JPS63186170A - Angle measuring instrument - Google Patents

Angle measuring instrument

Info

Publication number
JPS63186170A
JPS63186170A JP1912287A JP1912287A JPS63186170A JP S63186170 A JPS63186170 A JP S63186170A JP 1912287 A JP1912287 A JP 1912287A JP 1912287 A JP1912287 A JP 1912287A JP S63186170 A JPS63186170 A JP S63186170A
Authority
JP
Japan
Prior art keywords
angle
target
reception
spherical lens
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1912287A
Other languages
Japanese (ja)
Other versions
JP2621155B2 (en
Inventor
Tsugio Yamazaki
次雄 山崎
Mitsuhisa Sato
光央 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62019122A priority Critical patent/JP2621155B2/en
Publication of JPS63186170A publication Critical patent/JPS63186170A/en
Application granted granted Critical
Publication of JP2621155B2 publication Critical patent/JP2621155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To simplify an antenna system by acquiring and receiving a radiation radio wave from a target through a spherical lens made of a dielectric. CONSTITUTION:Radio waves of plural preset frequencies are acquired and received through the spherical lens 1 to form reception focuses (b) and (c), and (b') and (c') at different symmetrical positions at each reception frequency. Antenna elements 2-1, 3-1, 3-2, and 2-2 are arranged at those focus positions and the radio waves acquired through the lens 1 are divided into two groups. They are coupled mutually through directional couplers 4-1 and 4-2 and outputted to logarithmic amplifiers 5-1 and 5-2. Then a target angle calculator 6 demultiplexes plural frequency components from the outputs of the amplifiers 5-1 and 5-2 and then measures the azimuth angle or elevation angle of the target from the level ratio of a couple of outputs of each demultiplexing frequency as to plural frequencies. Thus, the radio waves of plural frequencies sent by the target are acquired through the lens 1 to calculate the azimuth angle and elevation angle, thereby simplifying the constitution of the antenna system extremely.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測角装置に関し、特に誘導ミサイル等の飛翔体
に搭載して目標の放射する電波を捕捉しつつ前記目標全
追尾するに必要な方位角ならびに上下角を測角する測角
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an angle measurement device, and in particular, to an angle measurement device that is mounted on a flying object such as a guided missile to capture the radio waves emitted by the target and to track the entire target. The present invention relates to an angle measuring device that measures azimuth angles and vertical angles.

〔従来の技術〕[Conventional technology]

誘導ミサイル等の飛翔体に搭載し、複数の周波数の電波
を放射する目標の電波をアンテナの対称な指向性を介し
て受信し、得られる1対の受信レベル比にもとづいて目
標の方位角もしくは上下角を算出し、これを追尾情報と
して提供する測角装置はよく知られている。
Mounted on a flying object such as a guided missile, it receives radio waves from a target that emits radio waves of multiple frequencies via the symmetrical directivity of the antenna, and determines the target's azimuth or angle based on the pair of reception level ratios obtained. Angle measuring devices that calculate vertical angles and provide this as tracking information are well known.

第3因は従来の測角装置の構成を示すプロック図である
。第3図に示す測角装置は、目標の方位角を測角する場
合を例とし、受信基準方向りに対して互いに十〇、−〇
だけそれぞれの受信基準方向をオフセットして配置する
アンテナ7−1および7−2、アンテナ7−1および7
−2の出力を受ける広帯域増幅器としての対数増幅器5
−1および5−2、ならびに目標角度算出器8を備えて
構成される。
The third factor is a block diagram showing the configuration of a conventional angle measuring device. The angle measuring device shown in FIG. 3 takes the case of measuring the azimuth of a target as an example, and antennas 7 are arranged with their respective reception reference directions offset by 10 and -0 from each other with respect to the reception reference direction. -1 and 7-2, antennas 7-1 and 7
Logarithmic amplifier 5 as a broadband amplifier receiving an output of −2
-1 and 5-2, and a target angle calculator 8.

タトエば、スパイラルアンテナのような比較的広帯域の
アンテナを利用するアンテナ7−1.7−2は、はぼ同
一のビーム幅の受信指向性701゜702を十〇、−〇
方向を中心として形成する。
For example, antennas 7-1 and 7-2, which use relatively wide-band antennas such as spiral antennas, have reception directivity of 701° and 702 with almost the same beam width, centered on the 10 and -0 directions. do.

いま、矢印方向、十〇。の方向にある目標の放射電波を
捕捉したとすると、アンテナ7−1.7−2で受信され
る電力のレベルはpl、 p、に対応したものとなる。
Now, in the direction of the arrow, 10. If the radiated radio waves of the target in the direction are captured, the level of power received by the antenna 7-1.7-2 corresponds to pl, p.

このレベル比は明らかに十〇。すなわち目標の方位角に
対応して変化する。
This level ratio is clearly 10. In other words, it changes depending on the azimuth angle of the target.

アンテナ7−1.7−2の出力は広帯域増幅器たとえば
対数増幅器5−1.5−2で所定の増幅を施されたのち
目標角度算出器8に供給される。
The output of the antenna 7-1.7-2 is supplied to the target angle calculator 8 after being amplified to a predetermined value by a wideband amplifier such as a logarithmic amplifier 5-1.5-2.

目標角度算出器8は、対数増幅器5−1.5−2の出力
レベル差すなわち両出力のレベル比を求めこれから目標
の方位角十〇。を算出する。 この算出は、受信電波の
周波数及び、あらかじめ測定されている受信指向性にも
とづき容易に決定することができる。上下角についても
ほぼ同様にして決定することができる。
The target angle calculator 8 calculates the output level difference of the logarithmic amplifiers 5-1 and 5-2, that is, the level ratio of both outputs, and calculates the target azimuth 10 from this. Calculate. This calculation can be easily determined based on the frequency of the received radio waves and the reception directivity measured in advance. The upper and lower angles can also be determined in substantially the same manner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のこの棟の測角装置は、互いに対称的に形
成する受信指向性のそれぞれを介して得られる受信信号
のレベル比が受信方向の方位もしくは上下角に対応し、
到来電波強度自体には無関係に角度を求めることができ
る。
In the above-mentioned conventional angle measuring device of this building, the level ratio of the received signal obtained through each of the mutually symmetrically formed receiving directivity corresponds to the azimuth or up-down angle of the receiving direction,
The angle can be determined regardless of the incoming radio wave intensity itself.

しかしながら、方位もしくは上下角の測角にはそれぞれ
2個のアンテナ計4個のアンテナが必要となりアンテナ
系の構成が膨大化するという欠点がある。
However, there is a drawback in that a total of four antennas, two antennas each, are required to measure the azimuth or the vertical angle, resulting in an enormous antenna system configuration.

また、複数の周波数の電波を放射する目標を対象として
その方向を測角しようとする運用目的から、受信周波数
の広帯域化を図るべく周波数依存度の少ないアンテナを
選定しようとすれば、このことは受信指向性のビーム幅
の自由度も大幅に制限されることを意味し、従って測角
精度の自由度も大幅に制限されることが避けられないと
いう欠点がある。
In addition, if you are trying to select an antenna with less frequency dependence in order to widen the receiving frequency band for the operational purpose of measuring the direction of a target that emits radio waves of multiple frequencies, this problem will occur. This means that the degree of freedom of the beam width of the reception directivity is also significantly limited, and therefore, there is a disadvantage that the degree of freedom of angle measurement accuracy is also inevitably limited.

さらに、このfi11角装置全装置で使用する場合には
電子装置関係はもとよシ、膨大化するアンテナ系を収容
するレドームが必要となるという欠点がある。
Furthermore, when using this FI11 angle device in all devices, there is a drawback that a radome is required to accommodate the antenna system, which is not limited to electronic devices.

本発明の目的は上述した欠点を除去し、誘電体からなる
球体レンズを介して目標の放射電波を捕捉受信するとい
う手段を備えることによシ、アンテナ系を著しく簡素化
して構成しうろことも周波数の弁別使用による粗測、精
測の自由度も著しく増大し、さらにレドームも不要とす
る測角装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide means for capturing and receiving target radiated radio waves through a spherical lens made of a dielectric material, thereby significantly simplifying the structure of the antenna system. It is an object of the present invention to provide an angle measuring device in which the degree of freedom in rough and precise measurements is significantly increased by the differential use of the angle measuring device, and furthermore, a radome is not required.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の測角装置は、誘導ミサイル等の飛翔体に搭載し
、目標の方位角ならびに上下角の計測をアンテナの対称
受信指向性による受信レベル比の算出を介して行なう測
角装置において、あらかじめ設定する複数の周波数の′
に波を捕捉し受信周波数ごとにそれぞれ異る対称位置に
受信焦点を形成せしめる球体レンズと、前記受信焦点に
−一し前記球体レンズを介して捕捉した電波を電気信号
に変換し出力する複数のアンテナ素子と、前記複数のア
ンテナ素子の出力を互いに対称位置にある2群に分割し
、それぞれ全結合して出力する1対の方向性結合器と、
前記1対の方向性結合器の出刃を増幅する1対の広帯域
増幅器と、前記1対の広帯域増幅器の出力から前記複数
の周波数成分を分波したのち分波各周波欽ごとの一対の
出力のレベル比から目標の方位角もしくは上下角を前記
複数の周波数のそれぞれについて糖′但(1する目標角
度算出器とを備えて構成される。
The angle measuring device of the present invention is installed on a flying object such as a guided missile and measures the azimuth angle and up/down angle of a target by calculating the reception level ratio based on the symmetric reception directivity of the antenna. ′ of multiple frequencies to be set
a spherical lens that captures waves and forms reception focal points at different symmetrical positions for each receiving frequency; an antenna element, and a pair of directional couplers that divides the outputs of the plurality of antenna elements into two groups located symmetrically to each other and fully couples and outputs the respective groups;
a pair of wideband amplifiers that amplify the output of the pair of directional couplers; and a pair of outputs for each frequency after demultiplexing the plurality of frequency components from the outputs of the pair of wideband amplifiers. The apparatus includes a target angle calculator that calculates the target azimuth angle or vertical angle for each of the plurality of frequencies from the level ratio.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一拠施例のブロック図で69、誘電体
からなる球体レンズ1、高周仮帯域用アンテナ素子2−
1および2−2、低周波葡城用アンテナ素子3−1およ
び3−2、方向性結合器4−1および4−2、対数増幅
器5−1および5−2、目標角度算出器6を備えて構成
される。
FIG. 1 is a block diagram of an embodiment of the present invention, which includes a spherical lens 1 made of a dielectric material, an antenna element 2 for a temporary high frequency band, and a spherical lens 1 made of a dielectric material.
1 and 2-2, low frequency antenna elements 3-1 and 3-2, directional couplers 4-1 and 4-2, logarithmic amplifiers 5-1 and 5-2, and target angle calculator 6. It consists of

第1図に示す実施例は目標の方位角を測角する場合を例
として示すものであるが、上下角の測角も基本的には全
く同様である。
The embodiment shown in FIG. 1 is illustrative of the case where the azimuth angle of the target is measured, but the measurement of the vertical angle is basically completely the same.

球体レンズ1は、いわゆるルーネベルグLune−be
rg)レンズとして構成される誘電体球であシ、入射す
る平面波はすべて、どの方向から入射してもそれぞれ入
射中心方向と球体中心を結ぶ延長方向の球体光面に焦点
を結ぶ。第1図の例で言うと、互いに対称方向の入射方
向BとB′とを中心として入射するビームはそれぞれb
とb′点に、またCとC′の入射方向を中心として入射
するビームはそれぞれCとC′に焦点を結ぶようなレン
ズ効果を付与される。このような特性は球体レンズ1に
、その中心から表面に到る距離の関数として所定の変化
率の誘を軍を付与することによって容易に央現しうるこ
とはよく知られている。
The spherical lens 1 is a so-called Luneberg Lune-be.
rg) It is a dielectric sphere configured as a lens, and all incident plane waves are focused on the spherical optical surface in the extending direction connecting the incident center direction and the spherical center, no matter from which direction. In the example of FIG.
The beams incident at points C and b' and centered on the incident direction of C and C' are given a lens effect such that they are focused on C and C', respectively. It is well known that such characteristics can be easily expressed by imparting a force to the spherical lens 1 with a predetermined rate of change as a function of the distance from its center to its surface.

高周波帯域用アンテナ素子3−1と3−2はそれぞれ、
焦点すとb′に結像した電波を電気信号に変換し、また
低周狭帯用アンテナ素子2−3と2−4はそれぞれ焦A
CとC′に結像した策仮を電気信号に変換して出力する
。焦点すとbZ cとC′は互いに対称の位置にあり、
またこれら焦点を形成する到来電波の入射方向B 、 
B’およびc 、 c’はそれぞれ球体レンズ1のあら
かじめ設定する高周波受信指向性および低周阪受信指向
性の中心方向とすると、これら入射方向と焦点間の関係
は第2図に示すとおりとなる。
The antenna elements 3-1 and 3-2 for high frequency band are each
When focused, the radio wave focused on b' is converted into an electric signal, and low frequency narrow band antenna elements 2-3 and 2-4 are focused on A, respectively.
The plans imaged on C and C' are converted into electrical signals and output. When focused, bZ c and C' are at symmetrical positions,
Also, the incident direction B of the incoming radio waves forming these focal points,
Assuming that B', c, and c' are the center directions of the preset high-frequency receiving directivity and low-frequency receiving directivity of the spherical lens 1, respectively, the relationship between these incident directions and the focal point is as shown in Figure 2. .

第2図は、第1図の実施例の球体レンズ1の動作説明図
である。球体レンズ1による送信、受信指向性は、投射
面もしくは受彼面の開口長すなわち球体の大きさによっ
て変化し、同じ開口であれば周波数に対応して高周波で
は狭ビーム、低周波では広ビームとなる。
FIG. 2 is an explanatory diagram of the operation of the spherical lens 1 of the embodiment shown in FIG. The transmission and reception directivity by the spherical lens 1 changes depending on the aperture length of the projection surface or the receiving surface, that is, the size of the sphere.If the aperture is the same, it will be a narrow beam at high frequencies and a wide beam at low frequencies, depending on the frequency. Become.

命2図の場合は球体レンズ1の左半球が受信開口でロシ
、この開口で捕捉しようとする目標の放射する電波の周
仮数は高低2周波でf、とf、であるとする。
In the case of Life 2, the left hemisphere of the spherical lens 1 is the receiving aperture, and the frequency mantissa of the radio wave emitted by the target to be captured by this aperture is two high and low frequencies, f and f.

高周波f1に対しては、球体レンズ1は受信基準方向り
から±01の方向に対称的に形成される1対の高周波受
信指向性101.102でこれを受・闇する。
The spherical lens 1 receives and blocks the high frequency wave f1 with a pair of high frequency reception directivity 101 and 102 formed symmetrically in the direction of ±01 from the reception reference direction.

また、低周波f、に対しては球体レンズ1は受イぎ基準
方向りから士θ!の方向に対称的に形成てれる1対の低
周波受(8指向性103,104でこれを受傷する。
Also, for low frequency f, the spherical lens 1 is θ! from the receiving reference direction. A pair of low frequency receivers (8 directivity 103, 104) are formed symmetrically in the direction of .

これら2対の受信指向性はそれぞれ受信基準方向りで指
向性のピークレベルから一定レベル低下したところでク
ロスするように配慮され、低周及受信指向性103,1
04′fA域では万位相変は低いが測角範囲は広く、ま
た高周波受信指向性101゜102領域では測角範囲は
狭いが測角精度は尚い受信が可能である。
These two pairs of reception directivity are designed to cross each other at a certain level lower than the peak level of the directivity in the reception reference direction, and the low frequency and reception directivity 103, 1
In the 04'fA range, the angular measurement range is wide although the phase shift is low, and in the high frequency receiving directivity region of 101°102, the angular measurement range is narrow but the angle measurement accuracy is still high and reception is possible.

このような高、低周波それぞn1対の受信指向性によっ
て捕捉された受信信号は第3山に示す従来例の2個分の
測角情報全提供し、これらは方向性結合器4−1.4−
2を介してそれぞれ対欽増1届器5−1.5−2に供給
される。このように、対称位置に形成される焦点に配置
したアンテナ素子の出力を2#に分割し、方向性結合器
を介してそれぞれを対数増幅器で広帯域増幅するという
手段を備えることによシ、広角度範囲にわたる粗測と、
やや狭い角度範囲の精測の特徴を併せもつ受信が可能と
なる。この場合、当初は広角度範囲の受信を行ない目標
の認識を行なってから狭い角度範囲の受信に切替える制
御も勿論可能であ夛、さらに、第1図の球体レンズ1t
−そのまま利用し、上下角の測角を行なう手段も第1図
とほぼ同じ内容で実施できることも明らかである。
The received signals captured by such n1 pairs of high and low frequency reception directivity provide all the angle measurement information for the two conventional examples shown in the third peak, and these are transmitted to the directional coupler 4-1. .4-
2 to the 1st notification device 5-1 and 5-2, respectively. In this way, the output of the antenna element placed at the focal point formed at symmetrical positions is divided into 2 #s, and each is amplified over a wide band using a logarithmic amplifier via a directional coupler. coarse measurements over an angular range;
This enables reception that also has the characteristics of precise measurement in a rather narrow angular range. In this case, it is of course possible to initially perform reception in a wide angular range, recognize the target, and then switch to reception in a narrow angular range.
- It is also clear that the method can be used as is and the means for measuring the upper and lower angles can be implemented with almost the same contents as in FIG.

対数増幅器5−1.5−2の出力は目標角度算出器6に
供給されそれぞれ分波処理を受けflとf。
The outputs of the logarithmic amplifiers 5-1 and 5-2 are supplied to the target angle calculator 6 and subjected to demultiplexing processing into fl and f, respectively.

の成分が分離出力される。このあとレベル比をJ”I+
f!ごとに算出し、それぞれの周波数における測角デー
タが得られる。この出力は目標判定のデータとして利用
され飛翔体のアクチュエータの制御信号等となる。
The components are separated and output. After this, change the level ratio to J”I+
f! The angle measurement data at each frequency is obtained. This output is used as data for target determination and becomes a control signal for the actuator of the flying object.

上述した実施例では方位角の測角を例とし、かつflお
よびf2の高低2周波数を特徴とする特許について述べ
たが、これはあくまで本発明の一実施例を示すに過ぎず
、この変形も棟種考えられる。
In the above-mentioned embodiment, angle measurement of azimuth angle was used as an example, and a patent was described which featured two high and low frequencies of fl and f2, but this is merely an embodiment of the present invention, and this modification is also applicable. Possible ridge species.

たとえば、利用する周波数は2周波以上としてもよく、
ビーム数を4ビ一ム以上としても良い。
For example, the frequencies used may be two or more,
The number of beams may be 4 or more.

これは第1図の場合を例とすると誘電球体レンズ1の右
半球に配置し得るアンテナ素子数にもとづいて決定しう
る。
Taking the case of FIG. 1 as an example, this can be determined based on the number of antenna elements that can be arranged in the right hemisphere of the dielectric lens 1.

また、第1図に示す方位角の測角のほかに、これと上下
角の測角を球体レンズを共用して容易に実施しうろこと
も前述したとおシである。
Further, as mentioned above, in addition to measuring the azimuth angle shown in FIG. 1, it is also possible to easily measure the vertical angle by using a spherical lens.

声らに、第1図の実施例では使用周波数はflとflの
高低2周波としているが、 これに代えて、flとf、
がそれぞれ所定の高域および低域の中心周波数を六わす
ものとして取扱うことも容易に実施しうろことは明らか
である。
In the embodiment shown in Fig. 1, the frequencies used are two high and low frequencies, fl and fl, but instead of this, fl and f,
It is obvious that it would be easy to treat the center frequencies of the predetermined high and low frequencies as being equal to each other.

なお、本実施例ではルーネベルグ型の球体レンズをオリ
用しているが、これは他の型式の球体レンズ、たとえば
定−に型の球体レンズを利用してもよく、さらに球体レ
ンズ1はその左半球を空中に具出する状態で利用してい
るが、このだめの特別のレドームは球体レンズ自身がレ
ドームとしての役目も果たすことができるので年債とな
る。
Although a Runeberg type spherical lens is primarily used in this embodiment, other types of spherical lenses, such as a regular type spherical lens, may also be used. Although it is used with a hemisphere sticking out in the air, this special radome is an annual bond because the spherical lens itself can also function as a radome.

以上の変形例はすべて本発明の主旨を損なうことなく、
いずれも容易に実施しうるものである。
All of the above modifications can be made without departing from the spirit of the present invention.
Both can be easily implemented.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、飛翔体に搭載し目標
の発する電波を対称受信指向性による受信レベル比の算
出を介して行なう測角装置において、球体レンズを介し
て目標の発する複数の周波数の電波を捕捉しその方位角
ならびに上下角を算出するという手段を備えることによ
シ、アンテナ系の構成を著しく簡素化し球体レンズの1
個のアンテナ開口で複数周波数の受信を可能とし、かつ
受信ビームの指向性は誌電球体レンズの大きさによって
選択可能なうえ測角精度も受信周波数に対応して粗測、
精測の切替が可能となシ、さらに球体レンズの一部をレ
ドームとして運用しうる測角装置が実現できるという効
果がある。
As explained above, according to the present invention, in an angle measurement device mounted on a flying object and which performs radio waves emitted by a target by calculating a reception level ratio using symmetric reception directivity, multiple frequencies emitted by the target are measured through a spherical lens. By providing a means to capture radio waves and calculate their azimuth and vertical angle, the configuration of the antenna system can be significantly simplified, and the configuration of the spherical lens can be
It is possible to receive multiple frequencies with a single antenna aperture, and the directivity of the receiving beam can be selected depending on the size of the magazine body lens.
This has the advantage that it is possible to switch between precise measurements, and furthermore, it is possible to realize an angle measuring device in which a part of the spherical lens can be used as a radome.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測角装置の一実施例を示すブロック図
、第2図は第1図の球体レンズlの動作説明図、第3図
は従来の測角装置のブロック図である。 1・・・・・・球体レンズ、2−1.2−2・・・・・
・高周波帯域用アンテナ素子、3−1.3−2・・・・
・・低周波帯域用アンテナ素子、4−1.4−2・・・
・・・方向性結合器、5−1.5−2・・・・・・対数
増幅器、6・・・・・・目標角度算出器、7−1.7−
2・旧・・アンテナ、8・・・・・・目標角度算出器。 代理人 弁理士  内 原   晋パ \’i” 。 嘩−一′ i ! 閃 !3    /   −−−−−一神鉢しン人゛療 2
 図 S−/、 5−2−−−−−一タ措増幅谷芽 3 図
FIG. 1 is a block diagram showing an embodiment of the angle measuring device of the present invention, FIG. 2 is an explanatory diagram of the operation of the spherical lens l shown in FIG. 1, and FIG. 3 is a block diagram of a conventional angle measuring device. 1... Spherical lens, 2-1.2-2...
・Antenna element for high frequency band, 3-1.3-2...
...Antenna element for low frequency band, 4-1.4-2...
... Directional coupler, 5-1.5-2 ... Logarithmic amplifier, 6 ... Target angle calculator, 7-1.7-
2. Old antenna, 8. Target angle calculator. Agent Patent Attorney Susumu Uchihara\'i''.
Figure S-/, 5-2----Ichita measure amplification Tanime 3 Figure

Claims (1)

【特許請求の範囲】 誘導ミサイル等の飛翔体に搭載し、目標の方位角ならび
に上下角の計測をアンテナの対称受信指向性による受信
レベル比の算出を介して行なう測角装置において、 あらかじめ設定する複数の周波数の電波を捕捉し受信周
波数ごとにそれぞれ異る対称位置に受信焦点を形成せし
める誘電体からなる球体レンズと、前記受信焦点に配置
し前記球体レンズを介して捕捉した電波を電気信号に変
換し出力する複数のアンテナ素子と、前記複数のアンテ
ナ素子の出力を互いに対称位置にある2群に分割しそれ
ぞれを結合出力する1対の方向性結合器と、前記1対の
方向性結合器の出力を増幅する1対の広帯域増幅器と、
前記1対の広帯域増幅器の出力から前記複数の周波数成
分を分波したのち分波各周波数ごとの一対の出力のレベ
ル比から目標の方位角もしくは上下角を前記複数の周波
数のそれぞれについて計測する目標角度算出器とを備え
て成ることを特徴とする測角装置。
[Claims] In an angle measuring device mounted on a flying object such as a guided missile, which measures the azimuth angle and vertical angle of a target by calculating a reception level ratio based on the symmetric reception directivity of an antenna, the angle measurement device is set in advance. A spherical lens made of a dielectric material that captures radio waves of multiple frequencies and forms a reception focus at a different symmetrical position for each reception frequency, and a spherical lens that is placed at the reception focus and converts the captured radio waves through the spherical lens into an electrical signal. a plurality of antenna elements that convert and output; a pair of directional couplers that divide the outputs of the plurality of antenna elements into two groups located symmetrically to each other and combine and output the respective groups; and the pair of directional couplers. a pair of wideband amplifiers that amplify the output of the
A goal of demultiplexing the plurality of frequency components from the outputs of the pair of broadband amplifiers, and then measuring the target azimuth or vertical angle for each of the plurality of frequencies from the level ratio of the pair of outputs for each demultiplexed frequency. An angle measuring device comprising: an angle calculator.
JP62019122A 1987-01-28 1987-01-28 Angle measuring device Expired - Lifetime JP2621155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019122A JP2621155B2 (en) 1987-01-28 1987-01-28 Angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019122A JP2621155B2 (en) 1987-01-28 1987-01-28 Angle measuring device

Publications (2)

Publication Number Publication Date
JPS63186170A true JPS63186170A (en) 1988-08-01
JP2621155B2 JP2621155B2 (en) 1997-06-18

Family

ID=11990662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019122A Expired - Lifetime JP2621155B2 (en) 1987-01-28 1987-01-28 Angle measuring device

Country Status (1)

Country Link
JP (1) JP2621155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113286A (en) * 1990-09-04 1992-04-14 Tech Res & Dev Inst Of Japan Def Agency Composite sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925985A (en) * 1982-08-03 1984-02-10 Asahi Glass Co Ltd Low overvoltage cathode having high durability and its production
JPS5949553A (en) * 1982-08-25 1984-03-22 ヘキスト・アクチエンゲゼルシヤフト Xerographic liquid developer for inverse development of negatively charged image and manufacture thereof
JPS5992369A (en) * 1982-11-19 1984-05-28 Nec Corp Direction finder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925985A (en) * 1982-08-03 1984-02-10 Asahi Glass Co Ltd Low overvoltage cathode having high durability and its production
JPS5949553A (en) * 1982-08-25 1984-03-22 ヘキスト・アクチエンゲゼルシヤフト Xerographic liquid developer for inverse development of negatively charged image and manufacture thereof
JPS5992369A (en) * 1982-11-19 1984-05-28 Nec Corp Direction finder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113286A (en) * 1990-09-04 1992-04-14 Tech Res & Dev Inst Of Japan Def Agency Composite sensor

Also Published As

Publication number Publication date
JP2621155B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
EP0086351A1 (en) Geodesic dome/lens antenna
CN109142890B (en) Terahertz leaky-wave antenna measuring system
US3618090A (en) Radar
US5270723A (en) Near field antenna measurement systems and methods
KR101566449B1 (en) Higher order mode horn antenna for monopulse seeker using millimeter-wave
US3392394A (en) Steerable luneberg antenna array
US20230273300A1 (en) Scanner, and coaxial and non-coaxial radar systems using same
US5274389A (en) Broadband direction finding system
US5670965A (en) Compact antenna test range
US3040310A (en) Radar tracking and antenna systems
JPS63186170A (en) Angle measuring instrument
US6188481B1 (en) Spatial interferometry
JP2015226297A (en) Antenna device and speed sensor using the same
JPH02128168A (en) Electronic scanning type microwave radiometer
JP2021182652A (en) Antenna device, wireless communication device, and radar device
JP3292024B2 (en) Synthetic aperture radar test equipment
US3220005A (en) Device for determining the relative position of two objects
KR100533918B1 (en) A 3d antenna for radar system
US3893120A (en) Omnidirectional ring antenna for EW amplitude comparison direction finding
TWI816504B (en) Reconfigurable intelligent surface and electronic environment sensing system based on reconfigurable intelligent surface
US3134977A (en) Wave source position detecting system
JP2757667B2 (en) Flying object guidance device
CN115145190A (en) RCS control circuit system and design method thereof
CN105716478A (en) Calibrating device for infrared microwave composite target source
GB2164517A (en) Improvements to antenna systems