and represent the axial distance between each surface.

平凸レンズ1は発光素子4側の面が平面、他方の面が曲
率半径rlの凸面から成るレンズであり、光学部材3の
発光素子4とは反対側の平面と密着している。
The plano-convex lens 1 is a lens whose surface on the light emitting element 4 side is flat and the other surface is a convex surface with a radius of curvature rl, and is in close contact with the plane of the optical member 3 on the side opposite to the light emitting element 4.

一方、平凸レンズ2は発光素子4側の面が曲率半径r、
の凸面、他方の面が平面から成るレンズであり、この他
方の面即ち発光素子4とは反対側の面と光学部材3の発
光素子4側の平面とが密着している。
On the other hand, the surface of the plano-convex lens 2 on the light emitting element 4 side has a radius of curvature r,
This lens has a convex surface and a flat surface, and the other surface, that is, the surface opposite to the light emitting element 4, and the flat surface of the optical member 3 on the light emitting element 4 side are in close contact with each other.

従って本実施例の光学系は平凸レンズ1.2と光学部材
3とを所定の方法で貼り合わせた単一構造となっている
Therefore, the optical system of this embodiment has a single structure in which the plano-convex lens 1.2 and the optical member 3 are bonded together by a predetermined method.

又、発光素子4は平凸レンズ2の凸面に密着しており、
発光素子4の発光点4aは平凸レンズ2の凸面頂点近傍
に位置する。
Further, the light emitting element 4 is in close contact with the convex surface of the plano-convex lens 2,
The light emitting point 4a of the light emitting element 4 is located near the apex of the convex surface of the plano-convex lens 2.

光学部材3に形成された屈折率分布は、軸上に於ける屈
折率をN O%光軸からの距離をρ、距離ρでの屈折率
をN(ρ)とすると、N(ρ) !NO+N1p” +
N2 p’ +−で表わされる。尚Nl、N2.・・・
は屈折率分布係数を示す。
The refractive index distribution formed in the optical member 3 is N(ρ)!, where the refractive index on the axis is NO%, the distance from the optical axis is ρ, and the refractive index at the distance ρ is N(ρ)! NO+N1p”+
It is expressed as N2 p' +-. Furthermore, Nl, N2. ...
indicates the refractive index distribution coefficient.

又、本実施例に於いては平凸レンズ1.2を構成する均
質媒質の屈折率を夫々” I r 13とする。
Further, in this embodiment, the refractive index of the homogeneous medium constituting the plano-convex lens 1.2 is set to "I r 13."

第1図に於いて発光素子4の発光点4aから出射した光
束は平凸レンズ2.光学部材3゜平凸レンズ1を順次通
過し、平凸レンズ1から平行光束λとなって出射する。
In FIG. 1, the light beam emitted from the light emitting point 4a of the light emitting element 4 is transmitted through the plano-convex lens 2. The optical member 3 degrees passes through the plano-convex lens 1 one after another, and is emitted from the plano-convex lens 1 as a parallel light beam λ.

ここで発光点4aから出射した光束は、平凸レンズ2と
光学部材3との赤面、光学部材3の屈折率分布、光学部
材3と平凸レンズ1との界面及び平凸レンズ1と空気と
の界面で屈折を受ける。
Here, the light flux emitted from the light emitting point 4a is affected by the red surface of the plano-convex lens 2 and the optical member 3, the refractive index distribution of the optical member 3, the interface between the optical member 3 and the plano-convex lens 1, and the interface between the plano-convex lens 1 and air. undergoes refraction.

本実施例の光学系によれば、構成が単純であるにもかか
わらず発光点4aから出射した発散光束を収差を良好に
補正した状態で平行光束に変換出来る。これは主として
光学系内の屈折率分布領域を形成したことと、該領域を
光学系内の適当な位置に設定したことによる。この屈折
率分布領域と各屈折面での屈折条件を適宜決めてやるこ
とで球面収差及びコマ収差を良好に補正出来る。
According to the optical system of this embodiment, although the configuration is simple, the divergent light beam emitted from the light emitting point 4a can be converted into a parallel light beam with aberrations well corrected. This is mainly due to the formation of the refractive index distribution region within the optical system and the setting of the region at an appropriate position within the optical system. Spherical aberration and coma aberration can be favorably corrected by appropriately determining this refractive index distribution region and the refractive conditions for each refractive surface.

一般にレンズ等の光学素子に屈折率分布を形成すること
で諸収差を補正可能な事は知られている。しかしながら
屈折率分布領域を単純に凸面等の屈折面近傍に形成した
場合、球面収差の補正は可能であるがコマ収差は残存し
てしまう。
It is generally known that various aberrations can be corrected by forming a refractive index distribution in an optical element such as a lens. However, if the refractive index distribution region is simply formed near a refractive surface such as a convex surface, spherical aberration can be corrected, but coma aberration remains.

従って本実施例の光学系に於いては、屈折率分布領域即
ち光学部材3を平凸レンズ1の凸面から所定距離だけ離
れた位置に配し、高NAに対し球面収差とコマ収差の双
方を補正している。
Therefore, in the optical system of this embodiment, the refractive index distribution region, that is, the optical member 3, is placed at a predetermined distance from the convex surface of the plano-convex lens 1, and both spherical aberration and comatic aberration are corrected for high NA. are doing.

因みに光学部材3は平凸レンズ1の凸面の曲率中心近傍
に位置している。
Incidentally, the optical member 3 is located near the center of curvature of the convex surface of the plano-convex lens 1.

又、光学部材3に形成された屈折率分布は、光軸から離
れるに従い漸次屈折率が増加する様な分布を有し、実質
的に負のパワー又は零のパワーを備えたレンズと等価な
機能を果たしている。
Further, the refractive index distribution formed in the optical member 3 has a distribution in which the refractive index gradually increases as it moves away from the optical axis, and has a function equivalent to a lens having substantially negative power or zero power. is fulfilled.

従って光学部材3に入射した光線の内光軸から離れた位
置を通る光線程強く発散作用を受けることになり、平凸
レンズ1の凸面での収斂作用に逆らう機能を持つ。平凸
レンズ1の凸面は、軸外特に光軸から大きく離れた位置
を通過する光線はど過剰に屈折してしまう為、この過剰
な屈折作用を屈折率分布で生じる発散作用で打ち消し、
良好な収差補正を行うのである。
Therefore, among the light rays incident on the optical member 3, the rays that pass through a position farther from the optical axis are subjected to a stronger diverging effect, which has a function that opposes the converging effect on the convex surface of the plano-convex lens 1. The convex surface of the plano-convex lens 1 excessively refracts light rays that pass off-axis, particularly at positions far away from the optical axis, so this excessive refraction is canceled out by the divergence effect produced by the refractive index distribution.
It performs good aberration correction.

以下、本発明の具体的実施例を示す。Specific examples of the present invention will be shown below.

下記の表1は本屈折率分布光学系の数値実施例1〜4を
示しており、これらの数値実施例1〜4で表わされる光
学系の概略は前述の第1図に示すレンズ断面図と一致し
ている。
Table 1 below shows numerical examples 1 to 4 of the present gradient index optical system, and the outline of the optical system represented by these numerical examples 1 to 4 is shown in the lens cross-sectional view shown in FIG. 1 above. Match.

表中r++rzは第1図に於ける平凸レンズ1.2の凸
面の曲率半径、n l * n 2は同様に平凸レンズ
1.2の屈折率、Noは第1図に於ける光学部材3の軸
上屈折率、Nl、N2゜Ns、Naは屈折率分布係数、
Δnは同様に光学部材3の有効径内での最大屈折率差、
fは全系の焦点距離、NAは開口数を示す。
In the table, r++rz is the radius of curvature of the convex surface of the plano-convex lens 1.2 in FIG. 1, n l * n 2 is the refractive index of the plano-convex lens 1.2, and No is the optical member 3 in FIG. On-axis refractive index, Nl, N2°Ns, Na is the refractive index distribution coefficient,
Similarly, Δn is the maximum refractive index difference within the effective diameter of the optical member 3,
f indicates the focal length of the entire system, and NA indicates the numerical aperture.

又、一実施例1〜4は全て形状に関するパラメータr 
l *  r2 * dl * dl * amが共通
な値となつている。尚dl + dl r dlは夫々
平凸レンズ1.光学部材3.平凸レンズ2の軸上肉厚を
示す、更に設計は波長λ=780nmの光に対して行っ
た。
In addition, in all of Examples 1 to 4, the shape-related parameter r
l * r2 * dl * dl * am are common values. Note that dl + dl r dl are plano-convex lenses 1. Optical member 3. The design shows the axial thickness of the plano-convex lens 2, and was designed for light with a wavelength λ=780 nm.

表   1 実施例1゜ N A −0,35、f −5,34 r1冨aO1r、5=−5,0、 dl=4.5、a、=t、01ds=4.5、n、=l
O1n、=Z。
Table 1 Example 1゜N A -0,35, f -5,34 r1 Tomi aO1r, 5=-5,0, dl=4.5, a,=t, 01ds=4.5, n,=l
O1n,=Z.

No ”1.5、Nl =1.32307X10−2N
2 =3.92461X10−’ Ns =−2,22646xlO−’ N4”−5,4781X 10−’ Δn=0.0197 実施例2゜ NAツ0.35、f冨5.30 r、w5.o、r2=−5,0 d、=4.5、d2=1.0、d3=4.5nt=1.
94410、n=−1,9441ONo−1,5、N、
=O Nt =4.17051X10−” Ns ”−1,84454X10−’ N4雪−5.478txlO−’ Δ n=o、o053 実施例3゜ NA=0.35、f = 5.31 r1=5.0、r、 =−5、O d、=4.5、d2=1.0、d、=4.5n+ =l
O,n= =2.0 No=1.54、  N1工1.18425X10−”
N2 =3.91288x 10−’ N3 =−1,16390X10−’ N4 =−7,79214x 10−’Δ n−0,0
178 実施例4゜ N A = 0.35、f雪5.25 r、=5.0、r2=−5,0 d、=4.5、d2=1.0、d、=4.5nl =2
..0%n2 =2hO N0=t、61、N、=9.62360X10−’N2
 =3.88232xlO−’ N3 =−1,56168X10−’ N4 =−1,41240xlO−’ Δn=o、o149 第2図(A)〜(C)は上記数値実施例中の実施例3に
示される光学系の収差図を示し、ここでは波面収差を記
す。
No "1.5, Nl = 1.32307X10-2N
2 = 3.92461X10-' Ns = -2,22646xlO-'N4"-5,4781X10-' Δn=0.0197 Example 2° NA 0.35, f-thickness 5.30 r, w5.o, r2=-5,0 d,=4.5, d2=1.0, d3=4.5nt=1.
94410, n=-1, 9441ONo-1,5, N,
=O Nt =4.17051X10-" Ns "-1,84454X10-' N4 Snow-5.478txlO-' Δ n=o, o053 Example 3°NA=0.35, f=5.31 r1=5. 0, r, =-5, O d, = 4.5, d2 = 1.0, d, = 4.5n+ = l
O, n= =2.0 No=1.54, N1 work 1.18425X10-”
N2 =3.91288x 10-' N3 =-1,16390X10-' N4 =-7,79214x 10-'Δ n-0,0
178 Example 4゜N A = 0.35, f snow 5.25 r, = 5.0, r2 = -5,0 d, = 4.5, d2 = 1.0, d, = 4.5nl = 2
.. .. 0%n2 = 2hO N0 = t, 61, N, = 9.62360X10-'N2
=3.88232xlO-' N3 =-1,56168X10-' N4 =-1,41240xlO-' Δn=o, o149 Figures 2 (A) to (C) are shown in Example 3 of the numerical examples above. An aberration diagram of the optical system is shown, and wavefront aberration is described here.

第2図に於いて(A)は第1図に示す発光点4aが光軸
から軸外に0.1mm1!ffれた位置にある場合、(
B)は発光点4aが光軸から軸外に0.05mm1iれ
た位置にある場合、(C)は発光点4aが光軸上にある
場合の波面収差を示す。′ 尚Mはメリジオナル方向、Sはサジタル方向を示してい
る。
In FIG. 2, (A) shows that the light emitting point 4a shown in FIG. 1 is 0.1 mm1 off-axis from the optical axis! ff position, (
B) shows the wavefront aberration when the light emitting point 4a is located off-axis by 0.05 mm1i from the optical axis, and (C) shows the wavefront aberration when the light emitting point 4a is on the optical axis. ' Note that M indicates the meridional direction and S indicates the sagittal direction.

第2図(A)〜(C)の収差図から解る通り、本屈折率
分布型光学系によれば収差を良好に補正することが出来
る。又ここでは一一例として表1の実施例3に関しての
み収差図を示したが、他の実施例に関しても同等の性能
が得られた。
As can be seen from the aberration diagrams in FIGS. 2(A) to 2(C), the present refractive index distribution type optical system can satisfactorily correct aberrations. Further, although the aberration diagram is shown here only for Example 3 in Table 1 as an example, similar performance was obtained for other Examples as well.

以上、本発明の一実施例を具体的に説明したが、本発明
の屈折率分布型光学系の形態は上記実施例に限られるも
のではない。
Although one embodiment of the present invention has been specifically described above, the form of the gradient index optical system of the present invention is not limited to the above embodiment.

上記実施例では、本屈折率分布型光学系の用途として発
散光を平行光に変換する形態を示しているが、例えば光
束を収斂させる集光レンズとしても使用出来る。これは
第1図に於いて平行光束りを入射光として考えれば容易
に理解出来る。
In the above embodiment, the present gradient index optical system is used to convert diverging light into parallel light, but it can also be used, for example, as a condenser lens to converge a light beam. This can be easily understood by considering the parallel light beam as incident light in FIG.

又、第1図に於ける発光素子4としては、半導体レーザ
ー、LED、ピンホール面を備えた光源、光ファイバー
の出射端等がある。更に上記集光レンズとして本光学系
を使用する際、本光学系に密着させ使用する受光素子と
しては、フォトトランジスタ、CCDなどの光センサや
光ファイバーの入射端及びアルミニウム膜などの反射膜
等がある。
Further, the light emitting element 4 in FIG. 1 includes a semiconductor laser, an LED, a light source with a pinhole surface, an output end of an optical fiber, and the like. Furthermore, when this optical system is used as the above-mentioned condensing lens, the light-receiving elements used in close contact with the optical system include optical sensors such as phototransistors and CCDs, the input end of optical fibers, and reflective films such as aluminum films. .

表1に示した数値実施例ではd、−d3、nl =n2
42.0の場合に関し示しであるが、dl /d3 、
nl /n2の値は如何なる値でも構わない。
In the numerical example shown in Table 1, d, -d3, nl = n2
For the case of 42.0, dl /d3,
The value of nl/n2 may be any value.

又、同数値実施例に示された光学系によれば、光学部材
3の肉厚が光学系全体の肉厚の1/10程度となってい
るが、この肉厚比も仕様、製作上の問題に適宜対応して
任意に設定出来る。
Further, according to the optical system shown in the same numerical example, the wall thickness of the optical member 3 is about 1/10 of the wall thickness of the entire optical system, but this wall thickness ratio also depends on the specifications and manufacturing. It can be set arbitrarily to suit the problem.

尚、同数値実施例では光学系全体の肉厚を10として規
格を行っているが、本発明の光学系の大きさは用途、仕
様に併せて任意の大きさをとるべきである。
In addition, in the same numerical example, the thickness of the entire optical system is standardized as 10, but the size of the optical system of the present invention should be arbitrary in accordance with the application and specifications.

第3図は第1図に示した屈折率分布型光学系の変形例を
示す断面図である。図中21は平行平板を示し、第1図
に示された部材と同一部材には同じ符号を符し、ここで
は説明を省略する。
FIG. 3 is a sectional view showing a modification of the gradient index optical system shown in FIG. 1. In the figure, numeral 21 indicates a parallel plate, and the same members as those shown in FIG.

先に示した第1図の光学系に於いて、発光素子4に接す
る部材は平凸レンズ2であり、発光素子4の発光点4a
は平凸レンズ2の凸面と密着している。しかしながら発
光素子4に接する部材の発光点4a側の屈折面は、ある
程度以上の曲率半径を与えることにより収差には影響を
及ぼさない。
In the optical system shown in FIG.
is in close contact with the convex surface of the plano-convex lens 2. However, the refractive surface on the light emitting point 4a side of the member in contact with the light emitting element 4 does not affect aberrations by giving it a radius of curvature greater than a certain degree.

従って本実施例の光学系では平凸レンズ2の代わりに平
行平板21を配し、平凸レンズ1と光学部材3と平行平
板21とを貼り合わせて系を構成している。尚、平行平
板21は均質媒質から成るものである。
Therefore, in the optical system of this embodiment, a parallel plate 21 is arranged in place of the plano-convex lens 2, and the plano-convex lens 1, the optical member 3, and the parallel plate 21 are bonded together to form the system. Note that the parallel plate 21 is made of a homogeneous medium.

本実施例の構成によれば、平凸レンズ2の代わりに単純
な形状を持つ平行平板21を用いる為、作製が容易にな
る。その上、光学系の要素端面に密着させる受光素子や
発光素子の端面が通常平面であることから、平行平板2
1を使用することは密着の容易性からも有効である。
According to the configuration of this embodiment, since the parallel flat plate 21 having a simple shape is used instead of the plano-convex lens 2, manufacturing becomes easy. Moreover, since the end faces of the light receiving element and the light emitting element that are brought into close contact with the end faces of the optical system elements are usually flat, the parallel plate 2
The use of No. 1 is also effective in terms of ease of adhesion.

又、第3図の断面図に示す構成であっても、光学性能の
点では第1図の断面図に示す構成と何ら変わりはない。
Further, even the structure shown in the cross-sectional view of FIG. 3 is no different from the structure shown in the cross-sectional view of FIG. 1 in terms of optical performance.

即ち第3図に示される光学系に於いても良好に収差が補
正し得る。この際の波面収差は第2図に示されたものと
同等である。
That is, even in the optical system shown in FIG. 3, aberrations can be corrected well. The wavefront aberration at this time is equivalent to that shown in FIG.

尚、第3図に示される光学系の数値実施例はあえて示さ
ない。なぜならば先に表1に示した実施例に於いてr2
=■とするだけで、本実施例の数値実施例として十分通
用するからである。
Incidentally, a numerical example of the optical system shown in FIG. 3 is intentionally not shown. This is because in the embodiment shown in Table 1, r2
This is because simply setting =■ is sufficient to serve as a numerical example of this embodiment.

又、当然のことながら本光学系を構成する各要素の光線
が通過しない部分は必ずしも必要ではない。この−例を
示したのが第4図(A)〜(D)である。
Furthermore, it goes without saying that each element constituting the present optical system does not necessarily have a portion through which the light rays do not pass. Examples of this are shown in FIGS. 4(A) to 4(D).

同図(A)、(B)は屈折率分布を有する光学部材3の
光線の通過しない部分を切断した場合の形状である。本
発明の光学系に用いられる様な光軸に対し垂直方向に屈
折率勾配をもつタイプの光学部材(屈折率分布型レンズ
)は、屈折率分布形成法の制約を受けて直径の大きいも
のが作製しにくい。従って、このような径が小さい形状
はど製作に関しては有利である。
Figures (A) and (B) show the shape of the optical member 3 having a refractive index distribution when a portion of the optical member 3 through which the light rays do not pass is cut. Optical members of the type that have a refractive index gradient in the direction perpendicular to the optical axis (gradient index lenses) used in the optical system of the present invention have large diameters due to restrictions on the refractive index distribution forming method. Difficult to make. Therefore, such a shape with a small diameter is advantageous in terms of fabrication.

又、径の小さいものを用いると、それだけ屈折率差Δn
を小さく押えることが出来、同様に製作上有利である。
Also, if a diameter is small, the refractive index difference Δn
can be held small, which is also advantageous in manufacturing.

又、表1に示した数値実施例に於ける屈折率差Δnも光
線の通過する部分だけを考えた場合のものである。
Further, the refractive index difference Δn in the numerical examples shown in Table 1 is also based on consideration of only the portion through which the light ray passes.

尚、表1の各実施例に於けるΔnの値は0.02以内に
納まフており、通常のイオン交換法で容易に作製可能で
ある。
Incidentally, the value of Δn in each example in Table 1 is within 0.02, and it can be easily produced by a normal ion exchange method.

第4図(C)、CD)は平凸レンズ1及び平凸レンズ2
又は平行平板21についても光線の通過しない部分を切
断した場合の形状である。
Figure 4 (C), CD) shows plano-convex lens 1 and plano-convex lens 2.
Alternatively, the shape of the parallel plate 21 is obtained by cutting the portion through which the light rays do not pass.

尚ここでは光学部材3と平凸レンズ2又は平行平板21
と発光素子4の直径が同じように描かれているが、同じ
である必要はない。
Note that here, the optical member 3 and the plano-convex lens 2 or the parallel plate 21
Although the diameters of the light emitting elements 4 and 4 are drawn to be the same, they do not have to be the same.

次に本発明の光学系では、適当な個所に遮光の為の絞り
を設けてもよいものとする。
Next, in the optical system of the present invention, a diaphragm for shielding light may be provided at an appropriate location.

第4図(E)、(F)はそれぞれ同図(A)。Figures 4 (E) and (F) are the same figure (A), respectively.

(B)に示す光学系の光学部材3の周囲に絞りSを設け
たものである。又、同図(G)、(H)はそれぞれ同図
(C)、(D)の光学系の平凸レンズ1の凸面近傍に絞
りSを設けたものである。この絞りSの位置は図示され
た場所に限定されるものではなく、用途に応じて適切と
思われる位置に置いて良い。又、絞りSは特定の遮光部
材で構成するだけでなく、遮光材料を本光学系の構成要
素の一部に塗布することによって形成してもよい。
A diaphragm S is provided around the optical member 3 of the optical system shown in (B). Further, (G) and (H) in the same figure are those in which an aperture S is provided near the convex surface of the plano-convex lens 1 of the optical system shown in (C) and (D) in the same figure, respectively. The position of this diaphragm S is not limited to the illustrated location, but may be placed at any position deemed appropriate depending on the application. Further, the diaphragm S may be formed not only from a specific light-shielding member, but also by applying a light-shielding material to some of the constituent elements of the present optical system.

次に本発明の光学系の応用例について述べる。Next, an application example of the optical system of the present invention will be described.

第5図(A)は本発明の光学系に発光素子として半導体
レーザー41を接着した装置を示す。
FIG. 5(A) shows a device in which a semiconductor laser 41 as a light emitting element is bonded to the optical system of the present invention.

同図の41a、41bは半導体レーザー41の発光点で
ある。ここではこれらの発光点41a。
41a and 41b in the figure are light emitting points of the semiconductor laser 41. Here, these light emitting points 41a.

41bは独立にON10 F Fが可能であるとする。It is assumed that 41b can be turned ON10FF independently.

同図(A)の装置は全体として平行レーザービーム射出
光源装置5を形成している。第5図(B)は第5図(A
)の光源装置5を用いて構成したレーザービームプリン
ターを示すものである。同図に於いて5は平行レーザー
ビーム射出用光源装置、6はポリゴンミラー、7はf−
θレンズ、8は感光ドラムである。感光ドラム8の感光
面に於いて、レーザービームの走査方向と2個のスポッ
トの配列方向が直交するように光源装置5が配置されて
いる。このプリンターは同時に2本のレーザービームで
情報を書き込む為、プリント速度の向上などに大きな効
果がある。尚、本実施例ではレーザーの発光点の数を2
個としているが、これに限定するものではなく、3個以
上でも又従来どうり1個として使用してもよい。
The device shown in FIG. 2A forms a collimated laser beam emitting light source device 5 as a whole. Figure 5 (B) is
) shows a laser beam printer constructed using the light source device 5 of FIG. In the figure, 5 is a light source device for emitting a parallel laser beam, 6 is a polygon mirror, and 7 is an f-
θ lens, 8 is a photosensitive drum. On the photosensitive surface of the photosensitive drum 8, the light source device 5 is arranged so that the scanning direction of the laser beam and the arrangement direction of the two spots are perpendicular to each other. This printer uses two laser beams to write information at the same time, which has a significant effect on improving printing speed. In this example, the number of laser emission points is set to 2.
However, the present invention is not limited to this, and three or more may be used, or one may be used as in the conventional case.

次に本発明の光学系の他の応用例について述べる。Next, other application examples of the optical system of the present invention will be described.

第6図(A)は光ファイバー人出力装置の一実施例を示
す。本実施例は本屈折率分布型光学系に於いて、発光素
子又は受光素子として光ファイバー9を用いた例である
FIG. 6(A) shows an embodiment of an optical fiber human output device. This embodiment is an example in which an optical fiber 9 is used as a light emitting element or a light receiving element in the present refractive index gradient optical system.

本装置によれば、収差の発生を抑えたまま平行光を効率
良くファイバー9に入力したり、また逆にファイバー9
からの出射光をある幅をもつ平行光に変換して出力した
りすることができる。
According to this device, it is possible to efficiently input parallel light into the fiber 9 while suppressing the occurrence of aberrations, and vice versa.
It is possible to convert the emitted light from a parallel light into parallel light with a certain width and output it.

第6図(B)は本屈折率分布型光学系を2個対向させて
配置した光フアイバー結合装置10を示す。
FIG. 6(B) shows an optical fiber coupling device 10 in which two of the present gradient index optical systems are disposed facing each other.

本装置によれば、ファイバー9′からの出射光をファイ
バー9に効率良く入射することができる。
According to this device, the light emitted from the fiber 9' can be efficiently input into the fiber 9.

尚、第5図及び第6図で示した応用例の光学系は、第4
図(F)の形態を有しているが、これに限定されるもの
でないことは言うまでもない。
The optical system of the application example shown in Figs. 5 and 6 is
Although it has the form shown in Figure (F), it goes without saying that it is not limited to this.

以上説明した各実施例、応用例に示された本屈折率分布
型光学系は、3つの部材を貼り合わせることにより単一
構造の光学系を構成したものであった。
The present refractive index gradient optical system shown in each of the embodiments and application examples described above is an optical system having a single structure by bonding three members together.

しかしながら本発明によれば、単一部材の特定の領域に
光軸と直交する方向へ屈折率が変化する屈折率分布をも
つ領域を形成し、該部材の端面に曲面を形成することに
より上記各実施例の光学系と等価な光学系を得ることが
できる。
However, according to the present invention, a region having a refractive index distribution in which the refractive index changes in a direction perpendicular to the optical axis is formed in a specific region of a single member, and a curved surface is formed on the end face of the member. An optical system equivalent to the optical system of the example can be obtained.

この様に単一部材を用いることにより作製が更に容易と
なることは言うまでもない。又この場合も曲面と屈折率
分布領域とは特定間隔だけ離して配した方が良い。
It goes without saying that the use of a single member in this manner makes manufacturing easier. Also in this case, it is preferable that the curved surface and the refractive index distribution region be spaced apart by a specific distance.

従って本発明の主たる特徴を再度述べると、少なくとも
3つの互いに隣接する領域を有し、該領域の中間部を屈
折率分布領域とし、該領域に隣接する領域を均質媒質で
形成し、全系の光束入射面の少なくとも一方を曲面とし
たことである。
Therefore, to restate the main features of the present invention, it has at least three regions adjacent to each other, the middle part of the regions is a refractive index distribution region, the region adjacent to the region is formed of a homogeneous medium, and the entire system is At least one of the light flux incident surfaces is a curved surface.

〔発明の効果〕〔Effect of the invention〕

以上、本発明に係る屈折率分布型光学系は、単一構造か
ら成る単純な構成でありながら、諸収差を良好に補正し
得る優れた光学系である。
As described above, the refractive index gradient optical system according to the present invention is an excellent optical system that can satisfactorily correct various aberrations even though it has a simple configuration consisting of a single structure.

特に光学系の構成要素の端面に発光素子や受光素子を密
着し、発光(又は光源)装置や受光装置として用いるの
が効果的であり、実用的なNAの範囲に於いて球面収差
とコマ収差の双方を良好に補正することが可能である。
In particular, it is effective to place a light-emitting element or a light-receiving element in close contact with the end face of an optical system component and use it as a light-emitting (or light source) device or a light-receiving device. It is possible to satisfactorily correct both.

この様な効果を持つことにより、発光素子や受光素子と
光学系との間隔調整が不要となり、光学系の構成要素間
の位置合わせが不要となることをも含めて、光学系や該
光学系を使用する装置の組立調整が容易になる。従って
低コスト化、簡素化に大幅に寄与することが出来る。
By having such an effect, there is no need to adjust the distance between the light emitting element or light receiving element and the optical system, and there is no need to align the components of the optical system. It is easier to assemble and adjust the equipment that uses it. Therefore, it can significantly contribute to cost reduction and simplification.

又、光学系を構成する各要素も容易に入手可能で単純な
構成であり、作成に手間がかからない。
Furthermore, each element constituting the optical system is easily available and has a simple configuration, so it does not require much effort to create.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る屈折率分布型光学系の一実施例を
示す断面図。 第2図は第1図に示す光学系の具体例の波面収差図。 第3図は第1図の実施例の変形例を示す断面図。 第4図(A)〜(H)は本発明に係る屈折率分布型光学
系の他の実施例を示す断面図。 第5図(A)、(B)は本屈折率分布型光学系の応用例
を示す図。 第6図(A)、(B)は本屈折率分布型光学系の他の応
用例を示す図。 1 、2−−−−−一平凸レンズ 3 −−−−−−−−−一屈折率分布を有する光学部材
4−−−−−−−一−−発光素子 4 a  −−−−−−−一発光点 ぶ一一−−−−−−−−平行光束 A X −−−−−−−一光軸
FIG. 1 is a cross-sectional view showing one embodiment of a gradient index optical system according to the present invention. FIG. 2 is a wavefront aberration diagram of a specific example of the optical system shown in FIG. 1. FIG. 3 is a sectional view showing a modification of the embodiment shown in FIG. 1. FIGS. 4A to 4H are cross-sectional views showing other embodiments of the gradient index optical system according to the present invention. FIGS. 5(A) and 5(B) are diagrams showing an application example of the present refractive index distribution type optical system. FIGS. 6(A) and 6(B) are diagrams showing other application examples of the present refractive index distribution type optical system. 1, 2-----One plano-convex lens 3-----Optical member 4 having one refractive index distribution---One--Light emitting element 4 a---------- One light emitting point B11 ----------- Parallel light beam A X ----------- One optical axis

Claims (2)

【特許請求の範囲】[Claims] (1)凸面を有し均質媒質から成る第1の領域と、前記
凸面とは反対側で前記第1の領域と接し且つ光軸と略垂
直方向に屈折率分布を有する第2の領域と、前記第1の
領域とは反対側で前記第2の領域に接し且つ均質媒質か
ら成る第3の領域とを有することを特徴とする屈折率分
布型光学系。
(1) a first region having a convex surface and made of a homogeneous medium; a second region that is in contact with the first region on the opposite side of the convex surface and has a refractive index distribution in a direction substantially perpendicular to the optical axis; A gradient index optical system comprising: a third region that is in contact with the second region on a side opposite to the first region and is made of a homogeneous medium.
(2)前記第1、第2、第3の領域が各々異なる部材か
ら成り、互いに貼り合わせて構成されたことを特徴とす
る特許請求の範囲第(1)項記載の屈折率分布型光学系
(2) The gradient index optical system according to claim (1), wherein the first, second, and third regions are each made of different members and are bonded together. .
JP1992287A 1987-01-30 1987-01-30 Distributed refractive index optical system Pending JPS63188109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992287A JPS63188109A (en) 1987-01-30 1987-01-30 Distributed refractive index optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992287A JPS63188109A (en) 1987-01-30 1987-01-30 Distributed refractive index optical system

Publications (1)

Publication Number Publication Date
JPS63188109A true JPS63188109A (en) 1988-08-03

Family

ID=12012712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992287A Pending JPS63188109A (en) 1987-01-30 1987-01-30 Distributed refractive index optical system

Country Status (1)

Country Link
JP (1) JPS63188109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141556A (en) 2000-09-12 2002-05-17 Lumileds Lighting Us Llc Light emitting diode with improved light extraction efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141556A (en) 2000-09-12 2002-05-17 Lumileds Lighting Us Llc Light emitting diode with improved light extraction efficiency
US9583683B2 (en) 2000-09-12 2017-02-28 Lumileds Llc Light emitting devices with optical elements and bonding layers
US10312422B2 (en) 2000-09-12 2019-06-04 Lumileds Llc Light emitting devices with optical elements and bonding layers

Similar Documents

Publication Publication Date Title
US6909557B2 (en) Optical coupling system and optical device using the same
WO2011135877A1 (en) Optical element and optical device provided with same
JPH0565848B2 (en)
JP2001305376A (en) Method for designing collimator array device and collimator array device manufactured by the method
JP5935465B2 (en) Optical device
WO2019176181A1 (en) Laser module
US20030128439A1 (en) Light source device and optical pickup
JP2001503161A (en) Axial gradient index coupler
JP2001201657A (en) Optical device
JPS63188109A (en) Distributed refractive index optical system
JP2004020720A (en) Collimating lens
JP4393252B2 (en) Diffractive optical element and optical system having the same
JPH08234097A (en) Optical lens system
CN114609707A (en) Microlenses provided with opposite sides each having an aspherical shape
WO2020059664A1 (en) Multiplexing optical system
JP2005024617A (en) Optical transmitter
JPH1195061A (en) Optical fiber wavelength multiplexer-demultiplexer
JPH06208012A (en) Optical connecting element
JP3441013B2 (en) Optical coupling lens
WO2018042936A1 (en) Plano-convex lens, fiber array module, and light reception module
JP2002328259A (en) Optical element
USRE36740E (en) Cata-dioptric reduction projection optical system
JP3333583B2 (en) Focusing lens and focusing lens array
JP4111802B2 (en) Coupling optics
JPH116955A (en) Optical system