JPS63186532A - Control system of reactive power compensator - Google Patents

Control system of reactive power compensator

Info

Publication number
JPS63186532A
JPS63186532A JP62014183A JP1418387A JPS63186532A JP S63186532 A JPS63186532 A JP S63186532A JP 62014183 A JP62014183 A JP 62014183A JP 1418387 A JP1418387 A JP 1418387A JP S63186532 A JPS63186532 A JP S63186532A
Authority
JP
Japan
Prior art keywords
voltage
circuit
reactive power
output
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62014183A
Other languages
Japanese (ja)
Inventor
公弘 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62014183A priority Critical patent/JPS63186532A/en
Publication of JPS63186532A publication Critical patent/JPS63186532A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は無効電力補償装置の制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a control method for a reactive power compensator.

(従来の技術) 静止形無動電力補償装置(以下SvCと記す)の代表例
としてサイリスタ位相制御リアクトル方式の構成を第4
図に示す。同図は電力系統1に5VC2が設置された場
合を示している。
(Prior art) As a typical example of a static passive power compensator (hereinafter referred to as SvC), a thyristor phase control reactor type configuration is described in the fourth example.
As shown in the figure. The figure shows a case where 5VC2 is installed in the power system 1.

5VC2は進み電流ICを通電するコンデンサ3、遅れ
電流工しを通電するりアクドル4、遅れ電流ILを制御
するサイリスタ装置5から成る主回路部と電力系統1の
電圧を検出する電圧変成器(PT)6、PT6の検出電
圧を入力して電力系統1の電圧に比例した直流電圧Vを
出力する電圧検出回路7、直流電圧Vにより遅れ電流1
.を制御する無効電力補償制御回路8、制御回路8の出
力ITCRによりサイリスタ装置5の点弧角αを制御す
る位相制御回路9から成る制御部で構成されている。
5VC2 is a main circuit section consisting of a capacitor 3 that conducts the leading current IC, an accelerator 4 that conducts the lag current, and a thyristor device 5 that controls the lag current IL, and a voltage transformer (PT) that detects the voltage of the power system 1. ) 6. Voltage detection circuit 7 which inputs the detected voltage of PT 6 and outputs DC voltage V proportional to the voltage of power system 1. Delayed current 1 due to DC voltage V
.. The control section includes a reactive power compensation control circuit 8 for controlling the thyristor device 5, and a phase control circuit 9 for controlling the firing angle α of the thyristor device 5 based on the output ITCR of the control circuit 8.

SvCの利点は高速にしかも進みから遅れの領域まで連
続に無効電力を制御できる点にあるが、電力系統1は常
時でもゆっくりした周期で変動しており長い周期のゆっ
くりした電圧変動に対しては広く電力系統に設置されて
いる電圧無効電力制御装置で補償させ、比較的周期の短
かい電圧変動を抑制するためにSvCを利用するのが効
率的である。この目的を実現するため従来第5図に示す
ような制御回路8が使用されていた。10は1次遅れ回
路、11は減算器、12は伝達関数で比例積分回路など
が用いられる。以下従来の制御回路の作用を簡単に説明
する。
The advantage of SvC is that it can control reactive power quickly and continuously from the lead to the lag region, but the power system 1 fluctuates at a slow cycle even at all times, so it is difficult to control the reactive power with a slow cycle over a long period. It is efficient to use SvC to compensate for voltage and reactive power control devices widely installed in power systems and suppress voltage fluctuations with relatively short periods. To achieve this purpose, a control circuit 8 as shown in FIG. 5 has conventionally been used. 10 is a first-order delay circuit, 11 is a subtracter, and 12 is a transfer function, such as a proportional-integral circuit. The operation of the conventional control circuit will be briefly explained below.

PT6と電圧検出回路7により系統電圧■が検出され、
制御回路8に入力される。制御回路8では系統電圧Vが
一次遅れ回路10を通過することにより基準系統電圧(
以下Vrefと記す)が形成され、系統電圧VとVre
fの差である誤差電圧(以下△Vと記す)が減算器12
で得られる。12は伝達関数回路で主に積分器や比例積
分器で構成されておりΔ■の入力に対してSVCの出力
すべき無効電力量Qsvcを出力する。このようにして
SvCはΔVが零つまり系統電圧V7)’Vrefと等
しくなる様制御される。
System voltage ■ is detected by PT6 and voltage detection circuit 7,
It is input to the control circuit 8. In the control circuit 8, the reference system voltage (
(hereinafter referred to as Vref) is formed, and the system voltage V and Vre
The error voltage (hereinafter referred to as △V) which is the difference between f is the subtracter 12
It can be obtained with Reference numeral 12 denotes a transfer function circuit, which is mainly composed of an integrator and a proportional integrator, and outputs a reactive power amount Qsvc to be output from the SVC in response to an input of Δ■. In this way, SvC is controlled so that ΔV becomes zero, that is, equal to the system voltage V7)'Vref.

系統電圧VとVrafおよびΔVの関係を第3(a)。The relationship between the system voltage V, Vraf and ΔV is shown in Part 3 (a).

(b)、 (c)図にそれぞれ示す。They are shown in figures (b) and (c), respectively.

この誤差電圧検出回路の前提となるのは、比較的変化の
早い電圧変動の変動幅は小さく、遅い電圧変動の変動幅
は大きいということである。
The premise of this error voltage detection circuit is that the fluctuation range of relatively fast voltage fluctuations is small, and the fluctuation range of slow voltage fluctuations is large.

(発明が解決しようとする問題点) しかし系統事故時のように系統電圧が急激に大きく変動
する場合従来技術には次のような不具合がある。例えば
三相地絡事故が発生し、事故除去後再開路をおこなう様
な場合系統電圧は第3(a)図のような応動を示す、こ
れに対して一次遅れ回路10の出力であるVrafは第
3(b)図の様な応動を示し、この結果ΔVは第3(c
)図の様になるにこで着目すべきは実際の系統電圧Vは
第3(a)図のA部に示すようにほぼlpu附近にある
にもかかわらすΔVは第3(c)図の0部に示すように
再閉路後系統電圧が過電圧であるがごとき出力となって
いる。
(Problems to be Solved by the Invention) However, when the grid voltage fluctuates rapidly and greatly as in the case of a grid fault, the prior art has the following drawbacks. For example, when a three-phase ground fault occurs and the circuit is restarted after the fault is removed, the system voltage will respond as shown in Figure 3(a).In contrast, Vraf, which is the output of the first-order delay circuit 10, will The response as shown in Fig. 3(b) is shown, and as a result, ΔV is the third (c
) It should be noted that even though the actual system voltage V is approximately near lpu as shown in part A of Fig. 3(a), ΔV is not as shown in Fig. 3(c). As shown in part 0, the output after re-closing is as if the system voltage is overvoltage.

この結果系II電圧がlpu程度の好ましい値にあるに
もかかわらずSvCは過電圧と誤認し、系統電圧が不足
電圧の方へ制御してしまう。この不具合の原因は一次遅
れ回路10の応答が遅いので出力であるVrefが実際
の系統電圧Vの動きに比べて遅くなってしまうことであ
る。
As a result, even though the system II voltage is at a preferable value of about lpu, the SvC misidentifies it as an overvoltage and controls the system voltage toward an undervoltage. The cause of this problem is that the response of the first-order lag circuit 10 is slow, so the output Vref becomes slower than the actual movement of the system voltage V.

本発明の目的は通常は変化率の速い電圧変動分を除去し
つつ系統事故時にも正常電圧を過電圧と誤認しないよう
な無効電力補償装置の制御方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method for a reactive power compensator that eliminates voltage fluctuations that normally have a fast rate of change and that does not misidentify normal voltage as overvoltage even in the event of a system fault.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は前述の目的を達成するために第1図に示すよう
に、設定器13と比較器14から成る不足電圧検出回路
と、その出力を入力するOFF −DELAY回路15
とOFF −DELAY回路15の出力に応じて時定数
を変化させる一次遅れ回路16とを具備したものである
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention, as shown in FIG. -DELAY circuit 15
and a first-order delay circuit 16 that changes the time constant according to the output of the OFF-DELAY circuit 15.

(作  用) 系統電圧が不足電圧で無い時は前記一次遅れ回路16の
時定数は従来回路と同じ値で、よってVrefは時定数
の大きい一次遅れ回路16によって形成される0次に系
a電圧が不足電圧になると、前記不足電圧検出回路の出
力はOFF −DELAY回路15を通して前記一次遅
れ回路16の時定数を小さくさせる。
(Function) When the system voltage is not undervoltage, the time constant of the first-order lag circuit 16 is the same value as the conventional circuit, so Vref is the zero-order system a voltage formed by the first-order lag circuit 16 with a large time constant. When the voltage becomes an undervoltage, the output of the undervoltage detection circuit passes through the OFF-DELAY circuit 15 to reduce the time constant of the first-order delay circuit 16.

その結果一次遅れ回路16の出力であるVrefは系統
の急激な変化に小さな遅れをもって追従する。次に系統
電圧が再閉路などにより不足電圧から正常電圧に復帰し
た場合、不足電圧検出回路の出力は系統電圧が正常電圧
であることを示すがOFF −DELAV回路15によ
り所定時間だけは一次遅れ回路16の時定数は小さいま
まなので、Vrefも再開路時の系統電圧の急激な回復
に小さな遅れをもって追従できる。そしてその所定時間
が経過すれば一次遅れ回路の時定数は再び従来回路の値
となり、系統電圧変動の中の比較的速い変動分を除去す
るようSVCは制御される。
As a result, Vref, which is the output of the first-order delay circuit 16, follows sudden changes in the system with a small delay. Next, when the grid voltage returns to normal voltage from the undervoltage due to reclosing, etc., the output of the undervoltage detection circuit indicates that the grid voltage is normal voltage, but the OFF-DELAV circuit 15 operates as a first-order delay circuit for a predetermined time. Since the time constant of 16 remains small, Vref can also follow the rapid recovery of the grid voltage at the time of reconnection with a small delay. After the predetermined period of time has elapsed, the time constant of the first-order lag circuit returns to the value of the conventional circuit, and the SVC is controlled to remove relatively fast fluctuations in the system voltage fluctuations.

(実 施 例) 以下本発明の一実施例を第1図と第2図を使用して説明
する。なお従来例で使用した番号と同一番号のものは同
一機能を有する。第1図において13は不足電圧の判断
基準となる設定器、14は比較器で系統電圧が13で設
定された値より高い時即ち通常の電圧である時はロジッ
クレベルrOJを出力し、低い時即ち不足電圧である時
は「1」を出力する。15はOFF −DELAY回路
で入力が「0」から「1」に変化する時、出力は同時に
「0」から「1」へ変化し入力が「1」から「0」に変
化する時、出力は所定時間ΔTだけ遅れて「1」からr
QJに変化する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Note that components having the same numbers as those used in the conventional example have the same functions. In Fig. 1, 13 is a setting device that serves as a criterion for determining undervoltage, and 14 is a comparator that outputs a logic level rOJ when the system voltage is higher than the value set in 13, that is, when it is a normal voltage, and when it is low, it outputs a logic level rOJ. That is, when there is an undervoltage, "1" is output. 15 is an OFF-DELAY circuit. When the input changes from "0" to "1", the output changes from "0" to "1" at the same time, and when the input changes from "1" to "0", the output changes from "0" to "1". r from "1" after a delay of a predetermined time ΔT
Changes to QJ.

16は0FF−+)ELAY回路I回路量5に応じて時
定数を変化する一次遅れ回路でOFF −DELAY回
路15の出力が「0」の時はその時定数は従来回路同様
大きな値で、OFF −DELAV回路15の出力が「
1」の時はその時定数は小さくなる。この一次遅れ回路
16の具体的構成は第2図に示されており17は演算増
幅器、18−1と18−2は抵抗、19はコンデンサ、
20−1と20−2は抵抗でその値は18−1.18−
2と比較して例えば□であれば一次遅れの時定数も−と
なる。
16 is a first-order delay circuit that changes the time constant according to the OFF-DELAY circuit (0FF-+)ELAY circuit I circuit quantity 5. When the output of the OFF-DELAY circuit 15 is "0", the time constant is a large value as in the conventional circuit, and the OFF- The output of the DELAV circuit 15 is “
1, the time constant becomes small. The specific configuration of this first-order delay circuit 16 is shown in FIG. 2, where 17 is an operational amplifier, 18-1 and 18-2 are resistors, 19 is a capacitor,
20-1 and 20-2 are resistors whose value is 18-1.18-
For example, if it is □ compared to 2, the time constant of the first-order lag will also be -.

21−1.21−2はスイッチでOFF −DELAV
回路15の出力が「0」の時開いており、「1」の時は
閉じている。
21-1.21-2 is OFF with a switch -DELAV
It is open when the output of the circuit 15 is "0" and closed when it is "1".

つまり系統電圧が通常電圧の時一次遅れ回路16の時定
数は抵抗18−1とコンデンサー9で決定される十分大
きな時定数となっており系統電圧が不足電圧および不足
電圧回復後所定時間内は一次遅れ回路16の時定数は抵
抗20−1とコンデンサ19とで決定さ前述の如く構成
された第1図において、まず系統電圧が通常電圧値であ
る時、比較器14の出力はro、+t’あるからOFF
 −DELAV回路15ノ出力も「0」で、よってスイ
ッチ21−1.21−2は開のままであるから一次遅れ
回路16の時定数は従来回路同様大きな値である。よっ
てSvCの作用は従2来回路と同じなので省略する。
In other words, when the grid voltage is the normal voltage, the time constant of the first-order delay circuit 16 is determined by the resistor 18-1 and the capacitor 9, and is a sufficiently large time constant. The time constant of the delay circuit 16 is determined by the resistor 20-1 and the capacitor 19. In FIG. OFF because there is
The output of the -DELAV circuit 15 is also "0", so the switches 21-1, 21-2 remain open, so the time constant of the first-order lag circuit 16 is a large value as in the conventional circuit. Therefore, since the action of SvC is the same as that of the conventional circuit, a description thereof will be omitted.

次に系統電圧が不足電圧になった時系統電圧Vと設定器
13の値とが比較器14で比較されその出方は「o」か
ら「1」へ変化し、よッテOFF  DELAV回路1
5の出力も「0」から「1」へ変化する。OFF −D
ELAY回路15の出力が「1」になるとスイッチ21
−1.21−2は閉じて一次遅れ回路16の時定数は小
さくなる。
Next, when the grid voltage becomes undervoltage, the grid voltage V and the value of the setting device 13 are compared by the comparator 14, and the output changes from "o" to "1", and then the OFF DELAV circuit 1
The output of 5 also changes from "0" to "1". OFF-D
When the output of the ELAY circuit 15 becomes "1", the switch 21
-1.21-2 is closed and the time constant of the first-order lag circuit 16 becomes small.

この結果第3(a)図で示すように系統電圧が事故時急
速に低下しても一次遅れ回路16の時定数が小さいので
第3(d)図で示すように系統電圧の変化に十分早く追
従していく。
As a result, as shown in Fig. 3(a), even if the grid voltage rapidly drops during an accident, the time constant of the first-order delay circuit 16 is small, so as shown in Fig. 3(d), it can respond quickly to changes in the grid voltage. I will follow.

次に事故@復時や再閉路時、系統電圧Vは第3(a)図
に示すようにほぼ通常の電圧に回復する。
Next, when an accident occurs or when the circuit is reclosed, the system voltage V recovers to approximately the normal voltage as shown in FIG. 3(a).

この時比較器14の出力は「1」からrOJに変化する
がOFF −DELAY回路15の出力は所定時間だけ
遅れて「1」から「O」に変化するのでその所定時間Δ
τ内はスイッチ21−1.21−2は閉じたままで一次
遅れ回路16の時定数はまだ小さいままなので系統電圧
Vの早い回復にも十分早い追従して第3(d)図のよう
にVrefは出力される。
At this time, the output of the comparator 14 changes from "1" to rOJ, but the output of the OFF-DELAY circuit 15 changes from "1" to "O" with a delay of a predetermined time, so the predetermined time Δ
During τ, the switches 21-1 and 21-2 remain closed and the time constant of the first-order lag circuit 16 remains small, so it follows the system voltage V quickly enough and Vref as shown in Figure 3(d). is output.

その結果△■は第3(e)図のように出力され。As a result, Δ■ is output as shown in FIG. 3(e).

系統電圧の変化のうち細かい早い部分のみがΔVとして
出力され、SvCはこれを除去するように制御される。
Only a small and fast part of the change in the system voltage is output as ΔV, and SvC is controlled to remove this part.

なお以上の説明では不足電圧検出回路や一次遅れ回路を
アナログ回路で構成した説明をしたがこれらをマイコン
で置き換えることもできる。
In the above explanation, the undervoltage detection circuit and the first-order delay circuit were constructed using analog circuits, but these can also be replaced with a microcomputer.

〔発明の効果〕〔Effect of the invention〕

本発明を用いれば従来回路のように正常電圧を過電圧と
誤認することなく変化率の速い電圧変動成分を除去する
ような無効電力補償装置の制御方法を提供できる。
By using the present invention, it is possible to provide a control method for a reactive power compensator that removes a voltage fluctuation component with a fast rate of change without misunderstanding a normal voltage as an overvoltage as in conventional circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の一部詳細ブロック図、第3図は本発明と従来技
術を比較して説明するための特性図、第4図は無効電力
補償装置の一梼成例を示すブロック図、第5図は無効電
力補償装置の従来の制御回路を示すブロック図。 13・・・設定器、     14・・・比較器、15
・・・0FF−DELAY回路、 16・・・可変時定数の一次遅れ回路。 代理人 弁理士 ff1J  近 憲 倍量  三俣弘
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a partially detailed block diagram of FIG. 1, FIG. 3 is a characteristic diagram for comparing and explaining the present invention and the prior art, and FIG. FIG. 4 is a block diagram showing an example of a configuration of a reactive power compensator, and FIG. 5 is a block diagram showing a conventional control circuit for the reactive power compensator. 13... Setting device, 14... Comparator, 15
...0FF-DELAY circuit, 16...First-order delay circuit with variable time constant. Agent Patent Attorney ff1J Ken Chika Hirofumi Mitsumata

Claims (1)

【特許請求の範囲】[Claims] 系統に無効電力を可変供給する無効電力供給回路と、系
統電圧を一次遅れ回路を通すことにより形成した基準系
統電圧と前記系統電圧との差をとることにより変化率の
速い系統電圧変動成分のみを検出する誤差電圧検出回路
と、前記誤差電圧検出回路の検出信号により前記系統電
圧変動を抑制する様に前記無効電力供給回路を制御する
無効電力補償制御回路を具備した無効電力装置の制御方
法に於て系統電圧が所定電圧以下に低下した後から再び
前記所定電圧以上に復帰した後の所定時間まで前記一次
遅れ回路の時定数を小さくすることを特徴とする無効電
力補償装置の制御方法。
A reactive power supply circuit that variably supplies reactive power to the grid, and a reference grid voltage formed by passing the grid voltage through a first-order lag circuit, and the difference between the grid voltage and the grid voltage are calculated. A method for controlling a reactive power device, comprising: an error voltage detection circuit for detecting; and a reactive power compensation control circuit for controlling the reactive power supply circuit so as to suppress the grid voltage fluctuation using a detection signal from the error voltage detection circuit. A method for controlling a reactive power compensator, characterized in that the time constant of the first-order lag circuit is made small until a predetermined time after the system voltage drops below a predetermined voltage and returns to above the predetermined voltage again.
JP62014183A 1987-01-26 1987-01-26 Control system of reactive power compensator Pending JPS63186532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014183A JPS63186532A (en) 1987-01-26 1987-01-26 Control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62014183A JPS63186532A (en) 1987-01-26 1987-01-26 Control system of reactive power compensator

Publications (1)

Publication Number Publication Date
JPS63186532A true JPS63186532A (en) 1988-08-02

Family

ID=11854019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62014183A Pending JPS63186532A (en) 1987-01-26 1987-01-26 Control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPS63186532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104258A (en) * 2006-10-17 2008-05-01 Central Japan Railway Co Ac voltage control method using power conversion device or reactive power compensation device
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104258A (en) * 2006-10-17 2008-05-01 Central Japan Railway Co Ac voltage control method using power conversion device or reactive power compensation device
US7944184B2 (en) * 2008-04-07 2011-05-17 Korea Electric Power Corporation Static compensator apparatus for HVDC system

Similar Documents

Publication Publication Date Title
US4658204A (en) Anticipatory power failure detection apparatus and method
JPH10254560A (en) Voltage regulator circuit and voltage regulating method
US5384528A (en) Method and apparatus for recognizing defects in a triggering system of a controlled series compensator
US4128866A (en) Power supply with current foldback
KR910002352B1 (en) Control apparatus for a power converter
JPS63186532A (en) Control system of reactive power compensator
JPH05137253A (en) Abnormal voltage detector/controller
JP2827263B2 (en) Voltage detection method
JPH0527856A (en) Reactive power compensating device
JP2857442B2 (en) Power supply low voltage detector
US5428313A (en) Closed loop pressure transducer with improved start-up settling
JPH0440926B2 (en)
JPH04125031A (en) Reactive power compensator control method
JPH0534005Y2 (en)
RU2072604C1 (en) Method for suppression of arc short circuits to earth in load windings and supplying transformers of three- phase supply line with non-grounded neutral wire
JPS6268022A (en) Controlling method for reactive power compensator
JPH01136556A (en) Protective circuit for acceleration power unit
JPH01122364A (en) Protecting circuit for acceleration power source
JP2792085B2 (en) Control method of reactive power compensator
JPS6329315B2 (en)
JPH036755B2 (en)
JPS63213424A (en) Reactive power compensator control system
JPH0231413B2 (en)
JPS5959024A (en) Stationary reactive power compensating controller
JPS6084925A (en) Method of controlling reactive power compensator