JPS63115343A - Processor - Google Patents

Processor

Info

Publication number
JPS63115343A
JPS63115343A JP26218786A JP26218786A JPS63115343A JP S63115343 A JPS63115343 A JP S63115343A JP 26218786 A JP26218786 A JP 26218786A JP 26218786 A JP26218786 A JP 26218786A JP S63115343 A JPS63115343 A JP S63115343A
Authority
JP
Japan
Prior art keywords
gas
ultraviolet rays
processing
wafer
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26218786A
Other languages
Japanese (ja)
Inventor
Yorihisa Maeda
前田 順久
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26218786A priority Critical patent/JPS63115343A/en
Publication of JPS63115343A publication Critical patent/JPS63115343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the evenness in processing while accelerating the decomposition and removal speed by a method wherein a flow channel of O2 containing gas is formed of an inorganic material transmissive ultraviolet rays while discharging nozzles with slit type pores are used. CONSTITUTION:An organic material is irradiated with ultraviolet rays to be removed by means of forming a simple molecule such as CO2, H2O, O2, etc., reacting to optically decomposed compound or excited O. At this time, the ultraviolet rays in 184.9 nm or 253.7 nm play an important role in decomposing the organic material. When a gas flow channel is formed of a material transmissive ultraviolet rays in 184.9 nm or 253.7 nm producing O to irradiate gas with the ultraviolet rays, O2 is led into the processing chamber 11 while producing O3 and O in the flow channel. Furthermore, mixed gas containing O3 is irradiated with the same ultraviolet rays before the ultraviolet rays are through an ozone producer 16 to prevent the deterioration in concentration due to extinction of O3 from occuring while accelerating the production of O to be led into the processing chamber 11. Resultantly, the organic material in high concentration of O3 and O can be rapidly decomposed on the other hand, the slit type nozzles 15 at gas outlet play an important role in the evenness in the processing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機物で汚染された被処理物体と酸素が存在
するところに、紫外線(以下、UV光と記す)を照射あ
るいはUV光の照射と加熱を併用することによって、有
機物をC02,CQ、H2O等の物質に分解、ガス化し
て除去し、物体を清浄化する処理装置に関するものであ
る。この様な清浄化を必要とする被処理物体としては、
IC製造用基板(以下、ウェハと記す)、液晶ディスプ
レイ用基板2画像、音声あるいは数値記録用ディスク。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method of irradiating ultraviolet rays (hereinafter referred to as UV light) or irradiating UV light and heating an object to be treated that is contaminated with organic matter and where oxygen is present. The present invention relates to a processing device that decomposes and gasifies organic substances into substances such as CO2, CQ, and H2O, and removes them to clean objects. Objects to be treated that require such cleaning include:
IC manufacturing substrates (hereinafter referred to as wafers), liquid crystal display substrates, two image, audio or numerical recording disks.

その他電子部品等がある。There are other electronic parts, etc.

従来の技術 近年、ウエノ)、液晶ディスプレイ用基板、各種ディス
ク等の製造工程で、製品の高歩留り化、高信頼性化等を
図るためにこれら表面に付着する汚染物を除去すること
が必要になってきている。これに対し従来は、NH4O
HとH2O2の混合物やHClとH2O2の混合物を用
いて汚染物を分解、除去したシあるいは超純水を用いて
ブラシで汚染物をかき落したシしていた。ところが、こ
れらの方法では、例えば汚染物の一つである有機物の数
分子層が除去できなかったシ、あるいはブラシを用いる
と汚れがかえって付着する危険性があった。
Conventional technology In recent years, it has become necessary to remove contaminants that adhere to the surfaces of Ueno, liquid crystal display substrates, various disks, etc. in order to improve product yield and reliability in the manufacturing process. It has become to. On the other hand, conventionally, NH4O
Contaminants were decomposed and removed using a mixture of H and H2O2 or HCl and H2O2, or they were scraped off with a brush using ultrapure water. However, with these methods, for example, several molecular layers of organic matter, which is one of the contaminants, could not be removed, or if a brush was used, there was a risk that dirt would adhere instead.

また、この様なウェットな状態での洗浄では水洗。Also, when cleaning in wet conditions like this, wash with water.

乾燥工程が必要で、この工程で装置から発生する汚染物
や被洗浄物から飛び散った水滴等によって被洗浄物が再
汚染されることがあったシ、超純水の品質を管理するこ
とが必要であった。
A drying process is required, and during this process, the items to be cleaned may be re-contaminated by contaminants generated from the equipment or water droplets splashed from the items to be cleaned, and it is necessary to control the quality of ultrapure water. Met.

一方、この様なわずられしさが無い、有機物の分解、除
去装置として、第6図に示す様なオゾン(03)を用い
た処理装置がある。以下第6図を参照しながら従来の処
理装置の一例について説明する。第6図において、41
は処理室、42は被処理物のウェハ、43は低圧水銀ラ
ンプ、44はSUS製のガス留シ室、45はガス吐出ノ
ズル(SUS製)、46は03発生器、47はヒータ付
きのウェハ置台、48.49は配管である。以上で構成
された処理装置の動作について説明する。
On the other hand, as a device for decomposing and removing organic matter that does not cause such trouble, there is a treatment device using ozone (03) as shown in FIG. An example of a conventional processing device will be described below with reference to FIG. In Figure 6, 41
is a processing chamber, 42 is a wafer to be processed, 43 is a low-pressure mercury lamp, 44 is a gas storage chamber made of SUS, 45 is a gas discharge nozzle (made of SUS), 46 is a 03 generator, and 47 is a wafer with a heater. The mounting stand, 48.49, is piping. The operation of the processing device configured as above will be explained.

まず、ウェハ2を処理室41内で加熱(1oo〜300
℃)されたウェハ置台47に手で置いた後、02ガス(
1oooSCCM)を配管49を通じて無声放電による
03発生器46に導き、02と03の混合ガスを配管4
8を通してガス留り室(SUS製)44に導入してガス
圧を均一にしてガス吐出ノズル(SUS製)から均一に
処理室41に出る。
First, the wafer 2 is heated in the processing chamber 41 (1oo to 300
02 gas (
1oooSCCM) is guided to the 03 generator 46 by silent discharge through the pipe 49, and the mixed gas of 02 and 03 is introduced to the pipe 4.
The gas is introduced into a gas holding chamber (made of SUS) 44 through a gas discharge nozzle (made of SUS) to equalize the gas pressure, and uniformly exits from the processing chamber 41 through a gas discharge nozzle (made of SUS).

さらに、処理室41には低圧水銀ランプ43が点燈して
おり184.9nm及び253.7nmの紫外光が照射
されていて03との相互作用によシウェへ42表面上の
有機物を分解する。
Further, a low-pressure mercury lamp 43 is turned on in the processing chamber 41, and ultraviolet light of 184.9 nm and 253.7 nm is irradiated to decompose the organic substances on the surface of the mercury 42 by interaction with the 03.

発明が解決しようとする問題点 しかしながら上記のような構成では、03発生器46で
発生した。3は配管48.ガス留り44及びノズル45
と通過する間に消滅してo3濃度5ベーノ が減少し、かつ、02や03が紫外光にさらされる時間
が短かくし酸素ラジカル(O・)の量が少ないため有機
物の分解速度が遅くなる。また、ガスの吐出ノズル45
は第7図に示す様に、単純な円筒形である。この様なノ
ズル45を用いて処理すると、ノズル45の直下部分の
ウェハ42表面だけ有機物の分解が早く、それ以外は全
く遅く、処理の均一性が非常に悪いという問題を有して
いた。
Problems to be Solved by the Invention However, in the above configuration, the problem occurred in the 03 generator 46. 3 is piping 48. Gas retainer 44 and nozzle 45
The O3 concentration 5beno decreases as the O3 concentration disappears during the passage, and the time that O2 and O3 are exposed to ultraviolet light is shortened, and the amount of oxygen radicals (O.) is small, so the decomposition rate of organic matter is slowed down. In addition, a gas discharge nozzle 45
has a simple cylindrical shape, as shown in FIG. When such a nozzle 45 is used for processing, there is a problem in that the decomposition of organic matter is fast only on the surface of the wafer 42 directly under the nozzle 45, and is completely slow on the other parts, resulting in very poor uniformity of processing.

本発明は上記問題点に鑑み、有機物の分解速度が早く、
かつ処理の均一性に優れ、さらに金属や微粒子ダスト等
による被処理物を汚染しない処理装置を提供するもので
ある。
In view of the above problems, the present invention has a high decomposition rate of organic matter,
The present invention also provides a processing apparatus that has excellent uniformity of processing and does not contaminate objects to be processed with metal, fine particle dust, or the like.

問題点を解決するための手段 上記問題点を解決するために本発明筒1の発明の処理装
置は、少くとも有機物の分解速度を早めるために、02
ガスを含有するガスの流路は少くとも184.9nm及
び253.7nmの紫外光が透過する無機材料で作られ
ておシ、本発明の第2の発明の処理装置は上記第1の発
明の構成に加えて、処理の均一性を得るために、02 
を含むガスの吐出6ベーン ロは、スリット状あるいは複数の細孔を有するノズルで
構成されるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the processing apparatus of the invention in column 1 of the present invention has the following features:
The gas flow path containing the gas is made of an inorganic material that transmits ultraviolet light of at least 184.9 nm and 253.7 nm, and the processing apparatus of the second invention of the present invention is the same as that of the first invention. In addition to the configuration, to obtain uniformity of processing, 02
The six-vane nozzle for discharging gas containing gas is composed of a nozzle having a slit shape or a plurality of pores.

作  用 02及び03による有機物の分解機構は、(1)o2カ
03 とナル時(202−03+0・)に発生するOラ
ジカル(○・) (i+)  03カ分解しテ02にナル時(03−02
+O・)に発生する○・ は強力な酸化力を持ち有機物を酸化分解し、Co。
The decomposition mechanism of organic matter due to actions 02 and 03 is as follows: (1) O radical (○・) (i+) generated at o2ka03 and null time (202-03+0・)03ka decomposes, and at null time (03 -02
○・ generated in +O・) has strong oxidizing power and oxidizes and decomposes organic matter, resulting in Co.

CO2あるいはH20ガスとして除去する。上記(1)
の反応式で促進効果を有するのは184 、9nmの紫
外光や放電現象さらにはX線や陰極線等の放射線であシ
、(1j)の反応式で促進効果を有するのは253 、
7nmの紫外光である。
Removed as CO2 or H20 gas. Above (1)
In the reaction equation of (1j), the promoting effect is 184, 9 nm ultraviolet light, discharge phenomenon, and radiation such as X-rays and cathode rays, and in the reaction equation (1j), the promoting effect is 253,
This is 7 nm ultraviolet light.

さらに、184.9nmの紫外光のエネルギーは647
 K I/mot、 253 、7 nmの紫外光のは
472K I /molであり、有機物の種々の分子の
結合エネルギーは C−0347,7に7/motC−H413,4KJ/
mo7C−0361,5KI/motO−H462,8
KI/mot7ベー。
Furthermore, the energy of 184.9 nm ultraviolet light is 647
K I/mot, 253, for 7 nm ultraviolet light is 472 K I /mol, and the binding energy of various molecules of organic matter is C-0347,7 to 7/motC-H413,4 KJ/
mo7C-0361,5KI/motO-H462,8
KI/mot7bae.

C−N  291.6KJ/zno7 0−0 138
.9KJ/mo7C=C607Kl/motC−=Cs
28  Kl/mol:C=0 724   KJ/l
no/:  C−C1328,4KJ/m0AC−F4
41.○に工/moi  N−H390,8KT/mo
Aであシ、紫外光を照射することで有機物は光分解ある
いは励起されて○・と反応してCO2,H2C。
C-N 291.6KJ/zno7 0-0 138
.. 9KJ/mo7C=C607Kl/motC-=Cs
28 Kl/mol: C=0 724 KJ/l
no/: C-C1328, 4KJ/m0AC-F4
41. ○niko/moi N-H390,8KT/mo
A: When exposed to ultraviolet light, organic matter is photodecomposed or excited and reacts with ○, producing CO2 and H2C.

o2等の単純な分子を形成して表面から除去される。It is removed from the surface forming simple molecules such as o2.

したがって、1B4,9am及び253.7amの紫外
光は有機物の分解に重要な役割を果す。
Therefore, 1B4.9am and 253.7am ultraviolet light plays an important role in decomposing organic matter.

そこで、0・を発生させる184.9amや253.7
amの紫外光を透過する材料でガス流路を作シ紫外光を
ガスに照射すると02は流路内で(1)と(11)の反
応をくり返し03と0・を発生しながら処理室に導入さ
れる。また、オゾン発生器を通して紫外光を照射する前
に03 を含む混合ガスも同じで紫外光を照射すること
で、03の消滅による濃度低下を防ぎO・の発生を促し
ながら処理室に入る。それ故、従来装置の様に処理室に
入ってから初めて紫外光が当たる場合に比べて03及び
O・の濃度が高く有機物を速く分解除去できる。
Therefore, 184.9am and 253.7 which generate 0.
The gas flow path is made of a material that transmits ultraviolet light, and when the gas is irradiated with ultraviolet light, 02 repeats reactions (1) and (11) in the flow path, generating 03 and 0, and enters the processing chamber. be introduced. In addition, by irradiating the mixed gas containing 03 with ultraviolet light before irradiating it with ultraviolet light through the ozone generator, it enters the processing chamber while preventing the concentration from decreasing due to the disappearance of 03 and promoting the generation of O. Therefore, the concentration of 03 and O. is higher and the organic matter can be decomposed and removed more quickly than in the case where ultraviolet light is applied for the first time after entering the processing chamber as in the conventional apparatus.

一方、ガスの出口であるノズルの形状が処理の均一性に
重要な役割りを果す。従来例の様なノズルではノズル直
下部分だけ有機物の分解が早く、それ以外は全く遅いた
め均一性が非常鈍感い。これを改良するためには複数の
細孔からガスを吐出するのが有効である。
On the other hand, the shape of the nozzle, which is the gas outlet, plays an important role in the uniformity of processing. With a conventional nozzle, organic matter decomposes quickly only in the area directly below the nozzle, and is completely slow in the rest of the area, making uniformity extremely insensitive. In order to improve this, it is effective to discharge gas from a plurality of pores.

細孔の数は多ければ多い程、処理の均一性は良い。The greater the number of pores, the better the uniformity of the treatment.

さらに均一性を増すには被処理物を回転させたシ、往復
運動させる等移動させるとさらによい。この場合には上
記細孔のノズルの他にスリット状の吐出口をしたノズル
でも有効である。
In order to further increase the uniformity, it is better to move the object by rotating it, reciprocating it, or the like. In this case, in addition to the above-mentioned nozzle with small holes, a nozzle with a slit-shaped discharge port is also effective.

前記の184.9amおよび253.7amの様な短波
長の紫外光を透過する材料は、SiO2(溶融石英。
The material that transmits short wavelength ultraviolet light such as 184.9 am and 253.7 am is SiO2 (fused silica).

水晶等)、す7フイア、MgF2 、LiF、CaF2
等の材料があり、どの材料を用いてもよいが、経済性か
ら溶融石英が良い。
crystal, etc.), Su7fire, MgF2, LiF, CaF2
Although any material may be used, fused silica is preferable from the economical point of view.

紫外光を発生する低圧水銀ランプの位置は出来るかぎシ
被処理物に近いのがよい。低圧水銀ランプで発生する1
84.9amや253.7am等の光は9ベーン 03 があると前記の様に吸収されるが、その吸収塵は
ランバート・ベールの法則に基づいて、03の濃度(又
は圧力)及び低圧水銀ランプからの距離に関して指数関
数的に減少する。よって被処理物表面で有効に03やO
・を発生させるためには高濃度の02 ガス中で低圧水
銀ランプと被処理物の距離を短かくするのがよい。
The location of the low-pressure mercury lamp that generates ultraviolet light is preferably close to the object being processed. 1 generated by low-pressure mercury lamps
Light such as 84.9 am and 253.7 am is absorbed as described above when there is a 9 vane 03, but the absorbed dust is absorbed by the concentration (or pressure) of 03 and the low pressure mercury lamp based on the Lambert-Beer law. decreases exponentially with distance from Therefore, 03 and O can be effectively removed on the surface of the workpiece.
・In order to generate 02 gas, it is better to shorten the distance between the low-pressure mercury lamp and the object to be treated in high-concentration 02 gas.

実施例 以下本発明の一実施例の処理装置について図面を参照し
ながら説明する。
Embodiment Hereinafter, a processing apparatus according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例における処理装置の構成
図である。第1図において、11は処理室(SUS製)
、12は被処理物のウェハ、13は低圧水銀ランプ、1
4は石英製ガス留シ室、15はガス吐出ノズル(石英製
)、16は03発生器、17はヒータで加熱及び回転が
可能なウェハ置台、18は石英製配管、19はSUS製
配管、2oはウェハ置台17を回転させるモータである
。また、第2図はガス吐出ノズル15の拡大図で、21
はガスの吐出細孔(φ1〜φ1.5)で1つの吐出クズ
1oベーノ ル15に吐出細孔がウェハ置台17の方向に2aおきに
設けている。第1図及び第2図で第1の実施例の動作を
説明すると、表面フォトレジスト(OFPR−soo;
東京応化M、  1.0pm厚)を塗布したウェハ12
を処理室11内で加熱(250℃)したウェハ置台17
に手で置いた後モータ2oでウェハ置台17を回転させ
る( 0 、2 rpm)。
FIG. 1 is a block diagram of a processing device in a first embodiment of the present invention. In Figure 1, 11 is a processing chamber (made of SUS)
, 12 is a wafer to be processed, 13 is a low-pressure mercury lamp, 1
4 is a quartz gas storage chamber, 15 is a gas discharge nozzle (made of quartz), 16 is an 03 generator, 17 is a wafer stand that can be heated and rotated with a heater, 18 is quartz piping, 19 is SUS piping, 2o is a motor that rotates the wafer placement table 17. FIG. 2 is an enlarged view of the gas discharge nozzle 15.
are gas discharge pores (φ1 to φ1.5), and discharge pores are provided in one discharge waste 10 benol 15 every 2a in the direction of the wafer table 17. The operation of the first embodiment will be explained with reference to FIGS. 1 and 2. Surface photoresist (OFPR-soo;
Wafer 12 coated with Tokyo Ohka M, 1.0 pm thick)
The wafer mounting table 17 is heated (250°C) in the processing chamber 11.
After placing the wafer by hand, the wafer placement table 17 is rotated by the motor 2o (0, 2 rpm).

その後低圧水銀ランプ13を点燈し、02ガス(1o0
0SCCM)を配管19がら無声放電による。3発生器
16を通し配管18でガス留り14に導き、ガス圧を均
一にしてからガス吐出ノズル15に導き吐出細孔21か
ら吐出する。また、配管18.ガス留シ14及び吐出ノ
ズル15は石英製であシ低圧水銀ランプ13から出た紫
外光は下方のウェハ12.上方のガス留り14中の02
103混合ガス及び吐出ノズル15中の02,03混合
ガスを照射できる。この様にしてフォトレジストをアッ
シング(灰化)するとウェハ12の全面がほぼ均等に除
去できた。
After that, the low-pressure mercury lamp 13 is turned on, and 02 gas (1o0
0SCCM) through the pipe 19 by silent discharge. The gas is introduced into the gas reservoir 14 through the 3 generator 16 and the piping 18, and after making the gas pressure uniform, it is introduced into the gas discharge nozzle 15 and discharged from the discharge hole 21. Also, piping 18. The gas reservoir 14 and discharge nozzle 15 are made of quartz, and the ultraviolet light emitted from the low-pressure mercury lamp 13 is directed to the wafer 12 below. 02 in upper gas reservoir 14
103 mixed gas and 02,03 mixed gas in the discharge nozzle 15 can be irradiated. By ashing (ashing) the photoresist in this manner, the entire surface of the wafer 12 could be removed almost uniformly.

以下、本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

第3図は第1図のウェハ置台17及びモータ2011 
ベー/ に代って取シつけだガスによるウェハの回転支持台の平
面図である。第3図において、31はウェハの外周よシ
数闘大き々円形をしたウェハ置部、′32はウェハを浮
上させ回転させるために使用するガスの導管で、33は
そのガスの吐出口である。
Figure 3 shows the wafer table 17 and motor 2011 in Figure 1.
FIG. 2 is a plan view of a wafer rotation support stand using an attached gas instead of a wafer. In Fig. 3, numeral 31 is a wafer holder having a large circular shape around the periphery of the wafer, `32 is a gas conduit used to levitate and rotate the wafer, and 33 is a discharge port for the gas. .

34は加熱用のロッドヒータ、35はウェハの回転方向
を示す。
Reference numeral 34 indicates a rod heater for heating, and 35 indicates the rotation direction of the wafer.

第4図は第3図のA−A部のガス吐出口33の拡大断面
図である。ガスの導管32からガス吐出口33間の導出
管36ば、ガスの噴出力でウニノーを浮上させかつ回転
させるために、ウェハ置部31表面と45°の角度をな
し、ガス噴出力の垂直分力がウェハの浮力として、水平
分力がウェハ回転の接線方向に回転力として働くように
した。ウェハの浮上回転用に使用するガスは、第1図の
配管18から分岐した02ガスを石英チューブでガスの
導管32に接続した。また、第1図のガス吐出ノズル1
5に代って取り付けたスリット状のガス吐出ノズル(石
英製)を第5図に示す。本方法のノズルは、第1の実施
例で用いた複数の吐出細孔21を有するノズルに代って
、幅21.長さ10謳のスリット37を有しこのスリッ
ト37かS02゜Q3 の混合ガスをウェハに向けて吐
出する。
FIG. 4 is an enlarged sectional view of the gas discharge port 33 taken along line AA in FIG. The outlet pipe 36 between the gas conduit 32 and the gas discharge port 33 forms an angle of 45° with the surface of the wafer placement section 31 in order to levitate and rotate the Uni-No with the gas jet force. The force acts as a buoyant force on the wafer, and the horizontal force acts as a rotational force in the tangential direction of the wafer rotation. As the gas used for floating and rotating the wafer, 02 gas branched from the piping 18 in FIG. 1 was connected to the gas conduit 32 through a quartz tube. In addition, the gas discharge nozzle 1 in FIG.
A slit-shaped gas discharge nozzle (made of quartz) attached in place of 5 is shown in FIG. The nozzle of this method has a width of 21 mm instead of the nozzle having a plurality of discharge holes 21 used in the first embodiment. A slit 37 having a length of 10 mm is provided, and a mixed gas of S02°Q3 is discharged toward the wafer through this slit 37.

ノズル3アからのガス量は1100OSCC,ガス吐出
口33からのガス量は800SCCMにバルブ(図示せ
ず)で調整した。この装置を用いて第1の実施例と同様
にウェハ上のフォトレジ“ストをアッシングすると、ア
ッシングの均一性は第1の実施例と同様均一性が優れて
いた。しかも、機械的に摺動部が無く、したがって処理
装置からダストが発生せずクリーンな状態で処理が可能
であることがレーザ式表面検査装置でウェハ上のダスト
数を測定して確認できた。
The amount of gas from the nozzle 3A was adjusted to 1100 OSCC, and the amount of gas from the gas discharge port 33 was adjusted to 800 SCCM using a valve (not shown). When the photoresist on the wafer was ashed using this device in the same manner as in the first example, the uniformity of the ashing was excellent as in the first example. It was confirmed by measuring the number of dust particles on the wafer using a laser surface inspection device that there was no dust on the wafer, and therefore the processing equipment did not generate dust and could be processed in a clean state.

第1及び第2の実施例で03発生器16は無声放電によ
るものを用いたが、コロナ放電や放射線による03発生
装置を用いてもよい。
In the first and second embodiments, the 03 generator 16 uses silent discharge, but an 03 generator using corona discharge or radiation may also be used.

発明の効果 以上のように本発明は、o2を含有するガスの流路を少
くとも184.9nm及び253 、7nmの紫外光が
透過する無機材料で作ることによって被処13ぺ−7 理物に付着した有機物の分解除去速度を向上することが
できる。
Effects of the Invention As described above, the present invention provides an advantageous effect on the object to be treated by making the flow path for gas containing O2 from an inorganic material that transmits ultraviolet light of at least 184.9 nm and 253,7 nm. The rate of decomposition and removal of attached organic matter can be improved.

さらに、02を含有するガスの吐出ノズルの吐出口をス
リット状あるいは複数の細孔を有するものを用いること
によって処理の均一性が向上する。
Further, by using a slit-shaped or a plurality of pores as the discharge port of the discharge nozzle for the gas containing 02, the uniformity of the treatment is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における処理装置の構成
図、第2図は第1図のノズルの拡大断面図、第3図は本
発明の第2の実施例における処理装置のウェハ置台の平
面図、第4図は第3図のA−A部の断面図、第5図はそ
の装置に取り付いているスリット状の吐出口を有するノ
ズルの部分断面図、第6図は従来例の処理装置の構成図
、第7図は従来例のガス吐出ノズルの斜視図である。 11・・・・・・処理室、12・・・・・・ウェハ(被
処理物)、13・・・・・・低圧水銀ランプ、14・・
・・・・ガス留り室、15・・・・・・ノズル、16・
・・・・・03発生器、17・・・・・・ウェハ置台、
18.19・・・・・・配管、2o・・・・・モータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第6図 4乙 第7図
FIG. 1 is a block diagram of a processing apparatus according to a first embodiment of the present invention, FIG. 2 is an enlarged sectional view of the nozzle of FIG. 1, and FIG. 3 is a wafer processing apparatus of a processing apparatus according to a second embodiment of the present invention. FIG. 4 is a sectional view taken along the line A-A in FIG. 3, FIG. 5 is a partial sectional view of a nozzle with a slit-shaped discharge port attached to the device, and FIG. 6 is a conventional example. FIG. 7 is a perspective view of a conventional gas discharge nozzle. 11... Processing chamber, 12... Wafer (processed object), 13... Low pressure mercury lamp, 14...
...Gas storage chamber, 15...Nozzle, 16.
...03 generator, 17...wafer placement stand,
18.19...Piping, 2o...Motor. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 2 Figure 3 Figure 6 Figure 4 Figure 7

Claims (4)

【特許請求の範囲】[Claims] (1)被処理物を加熱できる処理室内に酸素を含有する
ガスを導入しかつ、被処理物に紫外線を照射して有機物
を分解、除去する装置において、前記酸素を含有するガ
スの流路は少くとも184.9nmおよび253.7n
mの紫外線が透過する無機材料で作られていることを特
徴とする処理装置。
(1) In an apparatus that introduces an oxygen-containing gas into a processing chamber capable of heating a workpiece and irradiates the workpiece with ultraviolet rays to decompose and remove organic matter, the flow path of the oxygen-containing gas is at least 184.9nm and 253.7n
A processing device characterized in that it is made of an inorganic material that transmits ultraviolet rays of m.
(2)酸素を含有するガスは、オゾン発生器を通した後
、処理室に導入することを特徴とする特許請求の範囲第
1項記載の処理装置。
(2) The processing apparatus according to claim 1, wherein the gas containing oxygen is introduced into the processing chamber after passing through an ozone generator.
(3)ガスの流路はオゾン発生器と処理室の間にガスだ
まりを設け、かつ、少くとも184.9nmおよび25
3.7nmの紫外線が照射できる構造であることを特徴
とする特許請求の範囲第2項に記載の処理装置。
(3) The gas flow path should have a gas reservoir between the ozone generator and the processing chamber, and should have at least 184.9 nm and 25 nm.
The processing apparatus according to claim 2, characterized in that the processing apparatus has a structure capable of irradiating ultraviolet rays of 3.7 nm.
(4)被処理物を加熱できる処理室内に酸素を含有する
ガスを導入しかつ、被処理物に紫外線を照射して有機物
を分解、除去する装置において、前記酸素を含有するガ
スの吐出口は、スリット状あるいは複数の細孔を有する
ノズルであり、前記ガスの流路および前記ノズルは少く
とも184.9nmおよび253.9nmの紫外線が透
過する無機材料で作られていることを特徴とする処理装
置。
(4) In an apparatus that introduces an oxygen-containing gas into a processing chamber capable of heating a workpiece and irradiates the workpiece with ultraviolet rays to decompose and remove organic matter, the outlet for the oxygen-containing gas is , a nozzle having a slit shape or a plurality of pores, and the gas flow path and the nozzle are made of an inorganic material that transmits ultraviolet rays of at least 184.9 nm and 253.9 nm. Device.
JP26218786A 1986-11-04 1986-11-04 Processor Pending JPS63115343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26218786A JPS63115343A (en) 1986-11-04 1986-11-04 Processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26218786A JPS63115343A (en) 1986-11-04 1986-11-04 Processor

Publications (1)

Publication Number Publication Date
JPS63115343A true JPS63115343A (en) 1988-05-19

Family

ID=17372277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26218786A Pending JPS63115343A (en) 1986-11-04 1986-11-04 Processor

Country Status (1)

Country Link
JP (1) JPS63115343A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346225A (en) * 1989-07-13 1991-02-27 Nec Corp Resist ashing device
JPH03133125A (en) * 1989-10-19 1991-06-06 Toshiba Corp Resist ashing
US6349149B1 (en) 1996-11-06 2002-02-19 Matsushita Electric Industrial Co., Ltd. Image coding and decoding methods, image coding and decoding apparatuses, and recording media for image coding and decoding programs
JP2008218971A (en) * 2007-03-07 2008-09-18 Tdk Corp Device for processing resist pattern, and method of processing resist pattern
JP2009283571A (en) * 2008-05-20 2009-12-03 Samco Inc Dry cleaning device and dry cleaning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346225A (en) * 1989-07-13 1991-02-27 Nec Corp Resist ashing device
JPH03133125A (en) * 1989-10-19 1991-06-06 Toshiba Corp Resist ashing
US6349149B1 (en) 1996-11-06 2002-02-19 Matsushita Electric Industrial Co., Ltd. Image coding and decoding methods, image coding and decoding apparatuses, and recording media for image coding and decoding programs
JP2008218971A (en) * 2007-03-07 2008-09-18 Tdk Corp Device for processing resist pattern, and method of processing resist pattern
JP2009283571A (en) * 2008-05-20 2009-12-03 Samco Inc Dry cleaning device and dry cleaning method

Similar Documents

Publication Publication Date Title
KR910007110B1 (en) Surface anealing device
JP2001118818A (en) Ultraviolet ray-treating device and method
TWI251506B (en) Excimer UV photo reactor
JP2000070885A (en) Device and method for cleaning substrate
WO2003088337A1 (en) Resist removing apparatus and method of removing resist
JPH04302145A (en) Cleaning method
JPS63115343A (en) Processor
JPH01226156A (en) Method and apparatus for cleaning substrate
JP3756092B2 (en) Substrate processing equipment
JP4519234B2 (en) Article surface cleaning method and cleaning apparatus therefor
JPH0779100B2 (en) Ashing method
JPS6127635A (en) High efficiency dry type removing device of photoresist
JP2588511B2 (en) Processing equipment
JPH01179327A (en) Ashing
JP2966419B2 (en) Organic matter removing apparatus and organic matter removing method
JPH01189122A (en) Ashing method
JPH0547730A (en) Removing method for organic material
JP3457059B2 (en) Container cleaning method and cleaning device
JPS6139524A (en) Cleaning device for semiconductor wafer
JP2000058496A5 (en)
JP2003077824A (en) Substrate processing apparatus
JPH0684843A (en) Surface treatment apparatus
JPH01261827A (en) Optical asher
JP2932275B2 (en) Organic matter removal equipment
JPS6245121A (en) Treater