JPS63185526A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JPS63185526A
JPS63185526A JP1806487A JP1806487A JPS63185526A JP S63185526 A JPS63185526 A JP S63185526A JP 1806487 A JP1806487 A JP 1806487A JP 1806487 A JP1806487 A JP 1806487A JP S63185526 A JPS63185526 A JP S63185526A
Authority
JP
Japan
Prior art keywords
ions
exchange resin
specific resistance
organic acid
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1806487A
Other languages
Japanese (ja)
Inventor
Haruo Nishigaki
西垣 晴夫
Akihiko Tawara
田原 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1806487A priority Critical patent/JPS63185526A/en
Publication of JPS63185526A publication Critical patent/JPS63185526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To aim at enhancing the life of machining oil and at reducing the running cost by charging anion exchange resin, solely in an ion exchanger constituting a specific resistance maintaining device so as to remove anionically deteriorating products which lower the specific resistance of deteriorated machining liquid. CONSTITUTION:Ionically deteriorating products in deteriorated machining liquid have hydrogen ions and ferric ions exhibiting acid as main component when they are cations, but have organic acid ions such as formic acid ions or acetic ions as main components when they are anions. Generally, ions causes the specific resistance of deteriorated machining liquid to be remarkably lowered. If the forming acid ions form organic acid consisting of hydrogen ions and organic acid ions, the specific resistance of the machining liquid is remarkably lowered. Accordingly, if anion exchange resin 411 is charged in an ion exchanger 41, it coexists with the ferric ions so that the organic acid ions forming stable polynuclear complex salt are not removed. Accordingly, it is possible to enhance the life of machining liquid and to reduce the running cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機化金物溶液1k27D工液とする放電加
工装置に関し、さらに詳しくは、比抵抗維持装置を構成
するイオン交換器を改良し・た放電加工装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electric discharge machining device using an organic metal solution 1K27D working fluid, and more specifically, to an improved ion exchanger constituting a resistivity maintenance device. The present invention relates to electric discharge machining equipment.

〔従来の技術〕[Conventional technology]

第8図は従来の有機化合物溶液を加工液とした放電加工
装置の加工液供給装置の一例を示す説明図である。図に
おいて、(1)は加工装置本体、(2)は有機化合物溶
液の加工液であり、加工装置本体(1)において放[1
0工に用いられたのち排出されTこものであり内部にス
ラー1ジを含んでいる。Uυは加工液(2)の加工液受
け、(2)は戻しパイプ、翰は加工液槽であり、加工1
’[! (2)は原工液受け(6)から戻しパイプ四を
流れて加工液槽(1)に入る。(至)は汚液槽、121
1)は汚液槽Q刀内の汚液で、内部にスラーIジを含ん
でいる。(イ)はフィルタエレメント、翰はポンプ1で
あり、汚g (211)をポンプ10によりフィルタエ
レメント四に送り、スラ・lシフi?濾過する。(ハ)
は清液槽、(241Jは清液槽(至)内の清液である。
FIG. 8 is an explanatory diagram showing an example of a machining fluid supply device for an electrical discharge machining apparatus using a conventional organic compound solution as the machining fluid. In the figure, (1) is the processing equipment main body, (2) is the processing liquid of organic compound solution, and the processing equipment main body (1) is released [1].
After being used for zero milling, it is discharged and contains sludge. Uυ is the machining fluid receiver for machining fluid (2), (2) is the return pipe, and the handle is the machining fluid tank.
'[! (2) flows from the raw processing liquid receiver (6) through the return pipe 4 and enters the processing liquid tank (1). (to) is a sewage tank, 121
1) is the sewage in the sewage tank Q, which contains slurry. (A) is the filter element, and the wire is the pump 1. The dirt (211) is sent to the filter element 4 by the pump 10, and the filter element 4 is sent to the filter element 4. Filter. (c)
is the clear liquid tank, (241J is the clear liquid in the clear liquid tank (to).

なおこの清液(241Jはフィルタエレメント■でスラ
ーリジが濾過され1こ加工液である。(至)はポンプ2
であり、清液(241)を加工装置本体(1)に送って
放[10工を行わせる。
Note that this clear liquid (241J is the processing liquid after the slurry is filtered by the filter element
Then, the clear liquid (241) is sent to the main body (1) of the processing apparatus to perform the discharge process.

C3℃は混床式イオン交換器、(811)は混床式イオ
ン交換器C11)に充填されている陽イオン交換樹脂と
陰イオン交換樹脂とから成ろ混床式イオン交換樹脂、(
至)は清液1241Jの比抵抗を検出する比抵抗センサ
、(ト)は比抵抗を、与えられ1こ値に保つ1こめの比
抵抗制御器、(至)はポンプ(3)で、比抵抗制御器(
至)の指令に基づいて清液(241)を混床式イオン交
換壽θMへ送る。これらの九床式イオン交換器6η、混
床式イオン交換樹脂(:(11〕、比抵抗センサ(至)
、比抵抗制御器(至)及びポンプ804により比抵抗維
持装置(至)が構成されている。
C3°C is a mixed bed ion exchanger, (811) is a filter mixed bed ion exchange resin consisting of a cation exchange resin and an anion exchange resin filled in the mixed bed ion exchanger C11), (
(to) is a resistivity sensor that detects the resistivity of the fresh liquid 1241J, (g) is a resistivity controller that keeps the resistivity at a given value of 1, and (to) is a pump (3) that detects the resistivity. Resistance controller (
Based on the command from (to), the clear liquid (241) is sent to the mixed bed type ion exchanger θM. These nine-bed ion exchanger 6η, mixed-bed ion exchange resin (: (11), resistivity sensor (to)
, the resistivity controller (to), and the pump 804 constitute a resistivity maintenance device (to).

ところで、一般に、有機化合物溶液の加工液(2)とL
7てはグリコールと糖との混合溶液が用いられている、
ま1こ、混床式イオン交換樹脂(311Jとしては、汎
用のイオン交換樹脂、例えばアンバーライ)、MB−8
■が用いられ、これは強酸性陽イオン交換樹脂のアンバ
ーライト1it−120B■と、強塩基性陰イオン交換
樹脂のアンバーライト1liA410■との混合物であ
る。
By the way, in general, processing liquid (2) of organic compound solution and L
7. A mixed solution of glycol and sugar is used.
Mixed-bed ion exchange resin (311J is a general-purpose ion exchange resin, such as Amberly), MB-8
(2) is a mixture of Amberlite 1it-120B (2), a strongly acidic cation exchange resin, and Amberlite 1liA410 (2), a strongly basic anion exchange resin.

上記のように構成し1こ従来の放電加工装置の作用につ
いて説明すれば次の通りである。加工装置本体(1)で
放電加工に用いられ1こ有機化合物溶液の加工液(2)
は、スラー・ジを懸濁して加工液受け(2)に溜まり、
戻しバイブ■を流れて汚液槽elDへ入る。
The operation of the conventional electric discharge machining apparatus constructed as described above will be explained as follows. Machining fluid (2), which is an organic compound solution, is used for electrical discharge machining in the machining equipment body (1).
suspends the slurry and collects it in the machining liquid receiver (2),
It flows through the return vibrator ■ and enters the sewage tank elD.

汚液槽(2)において粗いスラ・Iジを沈降させたあと
の汚Iei(211)をポンプ1(2)によりフィルタ
エレメントのに送り、懸濁しているスラーIジを濾過し
たのち清液槽@に貯える。清液(241Jはポンプ2@
により加工装置本体(1)に送られて放電加工に用いら
れる。まtコ清液(241,)の比抵抗は比抵抗センサ
(至)により検出される。検出された比抵抗が、比抵抗
制御器(至)に予め設定された下限値より小さい場合は
ポンプ8r34が駆動され、清[t241Jの一部が混
床式イオン交換器ODへ送られる。この混床式イオン交
換器01)に送られ1こ清液t 241 )は、混床式
イオン交換樹脂(811Jによりイオン交換をしたのち
After settling the coarse sludge in the sewage tank (2), the sludge (211) is sent to the filter element by the pump 1 (2), and the suspended sludge is filtered and then transferred to the clear liquid tank. Save in @. Clear liquid (241J is pump 2@
is sent to the machining device main body (1) and used for electrical discharge machining. The specific resistance of the matte liquid (241,) is detected by a specific resistance sensor (241). When the detected resistivity is smaller than the lower limit value preset in the resistivity controller (to), the pump 8r34 is driven and a part of the ion exchanger OD is sent to the mixed bed ion exchanger OD. The purified liquid t241) sent to this mixed bed type ion exchanger 01) was subjected to ion exchange using a mixed bed type ion exchange resin (811J).

清液槽(ハ)に戻される。検出された比抵抗が予め設定
され1こ上限値を超え1ことき、ポンプ8C34は停止
される。なおrf4液(241Jの比抵抗が予め設定さ
れた下限値を超えるまで回復できなくなったときは、混
床式イオン交換樹脂1811Jは取り替えられる。
It is returned to the fresh liquid tank (c). When the detected resistivity exceeds a preset upper limit by one time, the pump 8C34 is stopped. Note that when the specific resistance of the RF4 liquid (241J) cannot be recovered to exceed a preset lower limit value, the mixed bed type ion exchange resin 1811J is replaced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように構成しTコ従来の放電加工装置の比抵抗維
持装置1(至)に用いられる混床式イオン交換器C1υ
によれば、放電加工による加工液中の劣化缶底8物を解
明することなく、汎用のものが用いられている1こめ比
抵抗維持能力が小さく、少量の放電加工によって混床式
イオン交換器GDを取り替えなければならないという問
題点があった。
Mixed bed ion exchanger C1υ configured as above and used in resistivity maintenance device 1 (to) of conventional electrical discharge machining equipment
According to the authors, without elucidating the eight deteriorated can bottoms in the machining fluid due to electrical discharge machining, general-purpose products are used. There was a problem in that the GD had to be replaced.

本発明は、上記のような問題点を解決するためになされ
たもので、寿命の長い比抵抗維持装置を有する放電加工
装置を得るこ゛とを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain an electric discharge machining apparatus having a resistivity maintaining device with a long life.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る放電W工装置は、比抵抗維持装置+mgす
るイオン交換器に対して、陰イオンR換樹脂を単独に充
填し1こものである。
The electric discharge W process device according to the present invention is a single unit in which the anion R exchange resin is individually filled with respect to the resistivity maintenance device + mg ion exchanger.

〔作用〕[Effect]

本発明においては、イオン交換器に陰イオン交換樹脂を
単独に充填することにより、劣化加工液の比抵抗を著る
しく低下する陰イオン性劣イど缶底物を除去する。
In the present invention, by filling the ion exchanger solely with an anion exchange resin, anionic degraded can bottom materials that significantly reduce the resistivity of degraded processing fluid are removed.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す比抵抗維持装置の説明図
である。なお、第8図と同じ機能の部分には同じ符号を
附し、説明を省略する。図において、姉はイオン交換器
であり、(411)はイオン交換器(ADに充填された
陰イオン交換樹脂である。
FIG. 1 is an explanatory diagram of a resistivity maintaining device showing an embodiment of the present invention. Note that parts having the same functions as those in FIG. 8 are given the same reference numerals, and explanations thereof will be omitted. In the figure, the older sister is an ion exchanger, and (411) is an anion exchange resin filled in the ion exchanger (AD).

第2図は後述する実施例2で示すカラム法によるイオン
交換カラムの寿命測定結果ケ示す線図である。横軸は流
出液に1を示し、曲線Aの比抵抗が20にΩ・1となる
流出故地を1とする相対値で表わしである、縦軸は比抵
抗を示し、単位はにΩ・1である0曲線Aは本発明にお
けるイオン交換器@υの場合で、陰イオン交換樹脂アン
バーライト111Δ410■を充填し・1こときの測1
!結果である。
FIG. 2 is a diagram showing the results of measuring the life of an ion exchange column by the column method shown in Example 2, which will be described later. The horizontal axis shows the effluent as 1, and it is expressed as a relative value with the outflow source where the specific resistance of curve A is 20Ω・1 as 1. The vertical axis shows the specific resistance, and the unit is Ω・1. 0 curve A is the case of the ion exchanger @υ according to the present invention, filled with anion exchange resin Amberlite 111Δ410■.
! This is the result.

曲線Bは従来の混床式イオン交換器の場合を示し1、混
床式イオン交換樹脂アンバーうイトMB−90を充填し
1こときの測定結果である。ここにアンバーライトMl
−13■は、陽イオン交M[fJl?アンバーライトl
K120B■と陰イオン交換樹脂アンバーライトt、t
ta41−との混合物である。第2図において、Mε出
液の比抵抗が20にΩ・1となるまでの流出液量により
イオン交換樹脂の寿命を示す。
Curve B shows the case of a conventional mixed bed type ion exchanger (1), and is the result of one measurement filled with mixed bed type ion exchange resin Amberite MB-90. Amber light Ml here
-13■ is the cation exchange M[fJl? amber light l
K120B■ and anion exchange resin Amberlite t, t
It is a mixture with ta41-. In FIG. 2, the life of the ion exchange resin is shown by the amount of the effluent until the specific resistance of the Mε effluent becomes 20Ω·1.

次に本発明の内容を具体的に説明する実施例1゜2およ
び3を以下に示す。実施例1においては、有機化合物溶
液の加工gを用いた放電加工によって劣化し1こ加工液
のイオン性劣化缶底物を解明するため分析を実施し1こ
。また実施例2においてはカラム法により陰イオン交換
樹脂を充填したイオン交換カラムと混床式イオン交換樹
脂を充填した混床式イオン交換カラムとの寿命測定を実
施し1こ。
Next, Examples 1, 2 and 3 will be shown below to specifically explain the content of the present invention. In Example 1, an analysis was conducted to elucidate the ionic deterioration of the machining fluid caused by electrical discharge machining using an organic compound solution. In addition, in Example 2, the life span of an ion exchange column packed with an anion exchange resin and a mixed bed type ion exchange column packed with a mixed bed type ion exchange resin was measured using a column method.

さらに実施例8においては有機化合物溶液を加工液とす
る放!t2JD工装置によって、陰イオン交換樹月斥を
充填したイオン交換器と混床式イオン交換樹脂を充填し
た混床式イオン交換器との寿命測定を実施しTこ。
Furthermore, in Example 8, an organic compound solution was used as the processing fluid! Using the t2JD equipment, we measured the lifespan of an ion exchanger filled with anion exchanger and a mixed bed ion exchanger filled with mixed bed ion exchange resin.

実施例1 劣化卯工液のイオン性劣化生成物の分析頂上液:■機物
溶液の加工液 ワーク:機械構造用炭紫銅855C 加工条件:標邸運転条件 たたし、比抵抗維持装置は停止の ままとし1こ。
Example 1 Analysis of ionic deterioration products in degraded machining solution Top solution: Machine solution working fluid Work: Charcoal Shido 855C for machine structures Processing conditions: Tablet operating conditions met, resistivity maintenance device stopped One child remains.

加工jl&=約9g 刀O工終了時比抵抗=15にΩ・α 比抵抗:導電率計(東亜電波族) P■:カラス電極PMメータ(堀場製)鉄イオン:原子
吸光光度計(日本シャーレ1し・アー・シュ&I) 陰イオン:イオンクロマトグラフィ(L)lLJNEX
製ノ (3)  分析結果 表1 劣化加工液分析結果 実施例2 カラム法によるイオン交換カラムの寄合測定(1)  
測定方法 カラムに所定のイオン交換樹脂を充填してイオン交換カ
ラムを製作し1こ。カラムの上部から劣化醋工液を流し
ながら一定の流出液量ごとに10ffiAの流出液を分
取して比抵抗を測定した。
Machining jl & = approx. 9g Specific resistance at the end of sword O work = 15Ω・α Specific resistance: Conductivity meter (Toa Radio Group) P■: Crow electrode PM meter (manufactured by Horiba) Iron ion: Atomic absorption photometer (Japan Petri dish) 1 S. A. S. & I) Anion: Ion chromatography (L)lLJNEX
Production (3) Analysis results table 1 Degraded processed liquid analysis results Example 2 Ion exchange column crowding measurement by column method (1)
Measurement method: Prepare an ion exchange column by filling the column with the specified ion exchange resin. While the degraded steel liquor was flowing from the top of the column, 10ffiA of effluent was collected at every fixed amount of effluent, and the specific resistance was measured.

(2)実験条件 カラム:ガラスカラム内径的12.6flイオン交換樹
脂量:全量20m1 イオン交換樹脂 A:陰イオン父換樹脂iアンバーライトIRA410■ B:混床式イオン交換樹脂;アンバーライトMB−30
(w!Iイオン交換樹脂アンバーライトlR129B■
と陰イオン交換樹脂アンバーライトI)LA410■と
の混合物J(3)測定結果 1ull定結果は第2図に示す通りである。
(2) Experimental conditions Column: Glass column internal diameter 12.6 fl Ion exchange resin amount: Total amount 20 m1 Ion exchange resin A: Anion father exchange resin i Amberlite IRA410 B: Mixed bed ion exchange resin; Amberlite MB-30
(w!I ion exchange resin Amberlite lR129B■
and anion exchange resin Amberlite I) LA410■ Mixture J(3) Measurement results The 1ull determination results are as shown in FIG.

実施例8 有機化合物溶液を加工液とする放w、TJa工装置によ
るイオン交換器の寿命測定。
Example 8 Measuring the life of an ion exchanger using a TJa processing device using an organic compound solution as a processing fluid.

(1)  イオン交換器寿命測定 放W!卯工装置:不燃性放電加工機(三菱電機製)比抵
抗維持装置 実験l:第1図に示す本発明の装置であり、イオン交換
器(6)に陰イオン交換樹脂(411)としてアンバー
うイトI凡A410■を充填した。
(1) Ion exchanger life measurement release! Uko equipment: Nonflammable electrical discharge machine (manufactured by Mitsubishi Electric) Specific resistance maintenance equipment Experiment 1: This is the equipment of the present invention shown in Fig. 1, in which the ion exchanger (6) was filled with amber as an anion exchange resin (411). It was filled with A410.

実験l;第3図に示す従来の装置であり、混床式イオン
交換器01)に混床式イオン交換樹脂tatt)として
、アンバーライトMB−8■(陽イオン交換樹脂 アンバーライト1R120B■と陰イ オン交換樹脂アンバーライトIRA 410■との混合物)を充填し1こ。
Experiment 1; This is the conventional apparatus shown in Figure 3, in which Amberlite MB-8■ (cation exchange resin Amberlite 1R120B■) and anion exchange resin tatt) were used in the mixed bed ion exchanger 01). Filled with 1 bottle of ion exchange resin Amberlite IRA 410 (mixture with 410).

加工液−有機化合物溶液の加工液(グリコールと糖との
混合溶液フ ワーク二機械構造用炭素鋼8550 加工条件:Wi市運転条件 寿命測定:加工液の比抵抗が20にΩ・1を維持できな
くなるまでのワーク趣工鳳 を、実験1の値を基1として相対値 で表わしTこ。
Machining fluid - Machining fluid of organic compound solution (mixed solution of glycol and sugar) Carbon steel for mechanical structure 8550 Machining conditions: Wi city operating conditions Life measurement: The specific resistance of the machining fluid becomes 20 and cannot maintain Ω・1. The work performance up to this point is expressed as a relative value using the value of Experiment 1 as the base 1.

(2)  実験結果 表2 イオン交換器寿命測定結果 上記のように構成しTこ本発明の詳細な説明すれば次の
通りである。実施例1に示すように、劣化加工液中のイ
オン性劣化生成物として、陽イオンは酸性を示す水素イ
オンおよび鉄イオンが主成分であり、陰イオンはギ酸イ
オンおよび酢酸イオンの有機酸イオンが主成分である。
(2) Experimental Results Table 2 Ion Exchanger Life Measurement Results A detailed explanation of the present invention, which is constructed as described above, is as follows. As shown in Example 1, as ionic degradation products in the degraded processing fluid, cations are mainly acidic hydrogen ions and iron ions, and anions are organic acid ions such as formate ions and acetate ions. It is the main component.

ま1こ、水の不純物または環境からの汚染物として塩化
物イオンおよび硫酸イオンの無機イオンを微量溶解して
いる。一般にイオンは劣化加工液の比抵抗を下げろ原因
となる。しかし有機酸イオンは、水素イオンと有機酸イ
オンとから成る有機酸を形成している場合は劣化加工液
の比抵抗を著るしく低下させるが、鉄イオンと有機酸イ
オンとが共存して安定な多核錯塩が形成される場合には
劣化加工液の比抵抗を著るしく低下させる原因とはなら
ない。実施例2の第2図において本発明に係わる陰イオ
ン交換樹脂を単独にカラムに充填した場合の測定結果で
ある曲線Aの寿命が、従来の混床式イオン交換樹脂をカ
ラムに充填した場合の測定結果である曲線Bの寿命の約
2.2倍となる理由は次のように説明される。曲線Aの
場合陰イオン交換樹脂は、劣化加工液中に有機酸として
含まれる遊離の有機酸イオンおよび無機陰イオンを水酸
化物イオンと交換して液中から除去し、交換されtこ水
酸化物イオンは液中の水素イオンと反応して水を生成す
ることにより劣化加工液の比抵抗を高くする。しっ)シ
陰イオン交換樹脂単独の場合には劣化加工液中において
鉄イオンと共存して安定な多核錯塩を形成している有機
酸イオンは除去しない。曲線Bの場合混床式イオン交換
樹脂は、その成分である陽イオン交換樹脂が鉄イオンと
有機酸イオンとから形成されている安定な多核鉛塩から
鉄イオンを水素イオンと交換して液中から除去し、交換
されTこ水素イオンは液中の有機酸イオンと反応して有
機酸を生成する。そしてその成分である陰イオン交換樹
脂は生成された有機酸を含めてすへての有機酸イオンお
よび無機陰イオンを水酸化物イオンと交換して除去し、
交換された水酸化物イオンは液中の水素イオンと反応し
・て水を生成することにより劣化加工液の比抵抗を高く
する。即ち曲線Bの場合、曲線Aの場合には除去しない
劣化加工液中で鉄イオンと共存して安定な多核錯塩を形
成している有機酸イオンも除去する1こめに混床式イオ
ン交換樹脂の劣化が促進される。更に混床式イオン交換
樹脂の場合は陰イオン交換樹脂の量が陽イオン交換樹脂
を加えた分tご一1少なくなることも樹脂の寿命を短く
する原因となる。
First, trace amounts of inorganic ions such as chloride ions and sulfate ions are dissolved as impurities in the water or contaminants from the environment. In general, ions cause a decrease in the resistivity of degraded machining fluids. However, when organic acid ions form an organic acid consisting of hydrogen ions and organic acid ions, the specific resistance of the degraded processing fluid decreases significantly, but it becomes stable when iron ions and organic acid ions coexist. If a polynuclear complex salt is formed, it will not cause a significant decrease in the resistivity of the degraded processing fluid. In FIG. 2 of Example 2, the life of curve A, which is the measurement result when the anion exchange resin according to the present invention is packed in the column alone, is the same as that when the conventional mixed bed type ion exchange resin is packed in the column. The reason why the lifespan of curve B, which is the measurement result, is about 2.2 times is explained as follows. In the case of curve A, the anion exchange resin exchanges free organic acid ions and inorganic anions contained as organic acids in the degraded processing fluid with hydroxide ions, removes them from the fluid, and causes the exchanged t hydroxylated The compound ions react with hydrogen ions in the liquid to generate water, thereby increasing the specific resistance of the degraded machining liquid. (Sh) In the case of anion exchange resin alone, organic acid ions that coexist with iron ions to form stable polynuclear complex salts in the degraded processing fluid are not removed. In the case of curve B, the mixed bed ion exchange resin has a cation exchange resin that is a stable polynuclear lead salt formed from iron ions and organic acid ions, and exchanges iron ions with hydrogen ions in the liquid. The hydrogen ions removed and exchanged react with organic acid ions in the liquid to produce organic acids. The anion exchange resin, which is its component, removes all organic acid ions and inorganic anions, including the generated organic acids, by exchanging them with hydroxide ions.
The exchanged hydroxide ions react with hydrogen ions in the liquid to generate water, thereby increasing the specific resistance of the degraded machining fluid. That is, in the case of curve B, the organic acid ions that coexist with iron ions and form stable polynuclear complex salts in the deteriorated processing fluid, which are not removed in the case of curve A, are also removed. Deterioration is accelerated. Furthermore, in the case of a mixed bed type ion exchange resin, the amount of anion exchange resin is reduced by the amount of the cation exchange resin added, which also shortens the life of the resin.

以上の説明から、実施例8の有機化合物溶液を加工液と
する放電加工装置によるイオン交換器の寿命測定におい
て、本発明に係わる実験1の第1図に示すイオン交換器
(6)に陰イオン交換樹脂(411)を充填した場合の
寿命は、従来の方法に係わる実験1(71?、3図に示
す混床式イオン交換器輔旧こ混床式イオン交換樹脂ta
tgを充填しTコ場合の寿命の約2.1倍となり、実機
の運転状態においても実施例2で説明し1コ0ヒ同様の
結果が得られ1こ。
From the above explanation, in the life measurement of the ion exchanger using the electrical discharge machining apparatus using the organic compound solution of Example 8 as the machining fluid, anion exchangers (6) shown in FIG. The lifespan when filled with exchange resin (411) is as follows in Experiment 1 (71?) related to the conventional method.
The lifespan is approximately 2.1 times longer than that when Tg is filled, and the same results as described in Example 2 can be obtained even in the operating state of the actual machine.

なお、上記の説明では、有機化合物溶液R厘工液とした
放t7JLl工装置について示し1こが、本発明はこれ
に限定するものではなく可機化合物乳化液を加工液とじ
に放電加工装置であってもよい。
In addition, in the above explanation, an electric discharge machining device using an organic compound solution R as a machining fluid is shown. However, the present invention is not limited to this, and an electric discharge machining device using an organic compound emulsion as a machining fluid is described. There may be.

〔発明の効果つ 以上のように本発明(こよれば、比抵抗維持装置を構成
するイオン交換器に陰イオン交換樹脂を単独に充填L−
1こので、比抵抗を著るしく低下させている陰イオンの
みが除去されて比抵抗のa下にほとんど関係し、ない安
定な多核錯塩は除去さね、ない1こめ、長寿命のイオン
交換器が得られることによリランニングコストを低減で
きるという顕著な効果がある、 4、内面0り晒単な説明 第1図は、本発明の実施例を示す説明図、第2図はカラ
ム法によるイオン交換カラムの寿命測定結果を示す線図
、第8図は放電加工装置の従来の加工液供給装置の一例
を示す説明図である。
[Effects of the Invention] As described above, the present invention (according to which the ion exchanger constituting the resistivity maintenance device is filled with an anion exchange resin alone)
1. In this way, only the anions that significantly reduce the resistivity are removed, and the stable polynuclear complex salts that are almost related to the lower resistivity are removed. 1. In addition, long-life ion exchange This has the remarkable effect of reducing rerunning costs by obtaining a container. 4. Simple explanation of inner surface zeroing Figure 1 is an explanatory diagram showing an embodiment of the present invention, and Figure 2 is a column method. FIG. 8 is an explanatory diagram showing an example of a conventional machining fluid supply device for an electric discharge machining apparatus.

図において、(1)は比抵抗維持装置、(イ)は比抵抗
センサ、(至)は比抵抗制御装置、(至)はポンプ8、
(6)はイオン交換器、(4117は陰イオン交換樹脂
である− なお各図中、同一符号は同一または相当部分を示すもの
とする、
In the figure, (1) is a resistivity maintenance device, (a) is a resistivity sensor, (to) is a resistivity control device, (to) is a pump 8,
(6) is an ion exchanger, (4117 is an anion exchange resin - In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 有機化合物溶液を加工液とする放電加工装置において、
比抵抗維持装置を構成するイオン交換器に、陰イオン交
換樹脂を単独に充填したことを特徴とする放電加工装置
In electrical discharge machining equipment that uses an organic compound solution as the machining fluid,
An electric discharge machining device characterized in that an ion exchanger constituting a resistivity maintenance device is solely filled with an anion exchange resin.
JP1806487A 1987-01-28 1987-01-28 Electric discharge machining device Pending JPS63185526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1806487A JPS63185526A (en) 1987-01-28 1987-01-28 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1806487A JPS63185526A (en) 1987-01-28 1987-01-28 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JPS63185526A true JPS63185526A (en) 1988-08-01

Family

ID=11961251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1806487A Pending JPS63185526A (en) 1987-01-28 1987-01-28 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS63185526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022094A1 (en) * 1992-04-28 1993-11-11 Sodick Co., Ltd. Method of ion exchange treatment in the production and regeneration of aqueous electrical discharge machining fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022094A1 (en) * 1992-04-28 1993-11-11 Sodick Co., Ltd. Method of ion exchange treatment in the production and regeneration of aqueous electrical discharge machining fluid
US5464959A (en) * 1992-04-28 1995-11-07 Sodick Co., Ltd. Ion exchange treatment method in producing and recycling aqueous EDM fluid

Similar Documents

Publication Publication Date Title
SU543333A3 (en) Ion Separation Method
Huang et al. Activated carbon for treatment of cadmium wastewater
CN104843789A (en) Method for purifying vanadium pentoxide
CN104495877A (en) Method for removing trace quantity of iodine from ion membrane caustic soda raw material brine
JPS63185526A (en) Electric discharge machining device
JP2009090256A (en) Method for treating waste liquid containing borate and alkali metal iodide salt and apparatus therefor
US4366090A (en) Process for the preparation of adsorbent materials
JPS62264820A (en) Electric discharge machine
DE3826407A1 (en) METHOD FOR CLEANING ALKALINE METAL HALOGENIDE LYES, WHICH CONTAIN ALUMINUM AS IMPURITIES
EP0136692A2 (en) Ion retardation process for separating salts in aqueous streams
JPH0522878B2 (en)
JP4633272B2 (en) Treatment method for boron-containing wastewater
JP3674732B2 (en) Method for purifying zirconium and / or hafnium compounds
Macdonald et al. Spectrophotometric determination of scandium with anthrarufin-2, 6-disulfonic acid (disodium salt)
Qureshi et al. Cation exchange studies of titanium (4+), vanadium (5+), iron (3+), niobium (5+), and uranyl (2+), ions in formic, oxalic, tartaric, and citric acid media
US5087373A (en) Process for removing titanium and zirconium from aqueous solutions
JP2001335315A (en) Apparatus and method for refining boron eluent
Abbay et al. Chromium (III)-citrate complexes: A study using ion exchange and isotachophoresis
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
US3043867A (en) Method for the purification of aminocarboxylic acids
Pavel et al. New directions of research and development in the field of nanotechnology for the creation and application of inorganic composite materials part II
SU1435280A1 (en) Method of producing inorganic anion exchanger aat-1
RU2006475C1 (en) Method of antimonous acid concentration raising in sulfuric acid solution
Brooksbank et al. LOW-RADIOACTIVITY-LEVEL WASTE TREATMENT. PART II. PILOT PLANT DEMONSTRATION OF THE REMOVAL OF ACTIVITY FROM LOW-LEVEL PROCESS WASTES BY A SCAVENGING-PRECIPITATION ION-EXCHANGE PROCESS
JPH0716563A (en) Separation of phosphate ion from phosphate ion-containing aqueous solution