JPS6318630A - Method for removing organic coating - Google Patents

Method for removing organic coating

Info

Publication number
JPS6318630A
JPS6318630A JP16178686A JP16178686A JPS6318630A JP S6318630 A JPS6318630 A JP S6318630A JP 16178686 A JP16178686 A JP 16178686A JP 16178686 A JP16178686 A JP 16178686A JP S6318630 A JPS6318630 A JP S6318630A
Authority
JP
Japan
Prior art keywords
ozone
substrate
temperature
organic film
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16178686A
Other languages
Japanese (ja)
Inventor
Terumi Matsuoka
松岡 輝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP16178686A priority Critical patent/JPS6318630A/en
Publication of JPS6318630A publication Critical patent/JPS6318630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To remove rapidly a coating from a substrate, by injecting high- concentration ozone while heating the substrate to a temperature higher than a particular level. CONSTITUTION:A semiconductor substrate carried on a substrate supporting device 2 in a processing chamber 1 is heated by a heater 4 to a temperature of 280 deg.C or more at which ozone is thermally decomposed. High-concentration ozone is injected into the processing chamber through an ozone supply tube 5 and a nozzle 7 so that a coating on the substrate, such as a resist film of the like, is removed rapidly.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は有機物被膜の乾燥状態での除去方法に関するも
ので、特に半導体装置の製造に用いるレジスト膜の除去
方法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing an organic film in a dry state, and particularly to a method for removing a resist film used in the manufacture of semiconductor devices.

(従来技術) 半導体装置を製造する場合には、写真処理技術おるいは
、X線照射、電子線照射等で処理されたレジスト膜をマ
スクとしてシリコン等の塁仮にエツチング等の処理を施
した後に該レジスト膜を除去することが必要でおる。
(Prior art) When manufacturing semiconductor devices, a resist film treated with photo processing technology, X-ray irradiation, electron beam irradiation, etc. is used as a mask to perform etching or other processing on a base material such as silicon. It is necessary to remove the resist film.

レジスト膜は酸化力のある液体中へ浸)責すことによっ
て行う湿式処理により除去したり、酸素プラズマ、紫外
線、オゾンなどの乾式処理によって除去している。
The resist film is removed by a wet process performed by immersing it in an oxidizing liquid, or by a dry process using oxygen plasma, ultraviolet rays, ozone, etc.

溶液による湿式処理は、廃液処理に問題があり、又液体
中に含まれる微細な不純物が半導体装置に悪影響を及ぼ
すと言う問題点から乾式処理への要望が高まっている。
Wet processing using a solution has problems in waste liquid treatment, and fine impurities contained in the liquid have an adverse effect on semiconductor devices, so there is an increasing demand for dry processing.

乾式処理の中心でおった酸素プラズマによる方法は、プ
ラズマによって半導体装置に損傷が生じることがあり、
オゾンや紫外線による除去方法が注目されている。
The method using oxygen plasma, which is the mainstay of dry processing, can cause damage to semiconductor devices due to the plasma.
Removal methods using ozone and ultraviolet rays are attracting attention.

(発明が解決しようとする問題点) オゾンが供給されているハウジング内で半導体基板を加
熱しつつ有機物被膜を除去することは、例えば、特開昭
52−20766号として知られている。
(Problems to be Solved by the Invention) A technique for removing an organic film while heating a semiconductor substrate in a housing supplied with ozone is known, for example, as disclosed in Japanese Patent Application Laid-Open No. 52-20766.

この出願に開示されている方法では、供給されるオゾン
が加熱手段81はじめとして、高温となった装置内部と
接触する結果、オゾンの熱分解が起こり、供給されるオ
ゾンが有効に作用しないこととなるため、[オゾン処理
によるホトレジスト除去の最適範囲は、200’C−2
50’Cの温度に下層を加熱することである。下層温度
が200’C以下に維持されると、ホトレジスト除去速
度はおそくなり過ぎる傾向があり、そして同様な特性は
約260’C以上でも表われ、ここでホトレジスト除去
速度は又あそくなり始める。この後者の場合、260’
C以上の温度では、オゾン分子は、オゾンが実際にホト
レジスト材に接触する前に下層上のホトレジスト層で提
供される″熱板″からの熱で分解し勝らなことで理論づ
けられる。」 (特開昭52−20766号公報第11
頁右上欄第19行〜同頁左下欄第10行)と記載されて
いるJζうに200°C〜250’Cの温度にすること
により最大の除去速度が1昇られるものと考えられてい
た。
In the method disclosed in this application, as a result of the supplied ozone coming into contact with the heating means 81 and the inside of the apparatus which has reached a high temperature, thermal decomposition of ozone occurs, and the supplied ozone does not work effectively. Therefore, [the optimal range for photoresist removal by ozone treatment is 200'C-2
The bottom layer is heated to a temperature of 50'C. If the underlayer temperature is maintained below 200'C, the photoresist removal rate tends to become too slow, and a similar characteristic is exhibited above about 260'C, where the photoresist removal rate begins to slow again. In this latter case, 260'
It is theorized that at temperatures above 2°C, the ozone molecules cannot be decomposed by the heat from the "hot plate" provided in the underlying photoresist layer before the ozone actually contacts the photoresist material. ” (Japanese Unexamined Patent Publication No. 52-20766 No. 11
It was thought that the maximum removal rate could be increased by 1 by setting the temperature to 200° C. to 250° C., as described in (line 19 of the upper right column of the page to line 10 of the lower left column of the same page).

ところが、この様な温度範囲においても、商業的に十分
に満足できる除去速度を得ることはできなかった。また
、半導体装置の製造工程において、硼素°燐などをイオ
ン注入した場合には、オゾンによりホトレジストを除去
しようとすると、極めて長時間を必要とした。
However, even in such a temperature range, it has not been possible to obtain a commercially satisfactory removal rate. Furthermore, in the process of manufacturing semiconductor devices, when ions of boron and phosphorus are implanted, it takes an extremely long time to remove the photoresist using ozone.

(問題点を解決するための手段) 本発明者らは、前記した特開昭52−20766号公報
において好ましくないとされ、また他の文献(Gmel
 1Kflandbuch der Anorgani
sche Chemie第3巻第984頁)においても
オゾンの熱分解がほぼ完全に起こると記載されている温
度範囲において、高濃度のオゾンを供給することにより
、有機物被膜の除去速度を高め得ることを見いだしたの
である。
(Means for Solving the Problems) The present inventors have found that the above-mentioned Japanese Patent Application Laid-Open No. 52-20766 describes it as unfavorable, and that other documents (Gmel
1Kflandbuch der Anorgani
It was discovered that the removal rate of the organic film could be increased by supplying a high concentration of ozone in the temperature range where the thermal decomposition of ozone occurs almost completely in the sch. It was.

以下、この発明を添付の図面に基づいて説明づ−る。Hereinafter, the present invention will be explained based on the accompanying drawings.

第1図は本発明の方法による有機物の除去装置を示す図
でおり、処理至1内には、処理すべき半導体基板3を載
置する基板支持装置2が必り、基板支持装置の下部には
加熱装置4が設けである。
FIG. 1 is a diagram showing an apparatus for removing organic matter according to the method of the present invention, in which a substrate support device 2 on which a semiconductor substrate 3 to be processed is placed is necessarily provided in the processing chamber 1. A heating device 4 is provided.

基板支持装置は、処理のむらを無くし、また処理速度を
上げるために回転をざぜても良い。
The rotation of the substrate support device may be increased in order to eliminate unevenness in processing and increase processing speed.

処理全白には高濃度のオゾン供給管5があり。There is a highly concentrated ozone supply pipe 5 in the process.

該供給管は冷却管6で包囲されている。オゾン供給管は
、半導体基板上へオゾンを噴射する複数のノズル7と連
結されており、ノズルには細孔8が設けられ、冷却管を
貫通している。
The supply pipe is surrounded by a cooling pipe 6. The ozone supply pipe is connected to a plurality of nozzles 7 that inject ozone onto the semiconductor substrate, and the nozzles are provided with pores 8 that pass through the cooling pipe.

処理至、オゾン供給管、ノズル等をはじめとする構成材
料は、ステンレススチールのようなオゾンに耐蝕性のあ
る材料であれば、各種の材料を使用することができる。
Various materials can be used for the constituent materials including the treatment tube, ozone supply pipe, nozzle, etc., as long as they are resistant to ozone corrosion, such as stainless steel.

又、冷却媒体供給管の形状も円柱状、角型などの形状を
とることができ、ノズルの本数も処理すべき基板の大き
ざに応じて適宜に設定することができる。
Further, the shape of the cooling medium supply pipe can be cylindrical or square, and the number of nozzles can be appropriately set depending on the size of the substrate to be processed.

ノズルの径は適宜に定めることができるが、2、馴以下
にすることが好ましい。
Although the diameter of the nozzle can be determined as appropriate, it is preferable to set it to less than 2 mm.

オゾンは、無声放電によるオゾン発生装置9に純酸素を
供給して発生させるが、小型でオゾン発生効率の高い沿
面コロナ放電を利用したオゾン発生装置を利用するのが
好ましい。オゾンは、処理至内で基板に作用させた後に
、オゾン分解装置1Oで分解する。
Ozone is generated by supplying pure oxygen to an ozone generator 9 using silent discharge, but it is preferable to use an ozone generator that uses creeping corona discharge, which is small and has high ozone generation efficiency. After the ozone acts on the substrate during the process, it is decomposed in the ozone decomposition device 1O.

(作用) 処理される基板をオゾンがほぼ完全に熱分解する温度で
ある280’C以上に加熱しつつ、高濃度のオゾンを噴
射することにより有機物の除去速度を向上させることが
できる。
(Function) The removal rate of organic matter can be improved by injecting highly concentrated ozone while heating the substrate to be processed above 280'C, which is the temperature at which ozone almost completely thermally decomposes.

(実施例) 5インチ径のシリコンウェハー基板に、東京応化工業(
株)製ポジ型ホトレジスト0)−PR−800を1.5
μTrL塗布し、80’Cで30分間プリベークした。
(Example) Tokyo Ohka Kogyo (
Co., Ltd. positive photoresist 0)-PR-800 at 1.5
μTrL was applied and prebaked at 80'C for 30 minutes.

このホトレジスト塗布シリコン基板を、試料支持装置上
に載置し、基板を加熱しつつオゾンを内径0.5#のノ
ズルから10L/分の流量で基板上に噴射した。オゾン
濃度が、2.5%、3.5%および4.5%の際の基板
の温度に対する有機物被膜の除去速度(オングストロー
ム7分)をそれぞれ(A>(B)および(C)として第
2図に示す。
This photoresist-coated silicon substrate was placed on a sample support device, and while the substrate was being heated, ozone was injected onto the substrate from a nozzle with an inner diameter of 0.5# at a flow rate of 10 L/min. The removal rate (A>(B) and (C) of the organic film relative to the substrate temperature when the ozone concentration is 2.5%, 3.5%, and 4.5%, respectively (A>(B) and (C)) is As shown in the figure.

(発明の効果) 有機物被膜を形成した基板から法被jFuを除去する方
法において、該基板をオゾンがほぼ完全に熱分解する2
80’C以上の温度に加熱しつつ高温度のオゾンを噴射
することによりホトレジストの除去速度を向上させるこ
とができ、また、従来の方法では除去に極めて長時間を
要していたイオン注入処理を施したホトレジストも実用
的な処理速度で除去することができる。
(Effect of the invention) In the method for removing the formal coating jFu from a substrate on which an organic film has been formed, ozone almost completely thermally decomposes the substrate.
By injecting high-temperature ozone while heating the photoresist to a temperature of 80'C or higher, the removal rate of photoresist can be improved, and the ion implantation process, which takes an extremely long time to remove using conventional methods, can be improved. The applied photoresist can also be removed at a practical processing speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法による有機物の除去装置を示す
図でおる。 第2図は、オゾン濃度を一定の値に保持した場合の有機
物被膜の除去速度と温度の関係を示す。 1、・・・処理至 2、・・・基板支持装置 3、・・・半導体基板 4、・・・加熱装置 5、・・・オゾン供給管 6、・・・冷却管 7、・・・ノズル 8、・・・細孔 9、・・・オゾン発生装置 10、  ・・・オゾン分解装置 特δ′F出願人 クロリンエンジニアズ株式会社 第1図 第2図 手続補正書(自発) 昭和61年10月9日
FIG. 1 is a diagram showing an apparatus for removing organic matter according to the method of the present invention. FIG. 2 shows the relationship between the removal rate of the organic film and the temperature when the ozone concentration is maintained at a constant value. 1, ... Processing 2, ... Substrate support device 3, ... Semiconductor substrate 4, ... Heating device 5, ... Ozone supply pipe 6, ... Cooling pipe 7, ... Nozzle 8, ... Pore 9, ... Ozone generator 10, ... Ozone decomposition device special δ'F Applicant Chlorin Engineers Co., Ltd. Figure 1 Figure 2 Procedural amendment (voluntary) October 1988 9th of the month

Claims (1)

【特許請求の範囲】 1 有機物被膜を形成した基板から該被膜を除去する方
法において、処理室内の処理される基板を、該被膜が形
成されていない面から280℃以上に加熱しつつ、高濃
度オゾンを噴射することを特徴とする有機物被膜の除去
方法。 2 有機物被膜面に冷却したノズルの細孔から高濃度オ
ゾンを噴射することを特徴とする特許請求の範囲第1項
に記載の有機物被膜の除去方法。
[Claims] 1. In a method for removing an organic film from a substrate on which the film has been formed, the substrate to be processed in a processing chamber is heated to 280° C. or higher from the surface on which the film is not formed, and a high concentration A method for removing an organic film, characterized by spraying ozone. 2. The method for removing an organic film according to claim 1, which comprises injecting highly concentrated ozone onto the surface of the organic film from the pores of a cooled nozzle.
JP16178686A 1986-07-11 1986-07-11 Method for removing organic coating Pending JPS6318630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16178686A JPS6318630A (en) 1986-07-11 1986-07-11 Method for removing organic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16178686A JPS6318630A (en) 1986-07-11 1986-07-11 Method for removing organic coating

Publications (1)

Publication Number Publication Date
JPS6318630A true JPS6318630A (en) 1988-01-26

Family

ID=15741880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16178686A Pending JPS6318630A (en) 1986-07-11 1986-07-11 Method for removing organic coating

Country Status (1)

Country Link
JP (1) JPS6318630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106480A (en) * 2013-11-29 2015-06-08 株式会社豊田自動織機 Magazine and lamination apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165930A (en) * 1986-01-17 1987-07-22 Tokyo Electron Ltd Ashing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165930A (en) * 1986-01-17 1987-07-22 Tokyo Electron Ltd Ashing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015106480A (en) * 2013-11-29 2015-06-08 株式会社豊田自動織機 Magazine and lamination apparatus

Similar Documents

Publication Publication Date Title
US4885047A (en) Apparatus for photoresist stripping
JP3869566B2 (en) Photoresist film removal method and apparatus
US5378317A (en) Method for removing organic film
TW582065B (en) Apparatus for cleaning semiconductor wafer and method for cleaning wafer using the same
KR940012061A (en) Organic matter removal method and organic matter removal apparatus for using the method
KR100229687B1 (en) Method for removing organic thin film
JPH04302145A (en) Cleaning method
JPH0628254B2 (en) Photoresist stripping device
JP2540583B2 (en) Substrate cleaning method and apparatus
JP3653735B2 (en) Surface treatment method and apparatus
JPS6318630A (en) Method for removing organic coating
JPH05109686A (en) Method and apparatus for cleaning silicon wafer
JP2891578B2 (en) Substrate processing method
JPH04302144A (en) Cleaning method
JP2004241414A (en) Stripper/cleaner
JPS6236826A (en) Ashing method
JP3893939B2 (en) Resist stripping apparatus, resist stripping method, and semiconductor device manufacturing method
JPS62204531A (en) Removing method for organic film
KR920009983B1 (en) Apparatus for ashing process
JPS63115343A (en) Processor
JP4059216B2 (en) Surface treatment method and apparatus
JPS62137825A (en) Method and apparatus for removing organic film
JPH0458527A (en) Cleaning method
JP3852627B2 (en) UV treatment equipment
JPH0684843A (en) Surface treatment apparatus