JPS6318725B2 - - Google Patents

Info

Publication number
JPS6318725B2
JPS6318725B2 JP2031979A JP2031979A JPS6318725B2 JP S6318725 B2 JPS6318725 B2 JP S6318725B2 JP 2031979 A JP2031979 A JP 2031979A JP 2031979 A JP2031979 A JP 2031979A JP S6318725 B2 JPS6318725 B2 JP S6318725B2
Authority
JP
Japan
Prior art keywords
color
tank
processing
layer
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2031979A
Other languages
Japanese (ja)
Other versions
JPS55113045A (en
Inventor
Atsushi Kamitakahara
Isamu Fushiki
Yutaka Kaneko
Kazuyoshi Myaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2031979A priority Critical patent/JPS55113045A/en
Publication of JPS55113045A publication Critical patent/JPS55113045A/en
Publication of JPS6318725B2 publication Critical patent/JPS6318725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/29Development processes or agents therefor
    • G03C5/31Regeneration; Replenishers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はハロゲン化銀カラー写真感光材料の処
理方法に関し、詳しくは連続発色現像処理におい
て補充量が少く安価で安定な一定の写真性能を与
える発色現像処理方法に関するものである。 従来、自動現像機でハロゲン化銀カラー写真感
光材料を連続処理する場合、処理されるカラー写
真感光材料に応じて処理液を補充しながらカラー
写真感光材料を処理する方法が用いられているが
この場合、補充される量は非常に多量であり、補
充液の大部分は自動現像機のタンクからオーバー
フローして廃棄されているのが現状である。この
ため公害対策上、経費節減上大きな問題となつて
いる。 近年、カラーペーパー処理に於いて、イースト
マン社製処理プロセス3HC(3Chemical High
Concentration)処理プロセスの発色現像液の補
充量が従来のキヤビネ1枚当り15c.c.から9.6c.c.に
低減され、さらにEP−2(Ekta Print2)処理プ
ロセスでは9.6c.c.から6.4c.c.に低減されてきた。こ
れら補充量の減少(以後、低補充と記す)化の動
向は補液のうちのオーバーフローして廃棄される
割合を減少させ、公害防止と経費節減(処理薬品
のコスト低減)をねらつたものである。 従来の処理方法で、発色現像の低補充化を行つ
た場合、特に発色現像主薬濃度の低下が著しく、
また、ハライドイオンや発色現像主薬の酸化物等
の発色現像処理に好ましくない成分が蓄積され、
感度、ガンマーおよび最大発色濃度を低下させ
る。従つて発色現像廃液の再使用に際しては、タ
ンク液の発色現像主薬濃度を規定レベルに高める
必要と、ハライドイオンを始めとする蓄積成分を
できるだけ除去する必要がある。 発色現像主薬濃度を規定レベルに高め、且つ低
補充を行うには、少量の補充液中に発色現像に必
要な有効成分を溶解せねばならず、必然的に補充
液中の成分濃度は上昇し、補充液の保存性の劣
化、特に低温保存時の発色現像主薬の結晶析出等
の問題が発生する。これらを解決する為に、濃厚
化剤を発色現像補充液に添加するという試みもあ
るが発色現像主薬や現像促進剤それ自身の溶解性
という本質的な問題の為、所望の成分濃度の発色
現像補充液を調製できず、通常はオーバーフロー
された発色現像廃液に有効成分を粉剤で添加し発
色現像補充液として再使用し、実質的な意味で低
補充処理をするといつた甚だ作業性の悪い補充方
法をとつているのが現状である。 また、ハライドイオン等の現像抑制成分を除去
して現像廃液を再使用する方法として、Journal
of the SMPTE Vol 65、P478(1956)に記載さ
れているイオン交換樹脂による方法、同Vol66、
P64(1957)に記載されているイオン交換膜を用
いる電気透析による方法、特開昭51−26542記載
のイオン交換膜を用いる電解再生法等があるが、
いずれも有効成分のロスがあつたり、樹脂や膜の
寿命が短かかつたり、自動化しにくく、煩雑であ
るなどの欠点を有している。 従つて、ハライドイオン等の現像抑制成分を除
去しない簡便な低補充方法が望まれるが、この方
法の場合には臭素イオン等の現像抑制成分の濃度
増加は避けられず、現像の不活性化による感度低
下、ガンマー及び最大発色濃度の低下が起こる。
この現像性低下を補う為に現像温度を上昇させた
り、現像時間を延長させたり、現像促進剤を添加
したりする手段が用いられる。 現像温度の上昇は現像時のバラツキや現像温度
のコントロール精度を上げねばならず、現像処理
におけるコストの上昇に連がるといつた欠点を有
する。又、感度低下、ガンマー及び発色濃度の低
下といつた現像を、これらの現像温度上昇や、現
像時間延長という手段により、所望のレベルまで
回復させることは困難で、かえつてカブリやステ
インを発生させる原因となる場合が多い。 又、現像促進剤を添加することは、処理液の保
存性や安定性劣化に連がり、現在においては有効
な現像促進剤が見出されていない状態である。 又、補充量が少なくなればなる程、補充量のわ
ずかな増減に対して、処理される感光材料の写真
性能、特に感度、ガンマー等のバラツキが大きく
なる。 従つて安価で簡便で、補充液の有効成分を特別
に濃厚化する必要がなく、しかも安定な写真性能
を与える低補充連続発色現像処理システムの出現
が待ち望まれている。 本発明の第一の目的は、連続発色現像処理にお
いて、発色現像液の補充量が少く、かつ安価な発
色現像処理の方法を提供することである。 本発明の第2の目的は、低補充連続発色現像処
理の写真性能の改良、特に多層カラー写真感光材
料の感度およびガンマーを低下させず、各層の感
度バランスおよびガンマーバランスを改良し、さ
らには最大濃度を上昇させ、ステイン濃度を少く
する方法を提供することである。 本発明の第3の目的は低補充連続発色現像処理
での写真性能の安定性、例えばバラツキの少ない
写真処理法を提供することである。 本発明の他の目的については後の記載から自ず
と明かになるであろう。 本発明の目的は、露光されたハロゲン化銀カラ
ー写真感光材料を二槽以上に分割されている発色
現像槽で逐次処理し、且つ発色現像液を該分割槽
の最終槽以外の槽に補充して発色現像処理するこ
とにより達成される。 現在一般に行われているカラー写真感光材料の
発色現像の補充方法は現像性能を安定化させる為
に、二つの機能を持たせて設計されている。一つ
は、現像反応で失われる有効成分を含有する液
(以下補充液と呼ぶ)を補充しタンク液の有効成
分(例えば現像主薬)を一定に維持することであ
り、もう一つは現像反応により発生し増加する現
像抑制性成分(例えば臭素イオン)の濃度を一定
レベルに希釈し維持することである。後者の機能
により、現在の発色現像の補充方法は、タンク液
中の臭素イオンと共に、現像主薬等の有効成分を
タンク外に大量に排出させてしまい、処理薬品の
有効利用という見地から甚だ不利な方法である。 本発明者等は、現在一般に行われている現像タ
ンク一槽方式で低補充の連続処理を行つた場合、
発色現像反応の全段階で流出しタンク液中に増加
蓄積した臭素イオンと、消費され減少した発色現
像主薬を含有する均一で不活性な発色現像液で、
発色現像反応の全過程が進行することになり、初
期の現像性が低下し、著しく不利であると考察し
た。 本発明者等は、これらの欠点を二槽以上に分割
された発色現像槽で、露光されたハロゲン化銀カ
ラー感光材料を逐次処理し且つ発色現像液を該分
割槽の最終槽以外の槽に補充し、処理される感光
材料の目的性能に応じて、各槽での現像反応量を
現像全過程に対して現像効率が最大になるように
設定してやることによつて克服した。 本発明において二槽以上に分割されている発色
現像槽で処理するのが適当であり、好ましくは三
槽以上に分割されている発色現像槽で処理され
る。ここに分割されているとは、補充された発色
現像液が直ちに発色現像槽中全体に拡散すること
を防止するため、第2図、第4図に示すごとく発
色現像槽に仕切を設ける等の手段がとられている
ことを意味する。本発明の分割されている発色現
像槽中の発色現像液は前の槽から後の槽に徐々に
持ち込まれるのが好ましい。この持ち込まれる手
段としては、たとえば処理されるカラー写真感光
材料に発色現像液が付着してそのまま次の発色現
像液に持ち込まれてもよいし、あるいは第5図の
ごとく発色現像槽の上部または下部から次の発色
現像槽に持ち込まれる様になつていてもよい。第
5図において1は前段の発色現像槽、2は後段の
発色現像槽、図中の矢印は発色現像液の拡散の様
子をあらわす。 本発明において最終槽の発色現像槽に含有され
る臭素および発色現像主薬の濃度は、該槽以前の
発色現像槽よりも臭素イオン濃度について高く、
発色現像主薬濃度について低いことが好ましい。
さらに、各発色現像槽中の臭素イオン濃度および
発色現像主薬濃度は、発色現像液を補充する発色
現像槽から順次後の槽にいくに従つて、発色現像
主薬の濃度が低く臭素イオンの濃度が高くなつて
いるのが好ましい。 本発明において発色現像液は最終の発色現像槽
以外の槽に補充されるが、該発色現像液を最初の
発色現像槽に加えるのが最も好ましい。 本発明において分割された槽の前後に、前浴後
浴あるいは分割された槽間に中間浴といつた形で
目的に応じて別浴を設けることができる。中間浴
として水洗浴を設けることも可能である。また補
充の方法については、最終槽以外のいずれかの槽
に補充してもよいし同一補充液を異なる分割槽に
複数に分けて補充しても良いし、複数の異なる組
成の補充液を別々の分割槽に補充してもよい。仮
に最終の槽に形式的に極く少量の発色現像液を補
充することは本発明に実質的に含まれる。 処理方法については特に制限はなくあらゆる処
理方法が適用出来るが、たとえばその代表的なも
のとしては、発色現像液、漂白定着処理を行ない
必要ならさらに水洗安定処理を行う方式、発色現
像後、漂白と定着を分離して行ない、必要に応じ
さらに水洗、安定処理を行なう方式、前硬膜、中
和、発色現像、停止定着、水洗、漂白、定着、水
洗、後硬膜、水洗を行う方式、あるいは発色現
像、水洗、補足発色現像、停止、漂白、定着、水
洗、安定を行なう方式、前硬膜、中和、水洗、第
1現像、停止、水洗、発色現像、停止、水洗、漂
白、定着、水洗を行う方式、前硬膜、中和、第1
現像、停止、水洗、発色現像、停止、水洗、標
白、有機酸浴、定着、水洗を行う方式、第1現
像、非定着性シルバー・ダイ・ブリーチ、水洗、
発色現像、酸ゆすぎ、水洗、漂白、水洗、定着、
水洗、安定化、水洗、を行う方式、発色現像によ
つて生じた現像液をハロゲネーシヨンブリーチし
たのち、再度発色現像して生成色素量を増加させ
る現像方式あるいはパーオキサイドやコバルト錯
塩の如きアンプリフアイヤー剤を用いて低銀量感
光材料を処理する方式等々が知られており、これ
らの方式を用いて処理することが出来る。またこ
れらの処理は迅速に行うため30℃以上の高温で行
われる場合もあり、室温または特殊な場合は20℃
以下で行なわれる場合もあるが一般には20℃〜70
℃の範囲で行うのが有利である。 本発明に係る発明現像液に用いられる発色現像
主薬は公知の発色現像主薬が用いられ、好ましい
発色現像主薬としては芳香族第1級アミノ化合物
であり、その代表的なものとしてはp−フエニレ
ンジアミン類およびp−アミノフエノール類が挙
げられる。 これらの芳香族第1級アミノ化合物の使用量は
感光材料の種類によつて変つてくる。この値は実
験的に決定することは容易であり一般的には現像
液1あたり0.0002ないし0.7モルの範囲で用い
ればよい。 また本発明に係る発色現像液にはこれらの芳香
族第1級アミノ化合物と組み合わせて白黒現像剤
として知られている化合物を用いてもよい。この
中ではテトラメチルパラフエニレンジアミン、ヒ
ドロキノンまたはその誘導体、1−フエニル−3
−ピラゾリドンまたはその誘導体、アスコルビン
酸等が有利に用いられる。 発色現像液に通常添加されている種々の成分が
添加される。例えば水酸化ナトリウム、炭酸ナト
リウム、炭酸カリウムなどのアルカリ剤、アルカ
リ金属亜硫酸塩、アルカリ金属重亜硫酸塩、アル
カリ金属チオシアン酸塩、アルカリ金属ハロゲン
化物、ベンジルアルコール、水軟化剤、濃厚化剤
および現像促進剤などが挙げられる。この発色現
像液のPH値は、通常7以上であり、最も一般的に
は約9〜約14.5、より好ましくは10〜14である。
又、処理される感光材料の目的、性能に応じて、
各分割槽のPHを個々に変えるように出来るし、更
に後段の槽が前段の槽よりも順次低いようにもで
きるし、その逆も可能である。 これらの発色現像液に必要に応じて添加される
種々の添加剤を詳述すると、たとえばPHを一定値
に維持するアルカリ金属やアンモニウムの水酸化
物・炭酸塩、燐酸塩、PH調節あるいは緩衝剤(た
とえば酢酸、硼酸のような弱酸や弱塩基、それら
の塩)、かぶり剤たとえばヒドラジン系、スズ系、
アミノボラン系、チオ尿素系、4級アンモニウム
塩類、現像促進剤たとえばピリジニウム化合物、
カチオン性の化合物類、硝酸カリウムや硝酸ナト
リウム、ポリエチレングリコール縮合物、フエニ
ルセロソルブ、フエニルカルビトール、アルキル
セロソルブ、フエニルカルビトール、ジアルキル
ホルムアミド、アルキルホスフエートやその誘導
体類、ポリチオエーテル類などのノニオン性化合
物類、サルフアイトエステルをもつポリマー化合
物、その他ピリジン、エタノールアミン等有機ア
ミン類、ベンジルアルコール、などがある。 本発明の発色現像液の処理温度は20℃〜70℃、
好ましくは30℃〜45℃が望ましく、又、処理され
る感光材料の目的性能に応じて、各分割槽の処理
温度を個々に変えることも出来る。また後段の発
色現像槽の処理温度が前段の槽より順次低いよう
にもできるしその逆も可能である。また処理温度
を低下させるためにこれらの現像促進剤を使用す
ることは有効な手段であり添加量の増加と共に処
理温度は低下できる。またカブリ防止剤として、
たとえば臭化アルカリ、沃化アルカリやニトロベ
ンゾイミダゾール類をはじめメルカプトベンゾイ
ミダゾール、5−メチルベンゾトリアゾール、1
−フエニル−5−メルカプトテトラゾール等の過
現像防止剤、ニトロ安息香酸、ベンゾチアゾリウ
ム誘導体あるいはフエナジンN−オキシド類等カ
ブリ抑制剤などが用いられる。これらカブリ抑制
剤は、本発明の現像液を用いた現像処理において
カラーバランスを調節する為にも有利に用いられ
る。 そのほかステイン防止剤、スラツジ防止剤、重
層効果促進剤、保恒剤(たとえば亜硫酸塩、酸性
亜硫酸塩、ヒドロキシルアミン塩酸塩、ホルムサ
ルフアイト、アルカノールアミンサルフアイト附
加物など)がある。 またキレート剤としてホリリン酸塩等のリン酸
塩、ニトリロ三酢酸、1,3−ジアミノ−2−プ
ロロパノール四酢酸等のアミノホリカルボン酸
類、クエン酸、グルコン酸等のオキシカルボン酸
類、1−ヒドロキシエチリデン−1,1−ジホス
ホニツクアシド等がある。又、硫酸リチウムをキ
レート剤と併用することも可能でありこれらのキ
レート剤は組みあわせてもよい。 処理中の感光材料を搬送する方法も種々のもの
を適用することができ、またそれに伴つて種々の
方式の処理機器が使用される。たとえば、ハンガ
ー式、シネ式、ローラー搬送式等種々の方式のも
のがあげられる。 また、従来露光された感光材料を自動現像機で
処理する場合、処理される感光材料に応じて処理
液を補充しながら感光材料を処理する方法が用い
られているが、本発明に於ては、液剤化された補
充液のキツトを用いる場合はキツトの各パート別
に補充を行つてもよい。また処理液を再生使用す
る方法、現像主薬、重金属等公害上または資源上
重要な薬品を回収する方法も開発されており、処
理機器にこれらの装置が組込まれているものもあ
り、適宜これらを用いてもよい。 本発明に用いられるカラー写真感光材料として
はシアン、マゼンタ、イエローの各染料像を形成
するための赤感乳剤層、緑感乳剤層、青感乳剤層
を有する通常の多層カラー感光材料の他、乳剤層
が1層あるいは2層からなる特殊目的のカラー感
光材料、例えばカラーXレイ感光材料、発色現像
時に黒色画像を形成するカプラーを存在させて画
像を形成することのできる感光材料、偽カラー感
光材料等各種のカラー感光材料、内部潜像核を有
する直接ポシ型感光材料等に本発明を有効に適用
することができる。 本発明の処理はネガポジ型あるいは反転型の感
光材料の処理としても用いられる。またカプラー
と発色現像主薬とを未露光時は接触しない様保護
して同一層に存在させ、露光後接触し得るような
カラー感光材料にも、あるいはカラー感光材料に
おいて該カプラーを含有しない層に発色現像主薬
を含有せしめ、アルカリ性処理液を浸透させた時
に該発色現像主薬を移動させ、カプラーと接触し
得る様なカラー感光材料にもあるいは、それ自体
現像銀の酸化力により酸化されて発色する化合物
を含有するカラー感光材料にも適用できる。 本発明のハロゲン化銀カラー写真感光材料に使
用されるハロゲン化銀乳剤は塩化銀、沃化銀、ま
たは塩臭化銀の如き種々の銀塩を使うことができ
更にこの乳剤は化学増感剤例えば硫黄増感剤およ
びゼラチン中に存在する天然増感剤、還元増感剤
および貴金属および貴金属塩類等を含むことがで
きる。またこの乳剤は通常の写真添加剤、例えば
カブリ抑制剤、安定剤、汚染防止剤、塗布助剤等
を含んでいてもよい。また乳剤の光学増感剤とし
て公知のカルボシアニン色素、メロシアニン色素
等を含むことができる。 以下実施例により本発明を詳細に説明するが、
本発明はこれらに限定されるものではない。 実施例 1 レジンコートした紙支持体上に下記の各層を支
持体側より順次塗布して試料を作成した。 層1…イエロー形成青感性ハロゲン化銀乳剤層 カプラーα−(1−ベンジル−2,4−ジオキ
ソ−3−イミダゾリジニル)−α−ビバリル−2
−クロロ−5−〔γ−(2,4−ジ−t−アミルフ
エノキシ)ブチルアミド〕アセトアニリドをジブ
チルフタレート(以下DBPという)に溶解し、
ゼラチン水溶液に分散させた。次いで分散液を1
モル%の沃化銀および80モル%の臭化銀を含む塩
沃臭化銀乳剤に添加し、銀量420mg/m2、カプラ
ー量562mg/m2になるように塗布した。 層2…中間層(ゼラチン層、膜厚1μ) 層3…緑感性ハロゲン化銀乳剤層 マゼンタカプラー1−(2,4,6−トリクロ
ロフエニル)−3−(2−クロロ−5−オクタデシ
ルスクシンイミドアニリノ)−5−ピラゾロンを
トリクレジルホスフエート(以下TCPという)
に溶解し、ゼラチン水溶液に分散させた。次いで
分散液を80モル%の臭化銀を含む塩臭化銀乳剤に
添加し、銀量580mg/m2、カプラー量684mg/m2
なるように塗布した。 層4…中間層(ゼラチン層、膜厚1μ) 層5…シアン形成赤感性ハロゲン化銀乳剤層 シアンカプラー2,4−ジクロロ−3−メチル
−6−〔α−(2,4−ジ−t−アミルフエノキ
シ)ブチルアミド〕フエノールをTCPに溶解し
ゼラチン水溶液に分散させた。次いでこの分散液
を80モル%の臭化銀を含む塩臭化銀乳剤に添加し
銀量520mg/m2、カプラー量458mg/m2になるよう
に塗布した。 層6…保護層(ゼラチン層、膜厚1μ) 層1、層3および層5はそれぞれ安定剤として
4−ヒドロキシ6−メチル−1,3,3a,7−
テトラザインデンナトリウム塩、硬膜剤としてビ
ス(ビニルスルホニルメチル)エーテルおよび塗
布助剤としてサホニンを含む。 上記試料を82mm巾に裁断し、カラーネガフイル
ムをASA100でカメラ撮影し、発色現像処理して
得たネガを用いてオートカラープリンターにより
上記裁断試料に一様の画像露光を与え、4分して
試料A、B、CおよびDとし各々に対してノーリ
ツ鋼機社製自動現像機RP−1180を用い処理液の
補充を行いながら各々10000mの試料A、B、C
およびDに対してそれぞれ処理1、2、3および
4を施した。 処理−1(第1図参照) 処理条件 発色現像(3分30秒)−漂白定着(1分30秒)−水
洗(3分30秒)−乾燥 処理温度は各ステツプ共に33℃であり各処理液
の組成を下記に示した。 発色現像液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
The present invention relates to a method for processing silver halide color photographic materials, and more particularly to a color development method that requires a small amount of replenishment in continuous color development processing and provides stable and constant photographic performance at low cost. Conventionally, when continuously processing silver halide color photographic light-sensitive materials in an automatic processor, a method has been used in which the color photographic light-sensitive materials are processed while replenishing a processing solution depending on the color photographic light-sensitive material being processed. In this case, the amount to be refilled is extremely large, and the current situation is that most of the replenisher overflows from the tank of the automatic processor and is discarded. This has therefore become a major problem in terms of pollution control and cost savings. In recent years, Eastman's processing process 3HC (3Chemical High) has been used in color paper processing.
The amount of replenishment of color developer in the Concentration process has been reduced from the conventional 15cc per cabinet to 9.6cc, and further reduced from 9.6cc to 6.4cc in the EP-2 (Ekta Print2) process. . These trends toward reducing the amount of replenishment (hereinafter referred to as low replenishment) are aimed at reducing the proportion of replenishment fluid that overflows and is discarded, thereby preventing pollution and reducing costs (reducing the cost of processing chemicals). . When using conventional processing methods to reduce the replenishment of color developing agent, the concentration of color developing agent decreases particularly markedly.
In addition, components that are unfavorable to color development processing, such as halide ions and oxides of color developing agents, accumulate.
Reduces sensitivity, gamma and maximum color density. Therefore, when reusing the color developing waste solution, it is necessary to increase the concentration of the color developing agent in the tank solution to a specified level and to remove accumulated components such as halide ions as much as possible. In order to increase the color developing agent concentration to a specified level and perform low replenishment, the active ingredients necessary for color development must be dissolved in a small amount of replenisher, and the concentration of the components in the replenisher inevitably increases. Problems such as deterioration in storage stability of the replenisher and crystallization of the color developing agent occur especially when stored at low temperatures. In order to solve these problems, some attempts have been made to add a thickening agent to the color developer replenisher, but due to the essential problem of solubility of the color developing agent and development accelerator themselves, color development with a desired component concentration cannot be achieved. If a replenisher cannot be prepared and the active ingredient is usually added as a powder to the overflowed color developer waste solution and reused as a color developer replenisher, this replenishment process is extremely inefficient, resulting in low replenishment processing in a practical sense. The current situation is that a method is in place. In addition, as a method to reuse developer waste by removing development inhibiting components such as halide ions,
of the SMPTE Vol 65, P478 (1956), method using ion exchange resin, Vol 66,
There are electrodialysis methods using an ion exchange membrane described in P64 (1957), electrolytic regeneration methods using an ion exchange membrane described in JP-A-51-26542, etc.
All of these methods have drawbacks such as loss of active ingredients, short lifespan of the resin and membrane, difficulty in automation, and complexity. Therefore, a simple, low-replenishment method that does not remove development-inhibiting components such as halide ions is desired, but in the case of this method, an increase in the concentration of development-inhibiting components such as bromide ions is unavoidable. A decrease in sensitivity, gamma and maximum color density occurs.
In order to compensate for this decrease in developability, measures such as increasing the developing temperature, extending the developing time, and adding a development accelerator are used. An increase in the development temperature has the disadvantage that it increases the variation during development and the control precision of the development temperature, which leads to an increase in the cost of the development process. In addition, it is difficult to recover the development results such as a decrease in sensitivity, gamma, and color density to the desired level by increasing the development temperature or extending the development time, and instead causes fog and stains. It is often the cause. Further, addition of a development accelerator leads to deterioration of the storage life and stability of the processing solution, and at present no effective development accelerator has been found. Furthermore, the smaller the amount of replenishment, the greater the variation in the photographic performance of the processed light-sensitive material, particularly in sensitivity, gamma, etc., in response to a slight increase or decrease in the amount of replenishment. Therefore, the emergence of a low-replenishment continuous color development processing system that is inexpensive, simple, does not require special concentration of the active ingredients of the replenisher, and provides stable photographic performance is eagerly awaited. A first object of the present invention is to provide a method for continuous color development that requires less replenishment of color developer and is inexpensive. A second object of the present invention is to improve the photographic performance of low-replenishment continuous color development processing, in particular to improve the sensitivity balance and gamma balance of each layer without reducing the sensitivity and gamma of multilayer color photographic materials, and to improve the sensitivity balance and gamma balance of each layer. It is an object of the present invention to provide a method for increasing stain concentration and decreasing stain concentration. A third object of the present invention is to provide a photographic processing method in which stability of photographic performance in low-replenishment continuous color development processing, for example, less variation, is achieved. Other objects of the invention will become apparent from the subsequent description. An object of the present invention is to sequentially process an exposed silver halide color photographic light-sensitive material in a color developing tank divided into two or more tanks, and to replenish a color developing solution into a tank other than the final tank of the divided tanks. This is achieved by color development treatment. The color development replenishment method for color photographic materials that is currently commonly used is designed to have two functions in order to stabilize the development performance. One is to maintain a constant amount of active ingredients (e.g., developing agent) in the tank liquid by replenishing a liquid containing active ingredients lost during the development reaction (hereinafter referred to as replenisher), and the other is to maintain a constant level of active ingredients (e.g., developing agent) in the tank liquid. The purpose is to dilute and maintain the concentration of development-inhibiting components (for example, bromide ions) generated and increased at a constant level. Due to the latter function, the current replenishment method for color development causes a large amount of active ingredients such as developing agent to be discharged out of the tank along with bromine ions in the tank solution, which is extremely disadvantageous from the standpoint of effective use of processing chemicals. It's a method. The present inventors have discovered that when continuous processing with low replenishment is performed using the currently commonly used single developing tank system,
A homogeneous and inert color developing solution containing bromine ions that flowed out during all stages of the color development reaction and increased and accumulated in the tank liquid, and color developing agent that was consumed and decreased.
It was considered that the entire process of the color development reaction proceeds, and the initial developability deteriorates, which is extremely disadvantageous. The present inventors have solved these drawbacks by sequentially processing the exposed silver halide color photosensitive material in a color developing tank divided into two or more tanks, and by applying the color developing solution to a tank other than the final tank of the divided tanks. This problem was overcome by replenishing and setting the amount of development reaction in each tank so as to maximize the development efficiency over the entire development process, depending on the intended performance of the photosensitive material being processed. In the present invention, it is appropriate to process in a color developing tank divided into two or more tanks, preferably in a color developing tank divided into three or more tanks. This division means that in order to prevent the refilled color developing solution from immediately dispersing throughout the color developing tank, partitions are provided in the color developing tank as shown in Figures 2 and 4. It means that measures are being taken. It is preferable that the color developing solution in the divided color developing tank of the present invention is gradually carried from the previous tank to the next tank. The means for bringing this in may be, for example, the color developing solution attached to the color photographic light-sensitive material to be processed and being carried as it is to the next color developing solution, or the upper or lower part of the color developing tank as shown in Fig. 5. It may be arranged such that the color developing tank is carried from there to the next color developing tank. In FIG. 5, numeral 1 indicates a color developing tank at the front stage, 2 indicates a color developing tank at the rear stage, and arrows in the figure represent the state of diffusion of the color developer. In the present invention, the concentration of bromine and color developing agent contained in the final color developing tank is higher in terms of bromine ion concentration than in the color developing tank before the tank,
The color developing agent concentration is preferably low.
Furthermore, the concentration of bromide ions and the concentration of the color developing agent in each color developing tank is such that the concentration of the color developing agent decreases and the concentration of the bromide ion decreases as one goes from the color developing tank that replenishes the color developing solution to the later tanks. Preferably it is high. In the present invention, the color developer is replenished in tanks other than the final color developer tank, but it is most preferable to add the color developer to the first color developer tank. In the present invention, separate baths can be provided before and after the divided tanks, depending on the purpose, such as a pre-bath and post-bath or an intermediate bath between the divided tanks. It is also possible to provide a washing bath as an intermediate bath. Regarding the replenishment method, it is possible to replenish any tank other than the final tank, to divide the same replenisher solution into different divided tanks and replenish it, or to replenish multiple replenisher solutions with different compositions separately. It may be refilled in separate tanks. Even if the final tank is formally replenished with a very small amount of color developer, it is substantially included in the present invention. There are no particular restrictions on the processing method, and any processing method can be applied, but typical examples include a method that uses a color developer, bleach-fix treatment, and if necessary, a washing stabilization treatment, and a method that uses a color developer, then bleaches and fixes. A method in which fixing is performed separately and further water washing and stabilization treatment as necessary; a method in which pre-hardening, neutralization, color development, stop fixing, water washing, bleaching, fixing, water washing, post-hardening, and water washing are carried out; Color development, washing with water, supplementary color development, stopping, bleaching, fixing, washing with water, stabilization method, pre-hardening, neutralization, washing with water, first development, stopping, washing with water, color development, stopping, washing with water, bleaching, fixing, Method of washing with water, predural mater, neutralization, first
Development, stopping, washing with water, color development, stopping, washing with water, marking, organic acid bath, fixing, method of washing with water, first development, non-fixing silver dye bleach, washing with water,
Color development, acid rinsing, water washing, bleaching, water washing, fixing,
A method of washing with water, stabilization, and washing with water, a method of halogenation bleaching the developer produced by color development, and then developing it again to increase the amount of dye produced, or a method of development using an amplifier such as peroxide or cobalt complex salt. There are known methods of processing low-silver light-sensitive materials using refire agents, and these methods can be used for processing. In addition, in order to perform these processes quickly, they may be carried out at high temperatures of 30°C or higher, or at room temperature or 20°C in special cases.
In some cases, it is carried out at temperatures below 20°C to 70°C.
It is advantageous to work in the range of .degree. As the color developing agent used in the invention developer according to the present invention, a known color developing agent is used. Preferred color developing agents are aromatic primary amino compounds, and a typical example thereof is p-phenylene. Diamines and p-aminophenols are mentioned. The amount of these aromatic primary amino compounds used varies depending on the type of photosensitive material. This value can be easily determined experimentally and is generally used in the range of 0.0002 to 0.7 mol per developer. Further, compounds known as black and white developers may be used in combination with these aromatic primary amino compounds in the color developer according to the present invention. Among these, tetramethyl paraphenylene diamine, hydroquinone or its derivatives, 1-phenyl-3
- Pyrazolidones or derivatives thereof, ascorbic acid, etc. are advantageously used. Various components normally added to color developing solutions are added. For example, alkaline agents such as sodium hydroxide, sodium carbonate, potassium carbonate, alkali metal sulfites, alkali metal bisulfites, alkali metal thiocyanates, alkali metal halides, benzyl alcohol, water softeners, thickeners, and development accelerators. Examples include agents. The pH value of this color developer is usually 7 or more, most commonly about 9 to about 14.5, more preferably 10 to 14.
Also, depending on the purpose and performance of the photosensitive material being processed,
It is possible to individually change the pH of each divided tank, and it is also possible to make the later tanks sequentially lower than the earlier tanks, and vice versa. The various additives that are added to these color developing solutions as necessary include, for example, alkali metal or ammonium hydroxides, carbonates, and phosphates that maintain the pH at a constant value, pH regulators, and buffers. (for example, weak acids and weak bases such as acetic acid and boric acid, and their salts), fogging agents such as hydrazine-based, tin-based,
Aminoborane type, thiourea type, quaternary ammonium salts, development accelerators such as pyridinium compounds,
Nonions such as cationic compounds, potassium nitrate and sodium nitrate, polyethylene glycol condensates, phenyl cellosolve, phenyl carbitol, alkyl cellosolve, phenyl carbitol, dialkyl formamide, alkyl phosphates and their derivatives, polythioethers, etc. polymer compounds with sulfite esters, organic amines such as pyridine and ethanolamine, and benzyl alcohol. The processing temperature of the color developer of the present invention is 20°C to 70°C,
The temperature is preferably 30 DEG C. to 45 DEG C., and the processing temperature of each divided bath can be changed individually depending on the intended performance of the photosensitive material to be processed. Further, the processing temperature of the color developing tank in the later stage can be made lower than that in the tank in the former stage, and vice versa. Further, the use of these development accelerators is an effective means for lowering the processing temperature, and the processing temperature can be lowered as the amount added increases. Also, as an antifoggant,
For example, alkali bromide, alkali iodide, nitrobenzimidazole, mercaptobenzimidazole, 5-methylbenzotriazole, 1
Overdevelopment inhibitors such as -phenyl-5-mercaptotetrazole, and antifoggants such as nitrobenzoic acid, benzothiazolium derivatives, or phenazine N-oxides are used. These fog suppressants are also advantageously used to adjust color balance in the development process using the developer of the present invention. In addition, there are anti-stain agents, anti-sludge agents, interlayer effect promoters, and preservatives (such as sulfites, acid sulfites, hydroxylamine hydrochloride, form sulfite, alkanolamine sulfite additives, etc.). In addition, chelating agents include phosphates such as phoryphosphate, aminophoricarboxylic acids such as nitrilotriacetic acid and 1,3-diamino-2-prolopanoltetraacetic acid, oxycarboxylic acids such as citric acid and gluconic acid, and 1-hydroxyethylidene. -1,1-diphosphonic acid and the like. It is also possible to use lithium sulfate in combination with a chelating agent, and these chelating agents may be combined. Various methods can be used to transport the photosensitive material during processing, and various types of processing equipment are used accordingly. For example, there are various types such as a hanger type, a cine type, and a roller conveyance type. Furthermore, when conventionally exposed photosensitive materials are processed using an automatic processor, a method is used in which the photosensitive materials are processed while replenishing a processing solution depending on the photosensitive material to be processed. When using a replenisher kit in liquid form, each part of the kit may be replenished separately. In addition, methods have been developed to reuse processing solutions and to recover chemicals that are important in terms of pollution or resources, such as developing agents and heavy metals. May be used. Color photographic materials used in the present invention include ordinary multilayer color photographic materials having a red-sensitive emulsion layer, a green-sensitive emulsion layer, and a blue-sensitive emulsion layer for forming cyan, magenta, and yellow dye images; Special-purpose color photosensitive materials consisting of one or two emulsion layers, such as color X-ray photosensitive materials, photosensitive materials that can form images in the presence of a coupler that forms a black image during color development, and false color photosensitive materials. The present invention can be effectively applied to various color photosensitive materials, direct positive type photosensitive materials having internal latent image nuclei, etc. The processing of the present invention can also be used for processing negative-positive type or reversal type photosensitive materials. In addition, the coupler and the color developing agent can be protected from contact during unexposed exposure and be present in the same layer, and can be used in color photosensitive materials where they can come into contact with each other after exposure, or in a color photosensitive material in which a layer that does not contain the coupler develops color. Compounds that contain a developing agent and which move the color developing agent when permeated with an alkaline processing solution and can come into contact with couplers, or compounds that themselves develop color by being oxidized by the oxidizing power of developing silver. It can also be applied to color photosensitive materials containing. The silver halide emulsion used in the silver halide color photographic light-sensitive material of the present invention can contain various silver salts such as silver chloride, silver iodide, or silver chlorobromide. For example, sulfur sensitizers and natural sensitizers present in gelatin, reduction sensitizers, noble metals and noble metal salts, and the like can be included. The emulsion may also contain conventional photographic additives such as antifoggants, stabilizers, antistain agents, coating aids, and the like. Also, known carbocyanine dyes, merocyanine dyes, etc. can be included as optical sensitizers for emulsions. The present invention will be explained in detail with reference to Examples below.
The present invention is not limited to these. Example 1 A sample was prepared by sequentially applying the following layers onto a resin-coated paper support from the support side. Layer 1...Yellow-forming blue-sensitive silver halide emulsion layer Coupler α-(1-benzyl-2,4-dioxo-3-imidazolidinyl)-α-bivalyl-2
-Chloro-5-[γ-(2,4-di-t-amylphenoxy)butyramide]acetanilide is dissolved in dibutyl phthalate (hereinafter referred to as DBP),
It was dispersed in an aqueous gelatin solution. Then, the dispersion was
It was added to a silver chloroiodobromide emulsion containing mol % of silver iodide and 80 mol % of silver bromide, and coated so that the amount of silver was 420 mg/m 2 and the amount of coupler was 562 mg/m 2 . Layer 2...Intermediate layer (gelatin layer, film thickness 1μ) Layer 3...Green-sensitive silver halide emulsion layer Magenta coupler 1-(2,4,6-trichlorophenyl)-3-(2-chloro-5-octadecylsuccinimide) anilino)-5-pyrazolone as tricresyl phosphate (hereinafter referred to as TCP)
and dispersed in an aqueous gelatin solution. The dispersion was then added to a silver chlorobromide emulsion containing 80 mol% silver bromide, and coated to give a silver content of 580 mg/m 2 and a coupler content of 684 mg/m 2 . Layer 4... Intermediate layer (gelatin layer, film thickness 1μ) Layer 5... Cyan forming red-sensitive silver halide emulsion layer Cyan coupler 2,4-dichloro-3-methyl-6-[α-(2,4-di-t) -amylphenoxy)butyramide] phenol was dissolved in TCP and dispersed in an aqueous gelatin solution. This dispersion was then added to a silver chlorobromide emulsion containing 80 mol % of silver bromide and coated to give a silver content of 520 mg/m 2 and a coupler content of 458 mg/m 2 . Layer 6...Protective layer (gelatin layer, thickness 1μ) Layer 1, layer 3 and layer 5 each contain 4-hydroxy 6-methyl-1,3,3a,7- as a stabilizer.
Contains tetrazaindene sodium salt, bis(vinylsulfonylmethyl)ether as a hardening agent and sahonine as a coating aid. The above sample was cut to a width of 82 mm, a color negative film was photographed with an ASA100 camera, and the negative obtained by color development processing was used to give uniform image exposure to the above cut sample using an auto color printer. Samples A, B, C and D of 10,000 m each were refilled with processing solution using an automatic processor RP-1180 manufactured by Noritsu Koki Co., Ltd.
and D were subjected to treatments 1, 2, 3 and 4, respectively. Processing-1 (see Figure 1) Processing conditions Color development (3 minutes 30 seconds) - Bleach-fixing (1 minute 30 seconds) - Washing (3 minutes 30 seconds) - Drying The processing temperature was 33°C for each step. The composition of the liquid is shown below. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】【table】

【表】 チル)アニリン硫酸塩
pH(水酸化カリウムで調整) 10.20 10.40
上記補充液で試料1m当り26.5ml補充を行つ
た。ここで言うタンク液は自動現像機に最初から
は入つている液を示す(以下同じ)。 漂白定着液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] Chill) Aniline sulfate
pH (adjusted with potassium hydroxide) 10.20 10.40
26.5 ml of the above replenisher was replenished per 1 m of sample. The tank liquid referred to here refers to the liquid that is initially in the automatic processor (the same applies hereinafter). Bleach-fix solution composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】 上記補充液で試料1m当り26.5ml補充を行つ
た。 水 洗 試料1m当り828ml流水した。 処理−2(第1図参照) 発色現像液の補充量を試料1m当り12.4mlに
し、発色現像液のタンク液中の臭化カリウムを
1.38g/とし、処理開始時のセンシトメトリー
特性が処理1とほぼ同一になるように発色現像液
の処理温度を35℃とする他は処理1と同じ条件で
処理した。 処理−3(第1図参照) オーバーフローした発色現像廃液に有効成分を
再生剤といつた粉剤の形で添加し、発色現像補充
液として再使用する処理を行つた。 発色現像液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] 26.5 ml of the above replenisher was replenished per 1 m of sample. Water washing: 828 ml of water was flowed per 1 m of sample. Process-2 (see Figure 1) The amount of replenishment of the color developer was set to 12.4 ml per 1 m of sample, and the potassium bromide in the color developer tank solution was
The treatment was carried out under the same conditions as in Treatment 1, except that the treatment temperature of the color developing solution was 35° C. so that the sensitometric characteristics at the start of treatment were almost the same as in Treatment 1. Process-3 (see Figure 1) An active ingredient was added in the form of a powder together with a regenerating agent to the overflowed color developer waste solution, and a treatment was carried out to reuse it as a color developer replenisher. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】【table】

【表】 補充液組成 第1回の再生を行う前の補充液は、タンク液と
同一組成の液10.8に下記再生剤を加えた後、水
で20とし、PHを重炭酸カリウムでPH10.43に調
整し、最初の補充液として用いた。
[Table] Replenisher composition Before the first regeneration, the replenisher was made by adding the following regenerating agent to a solution 10.8 with the same composition as the tank solution, adjusting the pH to 20 with water, and adjusting the pH to 10.43 with potassium bicarbonate. and used as the first replenisher.

【表】 第二回目以後の再生補充液は処理によつて生じ
たオーバーフロー廃液10.8を回収し上記再生剤
を再生補充液20分加え、水で20とし、再び再
生補充液として用いた。 発色現像の処理温度は、処理開始時のセンシト
メトリー特性が処理−1とほぼ同一になるように
37℃とした。他は処理−1と同じ条件で処理を行
つた。 処理−4(第2図参照) 処理条件 処理1〜3で用いた単槽の発色現像槽を図−2
に示すように3分割し、発色現像補充液を第1槽
に補充し発色現像液が第1槽から第2槽へ、第2
槽から第3槽へと順次流れるように発色現像槽を
構成し、下記の処理を行つた。 発色現像第1槽(1分10秒)−発色現像第2槽
(1分10秒)−発色現像第3槽(1分10秒)−漂白
定着(1分30秒)−水洗(3分30秒)−乾燥 発色現像槽を上記したように3分割し、発色現
像液のタンク液組成を下記に示すように変化させ
処理開始時のセンシトメトリー特性が処理−1と
ほぼ同一になるように発色現像液の処理温度を3
槽共に35℃とする他は処理2と同じ条件で処理し
た。
[Table] For the regenerated replenisher from the second time onwards, 10.8% of the overflow waste liquid generated by the treatment was collected, the above-mentioned regenerant was added to the regenerated replenisher for 20 minutes, the volume was made up to 20% with water, and the mixture was used again as a regenerated replenisher. The processing temperature for color development was set so that the sensitometric characteristics at the start of processing were almost the same as in Process-1.
The temperature was 37℃. The other conditions were the same as in Treatment-1. Process-4 (see Figure 2) Processing conditions Figure-2 shows the single color developing tank used in Processes 1 to 3.
It is divided into three parts as shown in the figure, and the color developer replenisher is replenished into the first tank, and the color developer is transferred from the first tank to the second tank and then to the second tank.
The color developing tank was configured so that the liquid flowed sequentially from the tank to the third tank, and the following processing was performed. Color development tank 1 (1 minute 10 seconds) - Color development tank 2 (1 minute 10 seconds) - Color development tank 3 (1 minute 10 seconds) - Bleach fixing (1 minute 30 seconds) - Washing (3 minutes 30 seconds) Second) - Drying The color developing tank was divided into three parts as described above, and the tank liquid composition of the color developing solution was changed as shown below so that the sensitometric characteristics at the start of processing were almost the same as those in Process-1. The processing temperature of the color developer is set to 3.
The treatment was carried out under the same conditions as Treatment 2, except that both tanks were kept at 35°C.

【表】 体螢光増白剤
[Table] Body fluorescent whitening agent

【表】 写真特性を見るためにウエツジ露光した上記試
料(試料)を処理1、2、3および4のそれぞ
れ処理開始時と10000m処理後に処理した。処理
して得た試料のイエロー(Y)、マゼンタ(M)、
シアン(C)の感度、ガンマー及び最大濃度を下記表
−1に示す。なお感度値は処理1の処理開始時に
おいて発色現像処理した場合のY、M、Cそれぞ
れの感度を100とした場合の相対感度で示した。
[Table] The above-mentioned sample (sample), which had been wedge-exposed to examine photographic properties, was processed at the start of processing and after 10,000 m processing in Processes 1, 2, 3, and 4, respectively. Yellow (Y), magenta (M) of the sample obtained by processing,
The sensitivity, gamma and maximum density of cyan (C) are shown in Table 1 below. Note that the sensitivity values are expressed as relative sensitivities when the respective sensitivities of Y, M, and C when color development processing is performed at the start of processing 1 are set as 100.

【表】【table】

【表】 表−1からわかるように処理1および4は処理
開始時と10000m処理後のセンシトメトリー特性
はほぼ同じであるが、処理2においては処理の開
始時より10000m処理後の方がY、M、C共に感
度、ガンマー、最大濃度が低下していた。 また処理1、2、3および4において一定の長
さの感材処理するのに要する発色現像主薬(3−
メチル−4−アミノ−N−エチル−N−(βメタ
ンスルホンアミドエチル)アニリン硫酸塩)の量
を計算すると 処理1 7g/×26.5×10-3/m =185.5×10-3g/m 処理2 7g/×12.4×10-3/m =86.8×10-3g/m 処理3 4.9g/×26.5×10-3/m =129.85×10-3g/m 処理4 7g/×12.4×10-3/m =86.8×10-3g/m 以上より処理4は、薬品量が処理1、3より少
く、処理2のように減感のような写真性能劣化が
ない。又、処理3に比較しても処理温度は低く、
煩雑な再生操作のいらない簡単な補充方法であり
更に処理開始から10000m処理後まで終始一定の
プリント画像が得られた。 実施例 2 セルローストリアセテートフイルムからなる支
持体上に下記の各層を支持体側より順次塗布し試
料を作成した。 層1…ハレーシヨン防止層(黒色コロイド銀を含
むゼラチン層、膜厚1μ) 層2…シアン型成赤感性ハロゲン化銀乳剤層 カラードカプラーとして1−ヒドロキシ−4−
〔4−(2−ヒドロキシ−3,6−ジスルホ−1−
ナフチルアゾ)フエニルカルバモイルオキシ〕−
N−〔δ−(2,4−ジ−t−アミルフエノキシ)
ブチル〕−2−ナフトアミド・ジナトリウム塩を
5g、シアンカプラーとして1−ヒドロキシ−N
−〔δ(2,4−ジ−t−アミルフエノキシ)ブチ
ル〕−2−ナフトアミド・を20g、DIR化合物と
して2−(1−フエニル−5−テトラゾリルチオ)
−4−(2,4−ジ−t−アミルフエノキシアセ
トアミド)−1−インダノンを2gを混合して
TCPに溶解しゼラチン水溶液中に分散させた。
次いで分散液を沃臭化銀ゼラチン乳剤に添加し下
記の条件になるように塗布した。 銀量 3.4g/m2 カプラー混合物 1.4g/m2 層3…中間層(ゼラチン層膜厚1μ) 層4…マゼンタ形成緑感性ハロゲン化銀乳剤層 カラードカプラー1−(2,4,6−トリクロ
ロフエニル)−4−(1−ナフチルアゾ)−3−(2
−クロロ−5−オクタデセニルスクシンイミドア
ニリノ)−5−ピラゾロン5g、マゼンタカプラ
ー1−(2,4,6−トリクロロフエニル)−3−
(3−ドデシルスクシンイミドベンツアミド)−5
ピラゾロン25gおよびDIR化合物(層2で用いた
のと同じ)2gとの混合物をTCPに溶解しゼラ
チン水溶液中に分散させた。次いで分散液を6モ
ル%の沃化銀を含む沃臭化銀ゼラチン乳剤に添加
し下記条件になるよう塗布した。 銀量 3.2g/m2 カプラー混合物 1.2g/m2 層5…中間層(ゼラチン層膜厚1μ) 層6…黄色フイルター層(黄色コロイド銀を含む
ゼラチン層膜厚1μ) 層7…イエロー形成青感性ハロゲン化銀乳剤層 イエローカプラーα−〔4−(1−0−クロロフ
エニル−2−0−クロロフエニル−3,5−ジオ
キソ−1,2,4−トリアゾリジニル)〕−α−ピ
バリル−2クロロ−5−〔γ−(2,4−ジ−t−
アミルフエノキシ)ブチルアミド〕アセトアニリ
ド26gとイエローカプラーα−ピバリル−2−ク
ロロ−5−〔γ−(2,4−ジ−t−アミルフエノ
キシ)ブチルアミド〕アセトアニリド6gを
DBPに溶解しゼラチン水溶液中に分散させた。
次いで分散液を7モル%の沃化銀を含む沃臭化銀
乳剤に添加し、下記条件になるように塗布した。 銀量 1.0g/m2 カプラー混合物 1.4g/m2 層8…保護層(ゼラチン層膜厚1μ) なお層2、層4および層7中に安定剤として4
−ヒドロキシ−6−メチル−1,3,3a,7−
テトラザインデン・ナトリウム塩、硬膜剤として
1,2ビス(ビニルスルホニル)エタンおよび塗
布助剤としてサボニンを含有せしめた。 上記試料を35mm巾に裁断し、ASA100の露光条
件でカメラ撮影し、3分して試料E、FおよびG
とし各々に対して、パコ(Pako)社製自動現像
機Model35−7KOを用い処理液の補充を行い
ながら各々10000mの試料E、FおよびGに対し
てそれぞれ処理5、6および7を施した。 処理−5(第1図参照) 処理条件 発色現像(3分15秒)−漂白(6分30秒)−第1水
洗(3分15秒)−定着(6分30秒)−第2水洗(3
分15秒)−安定(1分30秒) 処理温度は、各ステツプ共に38℃であり各処理
液の組成を下記に示した。 発色現像液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] As can be seen from Table 1, the sensitometric characteristics of treatments 1 and 4 at the start of treatment and after 10,000 m treatment are almost the same, but in treatment 2, the Y after 10,000 m treatment is higher than at the start of treatment. , M, and C had decreased sensitivity, gamma, and maximum density. In addition, in Processes 1, 2, 3, and 4, the color developing agent (3-
Calculating the amount of methyl-4-amino-N-ethyl-N-(βmethanesulfonamidoethyl)aniline sulfate) in treatment 1: 7 g/×26.5×10 -3 /m = 185.5×10 -3 g/m 2 7g/×12.4×10 -3 /m =86.8×10 -3 g/m Treatment 3 4.9g/×26.5×10 -3 /m =129.85×10 -3 g/m Treatment 4 7g/×12.4×10 -3 /m = 86.8×10 -3 g/m From the above, Process 4 uses less chemicals than Processes 1 and 3, and unlike Process 2, there is no deterioration in photographic performance such as desensitization. In addition, the treatment temperature is lower than that of treatment 3.
It was a simple replenishment method that did not require complicated reproducing operations, and a constant print image was obtained from the start of processing to the end of 10,000 m of processing. Example 2 A sample was prepared by sequentially coating the following layers on a support made of cellulose triacetate film from the support side. Layer 1...Antihalation layer (gelatin layer containing black colloidal silver, thickness 1μ) Layer 2...Cyan type red-sensitive silver halide emulsion layer 1-hydroxy-4- as a colored coupler
[4-(2-hydroxy-3,6-disulfo-1-
naphthylazo)phenylcarbamoyloxy]-
N-[δ-(2,4-di-t-amylphenoxy)
5 g of disodium salt of [butyl]-2-naphthamide, 1-hydroxy-N as a cyan coupler.
-20 g of [δ(2,4-di-t-amylphenoxy)butyl]-2-naphthamide, 2-(1-phenyl-5-tetrazolylthio) as a DIR compound.
-4-(2,4-di-t-amylphenoxyacetamide)-1-indanone was mixed with 2 g.
It was dissolved in TCP and dispersed in an aqueous gelatin solution.
The dispersion was then added to a silver iodobromide gelatin emulsion and coated under the following conditions. Silver amount 3.4 g/m 2 Coupler mixture 1.4 g/m 2 Layer 3... Intermediate layer (gelatin layer thickness 1μ) Layer 4... Magenta forming green-sensitive silver halide emulsion layer Colored coupler 1-(2,4,6-trichloro phenyl)-4-(1-naphthylazo)-3-(2
-chloro-5-octadecenylsuccinimideanilino)-5-pyrazolone 5g, magenta coupler 1-(2,4,6-trichlorophenyl)-3-
(3-dodecylsuccinimidobenzamide)-5
A mixture of 25 g of pyrazolone and 2 g of DIR compound (same as used in layer 2) was dissolved in TCP and dispersed in the aqueous gelatin solution. Next, the dispersion was added to a silver iodobromide gelatin emulsion containing 6 mol % of silver iodide, and coated under the following conditions. Silver amount 3.2 g/m 2 Coupler mixture 1.2 g/m 2 Layer 5...Intermediate layer (gelatin layer thickness 1μ) Layer 6...Yellow filter layer (gelatin layer thickness 1μ containing yellow colloidal silver) Layer 7...Yellow forming blue Sensitive silver halide emulsion layer Yellow coupler α-[4-(1-0-chlorophenyl-2-0-chlorophenyl-3,5-dioxo-1,2,4-triazolidinyl)]-α-pivalyl-2chloro-5 -[γ-(2,4-di-t-
26 g of amylphenoxy)butyramide]acetanilide and 6g of yellow coupler α-pivalyl-2-chloro-5-[γ-(2,4-di-t-amylphenoxy)butyramide]acetanilide.
It was dissolved in DBP and dispersed in an aqueous gelatin solution.
The dispersion was then added to a silver iodobromide emulsion containing 7 mol % of silver iodide, and coated under the following conditions. Silver content 1.0g/m 2 Coupler mixture 1.4g/m 2 Layer 8...Protective layer (gelatin layer thickness 1μ) Note that layer 2, layer 4 and layer 7 contain 4 as a stabilizer.
-Hydroxy-6-methyl-1,3,3a,7-
It contained tetrazaindene sodium salt, 1,2-bis(vinylsulfonyl)ethane as a hardening agent, and sabonin as a coating aid. The above samples were cut into 35mm width, photographed with a camera under the exposure condition of ASA100, and after 3 minutes, samples E, F and G
Processes 5, 6 and 7 were applied to samples E, F and G each having a length of 10,000 m while replenishing the processing solution using an automatic processor Model 35-7KO manufactured by Pako. Processing-5 (see Figure 1) Processing conditions Color development (3 minutes 15 seconds) - Bleaching (6 minutes 30 seconds) - First water wash (3 minutes 15 seconds) - Fixing (6 minutes 30 seconds) - Second water wash ( 3
minute 15 seconds) - stable (1 minute 30 seconds) The processing temperature was 38°C in each step, and the composition of each processing solution is shown below. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】 上記補充液で試料1m当り22ml補充を行つた。 漂白液組成 以下の種類と濃度(g/)の薬品を含む水溶
液で構成される。
[Table] 22 ml of the above replenisher was replenished per 1 m of sample. Bleach solution composition: Consists of an aqueous solution containing the following types and concentrations (g/) of chemicals.

【表】 上記補充液で試料1m当り35ml補充を行つた。 第1水洗 試料1m当り900ml流水した。 定着液組成 以下の種類と濃度(g/)の薬品を含む水溶
液で構成される。 タンク液及び補充液 チオ硫酸アンモニウム 85 無水亜硫酸ナトリウム 6.0 メタ亜硫酸ナトリウム 2.8 PH(酢酸で調整) 6.0 上記補充液で試料1m当り35mlの補充を行つ
た。 第2水洗 試料1m当り900ml流水した。 安定液組成 以下の種類と濃度(g/)の薬品を含む水溶
液で構成される。
[Table] 35 ml of the above replenisher was replenished per 1 m of sample. First water washing: 900 ml of water was flowed per 1 m of sample. Fixer composition: Consists of an aqueous solution containing the following types and concentrations (g/) of chemicals. Tank liquid and replenisher ammonium thiosulfate 85 Anhydrous sodium sulfite 6.0 Sodium metasulfite 2.8 PH (adjusted with acetic acid) 6.0 35 ml of the above replenisher was replenished per 1 m of sample. Second water washing: 900 ml of water was flowed per 1 m of sample. Stable liquid composition: Consists of an aqueous solution containing the following types and concentrations (g/) of chemicals.

【表】 クチルフエニルエーテル
上記補充液で試料1m当り35mlの補充を行つ
た。 処理−6(第1図参照) 発色現像液の補充液を試料1m当り15mlにする
他は処理5と同じ条件で処理した。 処理−7(第2図参照) 処理5〜6で用いた単槽の発色現像槽を第2図
に示すように3分割し、発色現像補充液を第1槽
に補充し、発色現像液が第1槽から第2槽へ、第
2槽から第3槽へと順次流れるように発色現像槽
を構成し、下記の処理を行つた。 発色現像第1槽(1分5秒)−発色現像第2槽
(1分5秒)−発色現像第3槽(1分5秒)−標白
(6分30秒)−第1水洗(3分15秒)−定着(6分
30秒)−第2水洗(3分15秒)−安定(1分30秒) 発色現像槽を上記したように3分割し、発色現
像液のタンク液の組成を下記に示すように変化さ
せた他は処理6と同じ条件で処理を行つた。 発色現像液組成 以上の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] Cutyl phenyl ether
The above replenisher was used to replenish 35 ml per 1 m of sample. Processing 6 (see Figure 1) Processing was carried out under the same conditions as Processing 5, except that the amount of color developer replenisher was 15 ml per 1 m of sample. Process-7 (see Figure 2) The single color developer tank used in Processes 5 and 6 was divided into three parts as shown in Figure 2, and the color developer replenisher was replenished into the first tank, and the color developer was The color developing tank was configured to flow sequentially from the first tank to the second tank and from the second tank to the third tank, and the following processing was performed. Color development tank 1 (1 minute 5 seconds) - Color development tank 2 (1 minute 5 seconds) - Color development tank 3 (1 minute 5 seconds) - Marking (6 minutes 30 seconds) - First water washing (3 minute 15 seconds) - Fixation (6 minutes
30 seconds) - Second water washing (3 minutes 15 seconds) - Stability (1 minute 30 seconds) The color developing tank was divided into three parts as described above, and the composition of the color developer tank solution was changed as shown below. The other conditions were the same as in Process 6. Color developer composition: Consists of an aqueous solution of chemicals with the above types and concentrations (g/).

【表】【table】

【表】 写真特性を見るために、ウエツジ露光した上記
試料(試料)を処理5、6および7のそれぞれ
の処理開始時と10000m処理後に処理した。処理
して得た試料のイエロー(Y)、マゼンタ(M)、
シアン(C)の感度、ガンマー、最大濃度を下記表−
2に示す。なお感度値は処理5の処理開始時発色
現像処理した場合のY、M、Cそれぞれの感度を
100とした場合の相対感度で示した。
[Table] In order to examine photographic properties, the wedge-exposed sample was processed at the start of each of Processes 5, 6, and 7 and after 10,000 m of processing. Yellow (Y), magenta (M) of the sample obtained by processing,
The sensitivity, gamma, and maximum density of cyan (C) are shown in the table below.
Shown in 2. The sensitivity values are the respective sensitivities of Y, M, and C when color development is performed at the start of processing 5.
It is expressed as relative sensitivity when set to 100.

【表】【table】

【表】 表−2からわかるように処理5および処理7は
処理開始時と10000処理後のセンシトメトリー特
性はほぼ同じであるが、処理6においては処理の
開始時より10000m処理後の方がY、M、C共に
感度、ガンマー、最大濃度が低下していた。 また、処理5、6および7において感材の単位
面積を処理するのに要する発色現像主薬(3−メ
チル−4−アミノ−N−エチル−N−(βヒドロ
キシエチル)アニリン硫酸塩の量を計算すると 処理5 7.5g/×22×10-3/m =165.0において、×10-3g/m 処理6 7.5g/×15×10-3/m =112.5×10-3g/m 処理7 7.5g/×15×10-3/m =112.5×10-3g/m 以上より処理7は薬品量が処理5より少く処理
6のように写真性能の劣化がなく、更に処理開始
から10000m処理後まで終始一定のネガ画像が得
られた。 実施例 3 レジンコートした紙支持体上に下記の各層を支
持体側より順次塗布して試料を作成した。 層1…シアン形成赤感性ハロゲン化銀乳剤層 米国特許第2592250号明細書の実施例1に記載
の方法に従つて、コンバージヨン法による内部潜
像型の塩沃臭化銀乳剤を調製した。 シアンカプラー2,4−ジクロロ−3−メチル
−6−〔α−(2,4−ジ−tert−アミルフエノキ
シ)ブチルアミド〕フエノール80g、2,5−ジ
−tert−オクチルハイドロキノン2g、ジブチル
フタレート100g、パラフイン200g、酢酸エチル
50gを混合溶解し、ドデシルベンゼンスルホン酸
ナトリウムを含むゼラチン液に加えて分散し、前
記乳剤(塩沃臭化銀0.35モル含有)を添加し、銀
量400mg/m2、カプラー量320mg/m2になるように
塗布した。 層2…中間層 灰色コロイド銀5g及びジブチルフタレート中
に分散された2,5−ジ−tert−オクチルハイド
ロキノン10gを含む2.5%ゼラチン液100mlをコロ
イド銀量400mg/m2になるように塗布した。 層3…マゼンタ形成緑感性ハロゲン化銀乳剤層 マゼンタカプラー1−(2,4,6−トリクロ
ロフエニル)−3−(2−クロロ−5−オクタデシ
ルスクシンイミドアニリノ)−5−ピラゾロン100
g、2−5−ジ−tert−オクチルハイドロキノン
5g、スミライザーMDP(住友化学工業株式会社
製)50g、パラフイン200g、ジブチルフタレー
ト100g、酢酸エチル50gを混合溶解し、ドデシ
ルベンゼンスルホン酸ナトリウムを含むゼラチン
液に加えて分散し、層1と同様にして作られた内
部潜像型の塩沃臭化銀乳剤を添加し、銀量400
mg/m2、カプラー量400mg/m2になるように塗布
した。 層4…イエローフイルター層 イエローコロイド銀5g及びジブチルフタレー
ト中に分散された2,5−ジ−tert−オクチルハ
イドロキノン5gを含む2.5%ゼラチン液をコロ
イド銀が200mg/m2となるように塗布した。 層5…イエロー形成性青感性ハロゲン化銀乳剤層 イエローカプラーα−〔4−(1−ベンジル−2
−フエニル−3,5−ジオキソ−1,2,4−ト
リアゾリジニル)〕−α−ピバリル−2−クロロ−
5−〔γ−(2,4−ジ−tert−アミルフエノキ
シ)ブチルアミド〕アセトアニリド120g、2,
5−ジ−tert−オクチルハイドロキノン3.5g、パ
ラフイン200g、チヌビン(チバガイギー社製)
100g、ジブチルフタレート100g、酢酸エチル70
mlを混合溶解し、ドデシルベンゼンスルホン酸ナ
トリウムを含むゼラチン液に加え、平均粒径が
1.5μとなるように分散し、層1と同様にして作ら
れた内部潜像型の塩沃臭化銀乳剤を添加し銀量
400mg/m2、カプラー量400mg/m2になるように塗
布した。 層6…保護層 ゼラチン量が200mg/m2になるように塗布した。
なお、層1、層3、層5には安定剤として、4−
ヒドロキシ−6−メチル−1,3,3a,7−テ
トラザインデンを含有せしめた。又、層1、層
2、層3、層4、層5、層6には硬膜剤としてビ
ス(ビニルスルホニルメチル)エーテル、塗布助
剤として、サポニンを含有せしめた。 上記試料を89mm巾に裁断し、カラリバーサルフ
イルムをASA100でカメラ撮影し、発色現像処理
して得たポジを用いて、オートカラープリンター
により、上記裁断試料に一様の画像露光を与え、
3分して試料H、IおよびJとし各々に対し、ノ
ーリツ鋼機社製自動現像機RP−R1200を改造し
た自現機を用い処理液の補充を行いながら各々
10000mの試料H、IおよびJに対してそれぞれ
処理8、9および10を施した。(図−2参照) 処理−8 処理条件(第3図参照) 発色現像(1分30秒、現像開始30秒後から1分
間、1ルツクスの光で全面を均一露光)−第1水
洗(45秒)−漂白定着(2分)−第2水洗(2分)
−安定(45秒)−リンス(3秒) 処理温度は各ステツプ共38℃であり、各処理液
の組成を下記に示した。 発色現像液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] As can be seen from Table 2, the sensitometric characteristics of treatments 5 and 7 are almost the same at the start of treatment and after 10,000 meters, but in treatment 6, the sensitometric characteristics after 10,000 meters are better than at the start of treatment. Sensitivity, gamma, and maximum density were decreased for both Y, M, and C. In addition, calculate the amount of color developing agent (3-methyl-4-amino-N-ethyl-N-(β-hydroxyethyl) aniline sulfate) required to process the unit area of the photosensitive material in Processes 5, 6, and 7. Then, at treatment 5 7.5g/×22×10 -3 /m = 165.0, ×10 -3 g/m treatment 6 7.5g/×15×10 -3 /m =112.5×10 -3 g/m treatment 7 7.5 g/×15×10 -3 /m = 112.5×10 -3 g/m From the above, in Process 7, the amount of chemicals was lower than in Process 5, there was no deterioration in photographic performance like in Process 6, and furthermore, after 10,000 m from the start of processing. A constant negative image was obtained from beginning to end.Example 3 A sample was prepared by sequentially coating the following layers on a resin-coated paper support from the support side.Layer 1...Cyan-forming red-sensitive silver halide emulsion layer An internal latent image type silver chloroiodobromide emulsion was prepared by a conversion method according to the method described in Example 1 of US Pat. No. 2,592,250. Cyan coupler 2,4-dichloro-3-methyl- 6-[α-(2,4-di-tert-amylphenoxy)butyramide]phenol 80g, 2,5-di-tert-octylhydroquinone 2g, dibutyl phthalate 100g, paraffin 200g, ethyl acetate
Mix and dissolve 50 g, add to gelatin solution containing sodium dodecylbenzenesulfonate, disperse, and add the above emulsion (containing 0.35 mole of silver chloroiobromide) to give a silver amount of 400 mg/m 2 and a coupler amount of 320 mg/m 2 It was applied so that Layer 2: Intermediate layer 100 ml of a 2.5% gelatin solution containing 5 g of gray colloidal silver and 10 g of 2,5-di-tert-octylhydroquinone dispersed in dibutyl phthalate was coated to give a colloidal silver amount of 400 mg/m 2 . Layer 3...Magenta-forming green-sensitive silver halide emulsion layer Magenta coupler 1-(2,4,6-trichlorophenyl)-3-(2-chloro-5-octadecylsuccinimideanilino)-5-pyrazolone 100
g, 5 g of 2-5-di-tert-octylhydroquinone, 50 g of Sumilizer MDP (manufactured by Sumitomo Chemical Co., Ltd.), 200 g of paraffin, 100 g of dibutyl phthalate, and 50 g of ethyl acetate were mixed and dissolved to create a gelatin solution containing sodium dodecylbenzenesulfonate. In addition, an internal latent image type silver chloroiodobromide emulsion was dispersed and prepared in the same manner as layer 1, and the amount of silver was 400.
mg/m 2 , and the amount of coupler was 400 mg/m 2 . Layer 4...Yellow filter layer A 2.5% gelatin solution containing 5 g of yellow colloidal silver and 5 g of 2,5-di-tert-octylhydroquinone dispersed in dibutyl phthalate was coated so that the colloidal silver was 200 mg/m 2 . Layer 5... Yellow-forming blue-sensitive silver halide emulsion layer Yellow coupler α-[4-(1-benzyl-2
-phenyl-3,5-dioxo-1,2,4-triazolidinyl)]-α-pivalyl-2-chloro-
5-[γ-(2,4-di-tert-amylphenoxy)butyramide]acetanilide 120 g, 2,
3.5 g of 5-di-tert-octylhydroquinone, 200 g of paraffin, Tinuvin (manufactured by Ciba Geigy)
100g, dibutyl phthalate 100g, ethyl acetate 70
ml, mix and dissolve, add to gelatin solution containing sodium dodecylbenzenesulfonate, and make sure the average particle size is
An internal latent image type silver chloroiodobromide emulsion prepared in the same manner as layer 1 was added to disperse the silver so that the silver amount was 1.5μ.
The amount of coupler was 400mg/m 2 and the amount of coupler was 400mg/m 2 . Layer 6...Protective layer Coated so that the amount of gelatin was 200 mg/m 2 .
Note that 4-4 is added as a stabilizer to layer 1, layer 3, and layer 5.
It contained hydroxy-6-methyl-1,3,3a,7-tetrazaindene. Further, layer 1, layer 2, layer 3, layer 4, layer 5, and layer 6 contained bis(vinylsulfonylmethyl)ether as a hardening agent and saponin as a coating aid. Cut the sample into a width of 89 mm, photograph the color reversal film with an ASA100 camera, use the positive obtained by color development processing, and apply uniform image exposure to the cut sample using an auto color printer.
After 3 minutes, samples H, I, and J were processed while replenishing the processing solution using a modified automatic processor RP-R1200 manufactured by Noritsu Koki Co., Ltd.
Treatments 8, 9 and 10 were applied to 10000 m samples H, I and J, respectively. (See Figure 2) Processing 8 Processing conditions (See Figure 3) Color development (1 minute 30 seconds, uniform exposure of the entire surface with 1 lux light for 1 minute from 30 seconds after the start of development) - First water washing (45 seconds) - Bleach-fixing (2 minutes) - Second wash (2 minutes)
- Stable (45 seconds) - Rinse (3 seconds) The processing temperature was 38°C in each step, and the composition of each processing solution is shown below. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】 上記補充液で試料1m当り890ml補充する。 第1水洗 試料1m当り4700ml流水した。 標白定着液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] Replenish 890 ml of the above replenisher per 1 m of sample. First water washing: 4700 ml of water was flowed per 1 m of sample. Composition of white fixer: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】 上記補受液で試料1m当り890ml補充を行つた。 第2水洗 試料1m当り4700ml流水した。 安定液組成 以下の種類と濃度(g/)の薬品で構成され
る。 タンク液及び補充液 氷酢酸 20 無水酢酸ナトリウム 5 上記補充液で試料1m当り668ml補充した。 リンス 試料1m当り1800ml流水した。 処理9(第3図参照) 発色現像液の補充量を試料1m当り593mlにす
る他は処理8と同じ条件で処理した。 処理10(第4図参照) 処理8、9で用いた単槽の発色現像槽を第4図
に示すように6分割し、発色現像補充液を第1槽
に補充し、発色現像液が第1槽から第2槽へ、第
2槽から第3槽へ、第3槽から第4槽へ、第4槽
から第5槽へ、第5槽から第6槽へ順次流れるよ
うに発色現像槽を構成し下記の処理を行つた。 発色現像第1槽(15秒)−発色現像第2槽(15秒)
−発色現像第3槽(15秒)−発色現像第4槽(15
秒)−発色現像第5槽(15秒)−発色現像第6槽
(15秒)−第1水洗(45秒)−漂白定着(2分)−第
2水洗(2分)−安定(45秒)−リンス(3秒) 発色現像槽を上記したように6分割し、発色現
像液のタンク液組成を下記に示すように変化させ
た他は処理8と同じ条件で処理を行つた。 発色現像液組成 以下の種類と濃度(g/)の薬品の水溶液で
構成される。
[Table] 890 ml of the above-mentioned replenishment solution was replenished per 1 m of sample. 2nd water washing 4700ml of water was flowed per 1m of sample. Stable liquid composition: Consists of the following types and concentrations (g/) of chemicals. Tank liquid and replenisher: Glacial acetic acid 20 Anhydrous sodium acetate 5 668 ml of the above replenisher was added per 1 m of sample. Rinsing 1800ml of water was flowed per 1m of sample. Processing 9 (see Figure 3) Processing was carried out under the same conditions as Processing 8, except that the amount of replenishment of the color developing solution was 593 ml per 1 m of sample. Process 10 (see Figure 4) The single color developer tank used in Processes 8 and 9 is divided into six as shown in Figure 4, and the color developer replenisher is replenished into the first tank, and the color developer is added to the first tank. Color developing tanks flow sequentially from tank 1 to tank 2, tank 2 to tank 3, tank 3 to tank 4, tank 4 to tank 5, and tank 5 to tank 6. I configured the following and performed the following processing. Color development tank 1 (15 seconds) - Color development tank 2 (15 seconds)
- Color development tank 3 (15 seconds) - Color development tank 4 (15 seconds) - Color development tank 4 (15 seconds)
(seconds) - Color development tank 5 (15 seconds) - Color development tank 6 (15 seconds) - First wash (45 seconds) - Bleach-fix (2 minutes) - Second wash (2 minutes) - Stability (45 seconds) ) - Rinse (3 seconds) Processing was carried out under the same conditions as Process 8, except that the color developing tank was divided into six as described above, and the tank liquid composition of the color developing solution was changed as shown below. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/).

【表】 写真特性を見るために、ウエツジ露光した上記
試料(試料)を処理8、9および10のそれぞれ
の処理開始時と10000m処理後に処理した。処理
して得た試料のイエロー(Y)、マゼンタ(M)、
シアン(C)のガンマー、最大濃度を下記表−3に示
す。
[Table] In order to examine photographic properties, the wedge-exposed sample was processed at the start of each of Processes 8, 9 and 10 and after 10,000 m of processing. Yellow (Y), magenta (M) of the sample obtained by processing,
The gamma and maximum concentration of cyan (C) are shown in Table 3 below.

【表】 表3からわかるように処理8および処理10は処
理開始時と10000m処理後のセンシトメトリー特
性はほぼ同じであるが、処理9においては処理の
開始時より10000m処理後の方がY、M、Cのガ
ンマー最大濃度は低下していた。 また処理8、9および10において感材の単位面
積を処理するのに要する発色現像主薬(3−メチ
ル−4アミノ−Nエチル−N−(Bメタンスルホ
ンアミドエチル)アニリン硫酸塩の量を計算する
と 処理8 4.25g/×890×10-3ml/m =3.78g/m 処理9 4.25g/×593×10-3ml/m =2.52g/m 処理10 4.25g/×593×10-3ml/m =2.52g/m 以上より処理10は薬品量が処理8より少く、処
理9のように写真性能の劣化がなく、更に、処理
開始から10000m処理後まで終始一定のポジ画像
が得られた。
[Table] As can be seen from Table 3, in treatments 8 and 10, the sensitometric characteristics at the start of treatment and after 10,000 m treatment are almost the same, but in treatment 9, the Y after 10,000 m treatment is higher than at the start of treatment. The maximum gamma concentrations of , M, and C were decreasing. In addition, when calculating the amount of color developing agent (3-methyl-4-amino-N-ethyl-N-(B methanesulfonamidoethyl) aniline sulfate) required to process the unit area of the sensitive material in Processes 8, 9, and 10, Treatment 8 4.25g/×890×10 -3 ml/m = 3.78g/m Treatment 9 4.25g/×593×10 -3 ml/m =2.52g/m Treatment 10 4.25g/×593×10 -3 ml /m = 2.52g/m From the above, Process 10 had a lower amount of chemicals than Process 8, and there was no deterioration in photographic performance like Process 9, and furthermore, a constant positive image was obtained from the start of processing to 10,000 meters after processing. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は実施例に係る従来の発色
現像槽の断面図、第2図および第4図は実施例に
係る本発明発色現像槽の断面図、第5図は本発明
の発色現像槽の説明図である。 1……試料、2……自現ローラー、3……発色
現像補充液、4……発色現像オーバーフロー液、
5……発色現像槽、51,52,53,54,5
5,56……第1、第2、第3、第4、第5、第
6発色現像槽、6……発色現像タンク液、7……
光源(1ルツクス)。
1 and 3 are sectional views of a conventional color developing tank according to an embodiment, FIGS. 2 and 4 are sectional views of a color developing tank of the present invention according to an embodiment, and FIG. 5 is a sectional view of a color developing tank of the present invention according to an embodiment. FIG. 3 is an explanatory diagram of a developer tank. 1...sample, 2...self-developing roller, 3...color developer replenisher, 4...color developer overflow liquid,
5... Color developer tank, 51, 52, 53, 54, 5
5, 56...first, second, third, fourth, fifth, sixth color developing tank, 6...color developing tank liquid, 7...
Light source (1 lux).

Claims (1)

【特許請求の範囲】[Claims] 1 露光されたハロゲン化銀カラー写真感光材料
を二槽以上に分割されている発色現像槽で逐次処
理し、且つ発色現像液を該二以上の分割槽の最終
槽以外の分割槽に補充することを特徴とするハロ
ゲン化銀カラー写真感光材料の発色現像処理方
法。
1. Sequentially processing the exposed silver halide color photographic light-sensitive material in a color developing tank divided into two or more tanks, and replenishing a color developing solution into a divided tank other than the final tank of the two or more divided tanks. A color development processing method for a silver halide color photographic light-sensitive material, characterized by:
JP2031979A 1979-02-23 1979-02-23 Color developing method for color photographic material Granted JPS55113045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031979A JPS55113045A (en) 1979-02-23 1979-02-23 Color developing method for color photographic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031979A JPS55113045A (en) 1979-02-23 1979-02-23 Color developing method for color photographic material

Publications (2)

Publication Number Publication Date
JPS55113045A JPS55113045A (en) 1980-09-01
JPS6318725B2 true JPS6318725B2 (en) 1988-04-20

Family

ID=12023802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031979A Granted JPS55113045A (en) 1979-02-23 1979-02-23 Color developing method for color photographic material

Country Status (1)

Country Link
JP (1) JPS55113045A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640216B2 (en) * 1983-01-24 1994-05-25 コニカ株式会社 Method of replenishing color development replenisher
DE3431860A1 (en) * 1984-08-30 1986-03-06 Agfa-Gevaert Ag, 5090 Leverkusen METHOD FOR PRODUCING COLOR PHOTOGRAPHIC IMAGES
JP2655346B2 (en) * 1989-04-11 1997-09-17 富士写真フイルム株式会社 Processing method of silver halide photosensitive material
JP2655345B2 (en) * 1989-04-10 1997-09-17 富士写真フイルム株式会社 Processing method of silver halide photosensitive material
US7507511B2 (en) 2005-01-14 2009-03-24 Ricoh Company Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the electrophotographic photoreceptor
JP4793913B2 (en) 2005-03-04 2011-10-12 株式会社リコー Image forming apparatus
EP1712956A3 (en) 2005-04-13 2007-05-30 Ricoh Company, Ltd. Image bearing member, and image forming apparatus and process cartridge using the same

Also Published As

Publication number Publication date
JPS55113045A (en) 1980-09-01

Similar Documents

Publication Publication Date Title
JPS6240698B2 (en)
JPS6318725B2 (en)
JPS5836332B2 (en) Processing method for silver halide photographic materials
US4138257A (en) Process for the treatment of photographic materials
JPS63264750A (en) Method for processing silver halide color photographic sensitive material
EP0132806A2 (en) Method of processing silver halide color light-sensitive materials
JPH0528819B2 (en)
JPH0648376B2 (en) Processing method of silver halide color photographic light-sensitive material
JPH0545939B2 (en)
JPS61290449A (en) Formation of direct positive color image
JPS6024463B2 (en) Processing methods for silver halide photographic materials
JP2739314B2 (en) Processing method of silver halide color photographic light-sensitive material with improved image storability
JPH0711697B2 (en) Method and apparatus for processing color photographic light-sensitive material
JPH0545936B2 (en)
JPH0740130B2 (en) Common development processing method for two types of silver halide photographic light-sensitive materials
JP2660579B2 (en) Processing method of silver halide color photographic light-sensitive material
JP3025368B2 (en) Color developer for silver halide color photographic materials
JP2896441B2 (en) Processing method of silver halide color photographic light-sensitive material
JP2511655B2 (en) Processing method of silver halide color photographic light-sensitive material
JPS6346461A (en) Method for processing color photographic sensitive material
JP3049869B2 (en) Processing of silver halide color photographic materials
JPH0578026B2 (en)
JPH0675178B2 (en) Silver halide color-color developing solution for photographic light-sensitive materials
JPH0462549A (en) Method for processing silver halide color photographic sensitive material
JPH0376734B2 (en)