JPS63185446A - Production of solid adsorbent - Google Patents

Production of solid adsorbent

Info

Publication number
JPS63185446A
JPS63185446A JP1678587A JP1678587A JPS63185446A JP S63185446 A JPS63185446 A JP S63185446A JP 1678587 A JP1678587 A JP 1678587A JP 1678587 A JP1678587 A JP 1678587A JP S63185446 A JPS63185446 A JP S63185446A
Authority
JP
Japan
Prior art keywords
solid adsorbent
silicon dioxide
conductive substance
thermally conductive
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1678587A
Other languages
Japanese (ja)
Other versions
JPH0426896B2 (en
Inventor
Yasuo Yonezawa
泰夫 米澤
Masao Matsushita
松下 昌生
Kenzo Oku
健三 奥
Hiroki Nakano
中野 博樹
Shinichi Okumura
奥村 信一
Motoji Yoshihara
基司 吉原
Akiyoshi Sakai
酒井 章義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYODO KUUCHIYOUKI KK
Original Assignee
NISHIYODO KUUCHIYOUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYODO KUUCHIYOUKI KK filed Critical NISHIYODO KUUCHIYOUKI KK
Priority to JP1678587A priority Critical patent/JPS63185446A/en
Publication of JPS63185446A publication Critical patent/JPS63185446A/en
Publication of JPH0426896B2 publication Critical patent/JPH0426896B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the thermal conductivity of single yarn grains when prepared in the form of grains by adding a heat conductive substance in the form of powder, etc., to silicon dioxide xerogel, agitating and mixing both materials, and then drying, dehydrating, and caking the mixture to obtain the yarn. CONSTITUTION:An acid 3 is added to an aq. soln. 2 of sodium silicate to neutralize the soln., and the obtained material is sufficiently washed with water to remove impurities and then dehydrated to form the xerogel of silicon dioxide 4. The xerogel of silicon dioxide 4 is also called silica gel. A requisite amt. of the powdery, granular, or acicular heat-conductive substance 5 is added to the gel, sufficiently agitated, and mixed to dispersedly mix the substance 5 into the gel of silica dioxide 4. The mixture of the silicon dioxide 4 and the substance 5 is then heated at high temp., dehydrated,dried, and caked to obtain the solid deodorant 6 of the desired shape.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱伝導率を高めた固体吸着剤の製造方法に関し
、特に、吸着剤の冷媒吸着作用により冷凍運転を行う吸
着式冷凍機に用いて好適な前記固体吸着剤の製造方法に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a solid adsorbent with increased thermal conductivity, and in particular to a method for producing a solid adsorbent that is used in an adsorption refrigerator that performs refrigeration operation by the refrigerant adsorption effect of the adsorbent. The present invention also relates to a method for producing the solid adsorbent, which is suitable for the purpose of manufacturing the solid adsorbent.

(従来の技術) 固体吸着剤の冷媒吸脱着性能を利用し、冷熱を発生させ
る吸着式冷凍機は、低温の工場廃熱を利用出来るばかり
でなく、コンプレッサタイプの冷凍機に比べてポンプな
どの可動部分が少なく、装置コストが安価で、かつ、運
転コストを抑えることが出来ると共に、運転騒音も小さ
いなどの大きな利点がある。
(Prior technology) Adsorption refrigerators, which generate cold heat by utilizing the refrigerant adsorption and desorption performance of solid adsorbents, not only can utilize low-temperature factory waste heat, but also require less energy from pumps and other equipment than compressor-type refrigerators. It has great advantages such as fewer moving parts, lower equipment cost, lower operating costs, and lower operating noise.

ところで、この種従来の吸着式冷凍機に用いられている
固体吸着剤としては、天然ゼオライトやシリカゲル等の
無機系固体吸着剤が一般的であるが、これらの固体吸着
剤は、それ自身の熱伝導率が金属に比べて温かに低いた
め、冷媒の脱着時における粒子間の熱伝達速度が遅く、
例えば、固体吸着剤をクロスフィンコイルのフィン間隙
や保持容器内に充填して加熱脱着を行う場合は、固体吸
着剤自体が却って断熱材として作用し、充填空間の中央
に位置する固体吸着剤の加熱が阻害されて脱着サイクル
時間が極めて長くなる問題があった。
Incidentally, the solid adsorbents used in this type of conventional adsorption refrigerator are generally inorganic solid adsorbents such as natural zeolite and silica gel, but these solid adsorbents do not absorb their own heat. Because the conductivity is lower than that of metals, the rate of heat transfer between particles during refrigerant desorption is slow;
For example, when thermal desorption is performed by filling solid adsorbent into the fin gaps of a cross-fin coil or inside a holding container, the solid adsorbent itself acts as a heat insulating material, and the solid adsorbent located in the center of the filling space is heated. There was a problem that heating was inhibited and the desorption cycle time became extremely long.

なお、かかる不都合を克服するため、天然ゼオライト等
の固体吸着剤を粉末状に粉砕し、これに熱伝導率の高い
金属、例えば銅の粉末を混合して貯蔵タンクに収蔵し、
固体吸着剤の加熱速度の上昇および効率の向上を図った
冷却システムが提案されている。(特開昭58−190
3062号公報参照) (考案が解決しようとする問題点) ところが、上述の如き固体吸着剤粉末と銅粉末とを混合
して吸着剤の熱伝達を良くしようとするものは、従来の
粒径l〜3mの粒状の固体吸着剤と比べて吸着効率の面
ですぐれている反面、クロスフィンチューブあるいはエ
ロフィンチューブなどのフィン間隙に充填する場合にお
ける吸着剤の保持が困難になるなど取扱いの面で問題が
多い。
In order to overcome this inconvenience, a solid adsorbent such as natural zeolite is ground into powder, mixed with powder of a metal with high thermal conductivity, such as copper powder, and stored in a storage tank.
Cooling systems have been proposed that increase the heating rate and efficiency of solid adsorbents. (Unexamined Japanese Patent Publication No. 58-190
(Refer to Publication No. 3062) (Problems to be solved by the invention) However, in the case of mixing solid adsorbent powder and copper powder as described above to improve the heat transfer of the adsorbent, the conventional particle size l Although it has superior adsorption efficiency compared to ~3m granular solid adsorbent, it has some handling issues such as difficulty in retaining the adsorbent when filling the gaps between the fins of cross-fin tubes or Elofin tubes. There are many problems.

また、この様な混合状態の固体吸着剤は、吸着剤の粒子
と金属粒子とが微視的に観察すると点接触しているにす
ぎず、両者間の熱伝達率が低いため、金属粉末り混合割
合を太き(する必要があり、その分固体吸着剤の混合割
合が小さく、吸着量が低減すると共に、製造コストが高
くなる問題があり、これらの点について早急に改善すべ
き余地が残されていた。
In addition, in such a mixed solid adsorbent, the adsorbent particles and metal particles are only in point contact when observed microscopically, and the heat transfer coefficient between them is low, so metal powder It is necessary to increase the mixing ratio, and the mixing ratio of the solid adsorbent is correspondingly small, which reduces the amount of adsorption and increases manufacturing costs.There is still room for urgent improvement in these points. It had been.

本発明はかかる従来の吸着式冷凍機に用いられる固体吸
着剤の熱伝導率を向上すべくなされたもので、シリカゲ
ルからなる固体吸着剤中に所要量の粉末状、粒状あるい
は針状の熱伝導性物質を分散混合状態下で混入し、該熱
伝導性物質と前記固体吸着剤との接触面積を大ならしめ
ることにより、少量の熱伝導性物質の添加によって固体
吸着剤の加熱速度を上昇させ、もって前記問題点を解消
せんとするものである。
The present invention was made to improve the thermal conductivity of the solid adsorbent used in such conventional adsorption refrigerators. The heating rate of the solid adsorbent can be increased by adding a small amount of the thermally conductive substance by mixing the thermally conductive substance in a dispersed mixing state and increasing the contact area between the thermally conductive substance and the solid adsorbent. , it is an attempt to solve the above-mentioned problems.

(問題点を解決するための手段) 第1図は本発明製造方法の工程説明図である。(Means for solving problems) FIG. 1 is a process explanatory diagram of the manufacturing method of the present invention.

まず、第1図(イ)に示す如くケイ酸ナトリウム水溶液
(2)に酸(3)を加えて中和させ、これをよく水洗し
て不用物質を除去し、脱水してキセロゲル状の二酸化ケ
イ素(4)を生成する。このようにして生成されたキセ
ロゲル状の二酸化ケイ素(4)はシリカゲルとも称され
、ゼリー状の沈澱物として生成される。これに第1図(
ロ)の如く粉末状1粒状又は針・状の熱伝導性物質(5
)を所要量添加し、よく攪拌混合して該熱伝導性物質(
5)をゲル状二酸化ケイ素(4)中に分散状態下で混入
する。次に、二酸化ケイ素(4)および熱伝導性物質(
5)の混合物を高温で加熱脱水し、乾燥させて第1図(
ハ)のような所要形状の固体吸着剤(6)として固化成
形する。
First, as shown in Figure 1 (a), an acid (3) is added to an aqueous sodium silicate solution (2) to neutralize it, the solution is thoroughly washed with water to remove unnecessary substances, and then dehydrated to form a xerogel-like silicon dioxide. (4) is generated. The xerogel-like silicon dioxide (4) thus produced is also called silica gel, and is produced as a jelly-like precipitate. In addition to this, Figure 1 (
B) A thermally conductive substance in the form of a powder, a grain, or a needle (5
) was added in the required amount and stirred and mixed well to form the thermally conductive substance (
5) is mixed into gelled silicon dioxide (4) in a dispersed state. Next, silicon dioxide (4) and a thermally conductive substance (
The mixture of step 5) was dehydrated by heating at high temperature and dried to form the mixture shown in Figure 1 (
It is solidified and molded into a solid adsorbent (6) in the desired shape as shown in c).

なお、前記熱伝導性物質(5)としては、通常、比較的
安価な銅が使用される。また、吸着物質に対する該熱伝
導性物質(5)の混入割合は、8乃至15重量パーセン
トに設定するのが好適である。
Note that relatively inexpensive copper is usually used as the thermally conductive material (5). Further, the mixing ratio of the thermally conductive substance (5) to the adsorbent substance is preferably set to 8 to 15 weight percent.

(作用) このようにして得られた固体吸着剤(6)は、第2図に
示す如く熱伝導性物質(5)がシリカゲルの如き吸着物
質(4)中に略々均一な分散状態下で混在し、その表面
全体が吸着物質(4)と接し、あるいは熱伝導性物質(
5)の一部が固体吸着剤(6)の表面に露出しているた
め、該固体吸着剤(6)をクロスフィンチューブやエロ
フィンチューブのフィン間隙あるいは保持容器内に多数
充填した場合は、熱伝導性物質(5)の存在により、固
体吸着剤(6)内での熱伝導速度が向上すると共に、固
体吸着剤(6)の粒子相互の熱伝導速度も大きくなるた
め、充填空間の中央部に位置する固体吸着剤(6)への
熱伝達速度が太き(なり、加熱脱着に要するサイクルタ
イムが大巾に短縮されることになる。
(Function) The solid adsorbent (6) thus obtained has a thermally conductive substance (5) dispersed almost uniformly in an adsorbent substance (4) such as silica gel, as shown in Fig. 2. The entire surface is in contact with the adsorbent material (4), or the thermally conductive material (4)
Since a part of 5) is exposed on the surface of the solid adsorbent (6), when a large number of solid adsorbents (6) are filled in the fin gaps of a cross fin tube or an erotic fin tube or in a holding container, Due to the presence of the thermally conductive substance (5), the rate of heat conduction within the solid adsorbent (6) increases, and the rate of heat conduction between particles of the solid adsorbent (6) also increases. The heat transfer rate to the solid adsorbent (6) located in the upper part is increased, and the cycle time required for thermal desorption is greatly shortened.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

第1図はシリカゲル中に所要量の銅粉末を混入し、粒状
の固体吸着剤を製造する場合の工程を示す説明図である
FIG. 1 is an explanatory diagram showing a process for producing a granular solid adsorbent by mixing a required amount of copper powder into silica gel.

まず、容器(1)内にケイ酸ナトリウム水溶液(2)を
入れ、これに硫酸(3)を加えて中和させると乳白色半
透明のゼリー状の沈澱が生じる。これが水ガラスと称さ
れるケイ酸であって、一般式(SiOz)m (H2O
) nで示される。
First, an aqueous sodium silicate solution (2) is placed in a container (1), and sulfuric acid (3) is added to neutralize the solution to form a milky white translucent jelly-like precipitate. This is silicic acid called water glass, and has the general formula (SiOz)m (H2O
) Indicated by n.

この間の反応は次式の通りである。The reaction during this time is as shown in the following equation.

NazSiOz+HzSOt=NaxSO4411zS
iOs  ” ’ (1)次に、生成された液体をよく
水洗し500℃前後で脱水するとキセロゲル状の二酸化
ケイ素(4)が得られるから、これに100メツシユ程
度の粒径をもつ銅粉(5)を12重量パーセント前後加
えてよく攪拌する。
NazSiOz+HzSOt=NaxSO4411zS
iOs '' (1) Next, the generated liquid is thoroughly washed with water and dehydrated at around 500°C to obtain xerogel-like silicon dioxide (4). ) was added at around 12% by weight and stirred well.

このようにして得られた二酸化ケイ素(4)と銅粉(5
)との混合液を500℃以上の高温で加熱し、脱水乾燥
させると固体シリカゲル中に銅粉(5)が分散状態で混
入した熱伝導率の高い固体吸着剤(6)が得られる。
Silicon dioxide (4) and copper powder (5) thus obtained
) is heated at a high temperature of 500° C. or higher and dehydrated and dried to obtain a solid adsorbent (6) with high thermal conductivity in which copper powder (5) is mixed in a dispersed state in solid silica gel.

なお、前記二酸化ケイ素(4)と銅粉(5)との混合液
を強熱すると銅粉(5)を含有した粉末状の無水二酸化
ケイ素が得られるから、これを型によりプレス成形すれ
ば、任意の形状の固体吸着剤(6)粒子を製造すること
が出来る。
Incidentally, when the mixture of silicon dioxide (4) and copper powder (5) is ignited, powdered anhydrous silicon dioxide containing copper powder (5) is obtained, so if this is press-molded with a mold, Solid adsorbent (6) particles of any shape can be produced.

第3図は本発明によって製造された固体吸着剤と従来の
固体吸着剤の熱伝導速度を比較するグラフである。
FIG. 3 is a graph comparing the heat transfer rates of a solid adsorbent prepared according to the present invention and a conventional solid adsorbent.

実験は、第4図に示す如<100℃の加熱壁(7)に接
するよう粒状固体吸着剤(6)を充填し、該加熱壁(7
)から4.5cIm離れた計測点(P)での温度上昇を
記録した。
In the experiment, the granular solid adsorbent (6) was filled so as to be in contact with the heating wall (7) at <100°C, as shown in Fig. 4.
) The temperature rise at a measurement point (P) 4.5 cIm away from the point (P) was recorded.

第3図において、(A)は銅粉のみの場合、(B)はシ
リカゲル粒子に銅粉を80重量パーセント混合した場合
、(C)は銅粉を70重量パーセント混合した場合、(
D)は銅粉を50重量パーセント混合した場合、(E)
はシリカゲル粒子のみの場合である。
In Fig. 3, (A) is a case where only copper powder is used, (B) is a case where 80 weight percent of copper powder is mixed with silica gel particles, and (C) is a case where 70 weight percent of copper powder is mixed with silica gel particles.
D) is when 50% by weight of copper powder is mixed, (E)
is for silica gel particles only.

上記のグラフから分かるように本発明方法によって製造
された固体吸着剤は、銅粉を12重量パーセント混入し
ているだけである↓こも拘らず、約60重量パーセント
の銅粉を混合した場合に相当する熱伝達速度を示してい
る。従って、その分、銅粉の量を節約することが可能と
なり、製造コストを低減することが出来ると共に、固体
吸着剤(6)は、その形状を任意に設定出来るため、固
体吸着剤(6)間に形成される冷媒通路の断面積を適宜
調整し、冷媒と吸着剤との接触機会を増加し、吸着性能
の向上を達成し得ると共に、脱着工程時には固体吸着剤
(6)内での熱伝導および固体吸着剤(6)粒子間での
熱伝達率が高く、加熱がスムースに行われるため、脱着
に要する時間が大巾に短縮される。
As can be seen from the above graph, the solid adsorbent produced by the method of the present invention contains only 12% by weight of copper powder. It shows the heat transfer rate. Therefore, it is possible to save the amount of copper powder and reduce manufacturing costs, and since the shape of the solid adsorbent (6) can be set arbitrarily, the solid adsorbent (6) By appropriately adjusting the cross-sectional area of the refrigerant passage formed between the refrigerant and the adsorbent, it is possible to increase the contact opportunities between the refrigerant and the adsorbent, thereby improving the adsorption performance. Since the conduction and heat transfer coefficient between particles of the solid adsorbent (6) are high and heating is performed smoothly, the time required for desorption is greatly shortened.

なお、上記実施例においては、熱伝導性物質として銅粉
を使用した場合について説明したが、必要に応じて吸着
物質内に粒径0.5 u以下の銅粒子や太さ0.1〜1
flの短針状の銅線を混入して比較的大きな塊状の固体
吸着剤を製造し、これを所要の大きさの粒子状に粉砕す
ることも可能であり、また、銅の代わりとして他の金属
を使用することも可能である。
In the above example, a case was explained in which copper powder was used as the thermally conductive material, but if necessary, copper particles with a particle size of 0.5 μ or less or a thickness of 0.1 to 1
It is also possible to produce a solid adsorbent in the form of a relatively large lump by mixing fl short needle-shaped copper wire, and then pulverize it into particles of the required size.It is also possible to use other metals as a substitute for copper. It is also possible to use

(発明の効果) 以上詳細に説明した如く、本発明の製造方法は、ケイ酸
ナトリウム水溶液を酸により中和し、水洗脱水して得ら
れたキセロゲル状の二酸化ケイ素に粉末状、粒状または
針状の熱伝導性物質を添加し、撹拌混合した後、乾燥脱
水を行い、前記熱伝導性物質の分散混合状態下において
固化成形するものであり、これによって熱伝導性物質の
表面全体が吸着物質(シリカゲル)と接触し、この間の
熱伝達率が飛躍的に向上するため、固体吸着物質を粒子
状に形成した場合における、単体粒子の熱伝導率が高く
、脱着時の加熱速度および吸着時の冷却速度が顕著に大
きくなる。従って、本発明方法によって得られた固体吸
着剤を吸着式冷凍機に使用した場合は、吸脱着サイクル
タイムが大巾に短縮され、単位時間当たりの出力が増大
するというすぐれた効果を発揮する。
(Effects of the Invention) As explained above in detail, the manufacturing method of the present invention is to neutralize an aqueous sodium silicate solution with an acid, wash and dehydrate the resulting xerogel-like silicon dioxide, and add powder, granules, or needles to the After adding a thermally conductive substance, stirring and mixing, drying and dehydration are performed, and the thermally conductive substance is solidified and molded in a dispersed and mixed state, whereby the entire surface of the thermally conductive substance is covered with the adsorbent ( silica gel), and the heat transfer coefficient during this period increases dramatically, so when the solid adsorbent is formed into particles, the thermal conductivity of the single particle is high, and the heating rate during desorption and cooling during adsorption are high. The speed increases significantly. Therefore, when the solid adsorbent obtained by the method of the present invention is used in an adsorption refrigerator, the adsorption/desorption cycle time is greatly shortened and the output per unit time is increased, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法の工程説明図、第2図は本発明
方法によって得られる固体吸着剤の断面図、第3図は本
発明方法によって得られる固体吸着剤の熱移動速度と従
来の固体吸着剤の熱移動速度とを比較したグラフ、第4
図は吸着剤の熱伝達速度計測モデルの概要図である。 (2)・・・ケイ酸ナトリウム水溶液、(3)・・・酸
(硫酸)、 (4)・・・二酸化ケイ素、 (5)・・・熱伝導性物質(銅粉)、 (6)・・・固体吸着剤。
FIG. 1 is a process explanatory diagram of the production method of the present invention, FIG. 2 is a cross-sectional view of the solid adsorbent obtained by the method of the present invention, and FIG. 3 is a diagram showing the heat transfer rate of the solid adsorbent obtained by the method of the present invention and the conventional Graph comparing heat transfer rate of solid adsorbent, 4th
The figure is a schematic diagram of the adsorbent heat transfer rate measurement model. (2)...Sodium silicate aqueous solution, (3)...Acid (sulfuric acid), (4)...Silicon dioxide, (5)...Thermal conductive material (copper powder), (6)... ...Solid adsorbent.

Claims (1)

【特許請求の範囲】 1、ケイ酸ナトリウム水溶液を酸により中和し、水洗脱
水して得られたキセロゲル状の二酸化ケイ素に粉末状、
粒状または針状の熱伝導性物質を添加し、攪拌混合した
後、乾燥脱水を行い、前記熱伝導性物質の分散混合状態
下において固化成形せしめることを特徴とする固体吸着
剤の製造方法。 2、熱伝導性物質が銅である特許請求の範囲第1項記載
の固体吸着剤の製造方法。 3、熱伝導性物質が吸着物質中に8乃至15重量パーセ
ント混入される特許請求の範囲第1項又は第2項記載の
固体吸着剤の製造方法。
[Claims] 1. A xerogel-like silicon dioxide obtained by neutralizing an aqueous sodium silicate solution with an acid, washing with water and dehydrating the powder,
A method for producing a solid adsorbent, which comprises adding a granular or acicular thermally conductive substance, stirring and mixing, followed by drying and dehydration, and solidifying and molding the thermally conductive substance in a dispersed and mixed state. 2. The method for producing a solid adsorbent according to claim 1, wherein the thermally conductive substance is copper. 3. The method for producing a solid adsorbent according to claim 1 or 2, wherein the thermally conductive substance is mixed in the adsorbent material in an amount of 8 to 15% by weight.
JP1678587A 1987-01-26 1987-01-26 Production of solid adsorbent Granted JPS63185446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1678587A JPS63185446A (en) 1987-01-26 1987-01-26 Production of solid adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1678587A JPS63185446A (en) 1987-01-26 1987-01-26 Production of solid adsorbent

Publications (2)

Publication Number Publication Date
JPS63185446A true JPS63185446A (en) 1988-08-01
JPH0426896B2 JPH0426896B2 (en) 1992-05-08

Family

ID=11925839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1678587A Granted JPS63185446A (en) 1987-01-26 1987-01-26 Production of solid adsorbent

Country Status (1)

Country Link
JP (1) JPS63185446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143558A (en) * 1990-10-02 1992-05-18 Daikin Ind Ltd Adsorption heat exchanger and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143558A (en) * 1990-10-02 1992-05-18 Daikin Ind Ltd Adsorption heat exchanger and manufacture thereof

Also Published As

Publication number Publication date
JPH0426896B2 (en) 1992-05-08

Similar Documents

Publication Publication Date Title
Zhao et al. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures
CN105195068A (en) Preparation method of modified aerosil-based composite phase-change material
Jin et al. Enhancement of thermal conductivity by graphene as additive in lauric-stearic acid/treated diatomite composite phase change materials for heat storage in building envelope
Fujioka et al. Composite reactants of calcium chloride combined with functional carbon materials for chemical heat pumps
CN105586012B (en) A kind of aliphatic acid/PERFORMANCE OF MODIFIED VERMICULITE composite phase-change energy storage material and preparation method thereof
CN110305635A (en) A kind of forming heat accumulating and preparation method thereof
CN103666380B (en) A kind of preparation method of porous medium composite phase change energy-storing particle
CN103911121A (en) Nanometer molten binary nitrate heat-transfer heat-storage medium and preparation method thereof
CN104152114A (en) Preparation method of gypsum and clay composite phase-change energy storing material
CN101638237B (en) Method for quickly preparing silicondioxlde aerogel
Grekova et al. Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 5. Designing the composite adsorbent for ice makers
Yan et al. A critical review of salt hydrates as thermochemical sorption heat storage materials: Thermophysical properties and reaction kinetics
CN111750565B (en) Cooling assembly for electronic product or electric equipment
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
CN100494306C (en) High heat conduction and figuration composite phase-changing material and preparation method thereof
JPS63185446A (en) Production of solid adsorbent
He et al. Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery
CN101974313B (en) Phase change thermal storage material and manufacturing method thereof
CN108504335A (en) A kind of phase-change material and its processing technology for air-conditioning
Wang et al. A Review on Microencapsulated Phase‐Change Materials: Preparation, Photothermal Conversion Performance, Energy Storage, and Application
CN102614853A (en) Two-step preparation method for biomass material-based high-performance adsorbent
Zhu et al. Mechanically strong hectorite aerogel encapsulated octadecane as shape-stabilized phase change materials for thermal energy storage and management
Zhao et al. Advances in Nanoclay‐Based Form Stable Phase Change Materials: A Review
CN110770523B (en) Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same
CN100506942C (en) Material for storing heat of phase change in low temperature, and preparation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term