JPS63185291A - Scanning line interpolation circuit - Google Patents

Scanning line interpolation circuit

Info

Publication number
JPS63185291A
JPS63185291A JP62016076A JP1607687A JPS63185291A JP S63185291 A JPS63185291 A JP S63185291A JP 62016076 A JP62016076 A JP 62016076A JP 1607687 A JP1607687 A JP 1607687A JP S63185291 A JPS63185291 A JP S63185291A
Authority
JP
Japan
Prior art keywords
circuit
signal
output
scanning
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62016076A
Other languages
Japanese (ja)
Inventor
Kazumasa Matsui
松井 一征
Masahiko Achiha
征彦 阿知葉
Kazuo Ishikura
石倉 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62016076A priority Critical patent/JPS63185291A/en
Publication of JPS63185291A publication Critical patent/JPS63185291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Television Systems (AREA)

Abstract

PURPOSE:To improve the picture quality of a picture field with a motion by separating an input television signal into the signal with a small temporal change and the signal with the large temporal change, by means of a filter containing a time axis direction, and synthesiz ing the former being interpolated by a customary technology, and the latter being only time- compressed without an interpolation. CONSTITUTION:A difference between the output of a two-dimensional filter 13 and a delayed output is obtained by a difference circuit 30, and at the same time, the output of the filter 13 is added to the temporally low band component of the input signal from a delay circuit 12 by a summation circuit 31. The output of the difference circuit 30 is the temporally and spatially high frequency component of the changing component of the picture field, and is given to a time compression circuit 32. The signal that the temporally and spatially high frequency component is subtracted from the input signal (r) of the output of the summation circuit 31, is interpolated by a customary interlacing scanning-progressive scanning converting interpolation circuit 36. The outputs from the time compression circuit 32 and the interpolation circuit 36 are summed by the summation circuit 51, and come to be the signal (r') which is interpolated by the progressive scanning. Accordingly, the number of scanning lines can be converted without the interpolation of a signal component or the like corresponding to the temporal change of the picture field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、テレビジョン画像の走査線補間回路に係!0
.%に飛越走査のテレビジョン信号を順次走査のテレビ
ジョン信号に変換するのに好適な走査線補間回路に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a scanning line interpolation circuit for television images! 0
.. The present invention relates to a scanning line interpolation circuit suitable for converting an interlaced television signal into a progressive scanning television signal.

〔従来の技術〕[Conventional technology]

従来、現行放送方式のように飛越走査されているテレビ
ジョン信号を順次走査に変換して表示する技術では1%
開昭61−12185に記載されているように、各フィ
ルドで送られて来ない走査線の信号を画面の動きに応じ
て前フィルドの走査線の信号または前後のフィルドの走
査線の信号の平均と上下の走査線の信号の平均と切換え
たり荷重を変えて平均することにより補間して発生させ
てぃた。
Conventionally, technology that converts interlaced scanning television signals into progressive scanning as in the current broadcasting system and displays them requires only 1%
As described in 1982-12185, the signals of the scanning lines that are not sent in each field are calculated by averaging the signals of the scanning lines of the previous field or the signals of the scanning lines of the preceding and following fields according to the movement of the screen. It was generated by interpolation by switching and averaging the signals of the upper and lower scanning lines, or by changing the load and averaging.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、画面が動いた場合に用いられる上下
走査線の平均による補間において、フィルド間の走査線
間隔と画面の横縞の間隔とがほぼ一致すると補間後の画
面がフィルド毎に一面に明るさを交代させることになり
、解像度が低下したりフリッカ−が目立つなどの画質劣
化の問題があった。
In the above conventional technology, in interpolation by averaging the upper and lower scanning lines used when the screen moves, if the scanning line interval between fields and the interval of horizontal stripes on the screen almost match, the screen after interpolation becomes brighter for each field. This resulted in problems with image quality deterioration, such as lower resolution and noticeable flicker.

したがって1本発明の目的は、飛越走査のテレビジョン
信号を補間して順次走査のテレビジョン信号に変換して
も動画像の解像度低下やフリッカ−等の画質劣化が生じ
ない走査線補間回路を提供することにある。
Therefore, one object of the present invention is to provide a scanning line interpolation circuit that does not cause image quality deterioration such as a reduction in the resolution of moving images or flicker even when interpolating an interlaced scanning television signal and converting it into a progressive scanning television signal. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記本発明の目的は、入力テレビジョン信号を時間軸方
向を含むp波器により時間的変化が少ない信号と時間的
変化が大きい信号に分け、前者を従来技術により補間し
、後者を補間せず時間圧縮たけ行なって補間された前者
と合成することにより達成される。
The object of the present invention is to divide an input television signal into a signal with little temporal variation and a signal with large temporal variation by using a p-wave filter including the time axis direction, interpolate the former by the conventional technique, and do not interpolate the latter. This is achieved by performing time compression and combining with the interpolated former.

〔作用〕[Effect]

上記本発明の補間によれば、画面の動きの信号成分の多
くが等制約に順次走査の画面上で飛越走査となるので、
細かい横縞の動きがあっても解像でき、かつ、フリッカ
−が増大しないなど動きのめる画面の画質が改善される
According to the interpolation of the present invention, many of the signal components of screen movement are interlaced on a screen that is sequentially scanned with equal constraints.
Even if there is a movement of small horizontal stripes, it can be resolved, and the image quality of the screen is improved, such as without increasing flicker.

〔実施例〕〔Example〕

以下1本発明をカラーテレビジョンに適用した一実施例
を図面を引用して説明する。
An embodiment in which the present invention is applied to a color television will be described below with reference to the drawings.

第1図は1本発明による補間回路の一実施例の全体の構
成を示す図面である。第1図において。
FIG. 1 is a diagram showing the overall configuration of an embodiment of an interpolation circuit according to the present invention. In FIG.

テレビジョンカメラやテレビジョン受信機からの飛越走
査のカンマ補正された赤、緑、宵の原色信号V正、v’
η、V百は、同一の補間回路IR。
Comma-corrected comma-corrected red, green, and evening primary color signals from television cameras and television receivers V positive, v'
η and V100 are the same interpolation circuit IR.

1o、1Bに与えられる。補間回路1a、  1a。1o, 1B. Interpolation circuit 1a, 1a.

IBの構成は児く同一で良いので、原色信号y”E用の
補間回路lRについて説明する。
Since the configuration of IB may be almost the same, the interpolation circuit 1R for the primary color signal y''E will be explained.

補間回路1dに2いて、入力原色信号Vπは。In the interpolation circuit 1d, the input primary color signal Vπ is.

非線形変換回路2によって人間の眼の感覚において線形
な信号1゜<v’π7ンに近似された信号rに変換され
る。この変換は、アナログ処理ではダイオードなどの非
直線脣性によυ、ディジタル処理ではROM (リード
 オンリー メモリ)を用いた変換などにより実現でき
る。変換された原色信号rは、遅延出力も備えた時間F
波器3に入力される。遅延出力は、F波による遅れを補
償した入力信号を出力する。
The nonlinear conversion circuit 2 converts the signal r into a signal r that is approximated by the linear signal 1°<v'π7 in the sense of the human eye. This conversion can be achieved by using non-linear excursions such as diodes in analog processing, or by conversion using ROM (read only memory) in digital processing. The converted primary color signal r is a time F which also has a delayed output.
The signal is input to the wave generator 3. The delayed output outputs an input signal that has compensated for the delay caused by the F wave.

時間p波器3は、テレビジョン画面の時間的変化を抑圧
(時間的な低周波成分を抽出)する回路で、たとえば、
第2図あるいは第3図に構成を示すものを用い得る。第
2図の時間p波器は、入力信号とフレーム遅延回路4(
NTSC方式の場合525走育線周期の遅延を持ち、P
AL及びSECAM方式の場合625走査線周期の遅延
を持つ)からの差を差回路5により求めて、係数回路6
により係数αを釆じて、前記フレーム遅延回路5の出力
に和回路7により加算して戸流器出力とするとともに前
記フレーム遅延回路5の入力とするものである。フレー
ム遅延回路等本発明で用いられる遅延回路は、半導体記
憶回路などによって実現でき、また、必ずしも信号の全
期間を扱う心安はなくブランキング期間を除くこともで
きる。
The temporal p-wave unit 3 is a circuit that suppresses temporal changes on the television screen (extracts temporal low frequency components), and for example,
The structure shown in FIG. 2 or 3 can be used. The time p-wave generator shown in FIG. 2 has an input signal and a frame delay circuit 4 (
In the case of the NTSC system, there is a delay of 525 running line periods, and P
(with a delay of 625 scanning line periods in the case of AL and SECAM systems) is calculated by the difference circuit 5, and then
The sum circuit 7 adds the coefficient α to the output of the frame delay circuit 5 to obtain the door flow device output and the input to the frame delay circuit 5. The delay circuit used in the present invention, such as a frame delay circuit, can be realized by a semiconductor memory circuit or the like, and does not necessarily handle the entire period of the signal, but can also exclude the blanking period.

係数αは、零より大きくて1より小さな数であり。The coefficient α is a number greater than zero and less than one.

小さくするほど出力の変化が抑圧され、通常の画面では
0.5程度が適当である。遅延出力は、第2図では入力
が直接出力されているけれども、係数αを小さくした場
合にはフレーム遅延回路を挿入しても良い。第3図の時
間戸波器は、フレーム遅延回路8と9を縦続接続して入
力信号を加え1人力信号とフレーム遅延回路8と9の出
力信号を7゜11の荷重の荷重加算回路10により加算
する2′4 トランスバーサル型P波器であり、遅延出力はフレーム
遅延回路8の出力となっている。画面の内容に応じて時
間変化をさらに抑圧する場合には。
The smaller the value, the more suppressed the change in output, and for a normal screen, approximately 0.5 is appropriate. Although the input is directly output as the delayed output in FIG. 2, a frame delay circuit may be inserted if the coefficient α is made small. The time waver shown in Fig. 3 connects frame delay circuits 8 and 9 in cascade, adds input signals, and adds the human input signal and the output signals of frame delay circuits 8 and 9 by a load addition circuit 10 with a load of 7°11. This is a 2'4 transversal type P-wave device, and the delayed output is the output of the frame delay circuit 8. If you want to further suppress time changes depending on the content of the screen.

フレーム遅延回路の数を増して荷重の総和を1にしたま
ま荷重加算回路の入力数を増せば良い。
It is sufficient to increase the number of frame delay circuits and increase the number of inputs to the load addition circuit while keeping the sum of the loads at 1.

第1図に戻って1時間F波器3の出力は、差回路11に
より遅延出力との差を取られると共に遅延回路12に与
えられる。差回路11の出力は、入力信号rの画面の変
化に対応する成分を多く含んだ信号(時間的な高周波信
号)であり、フィルド間処理も含んだ2次元戸波器13
に与えられる。
Returning to FIG. 1, the output of the 1-hour F wave generator 3 is differenced from the delayed output by a difference circuit 11 and is then applied to a delay circuit 12. The output of the difference circuit 11 is a signal (temporal high frequency signal) containing many components corresponding to changes in the screen of the input signal r, and is a two-dimensional door filter 13 that also includes inter-field processing.
given to.

遅延回路12は、F波器13による信号遅延とほぼ等し
い信号遅延を持った遅延回路である。
The delay circuit 12 is a delay circuit having a signal delay approximately equal to the signal delay caused by the F-wave device 13.

2次元戸波器13は、F波器3と同様遅延出力も有し、
たとえば、第4図に構成を示すものを用い得る。第4図
の2次元戸波器において、入力信号は、縦続接続された
走査線遅延回路14.フィルド遅延回路15と16(N
TSC方式の場合262走査線周期遅延、PAL及びS
ECAM万式の場合612走食線遅延)、走査線遅延回
路17とそれらの入出力信号”8’  8’  2’ 
8’ 8の荷重で加算する荷重加算回路18とからなる
フィルド間低域p波器に与えられる。前記フィルド間F
波器の出力は、これと同様に、走査線遅延回路19と2
0及び4’ 2’ 4の荷重の荷重加算回路21からな
る画面の垂直方向の低域p波器に与えられ。
The two-dimensional wave device 13 also has a delayed output like the F wave device 3,
For example, the configuration shown in FIG. 4 may be used. In the two-dimensional door transducer shown in FIG. 4, the input signal is transmitted to the cascaded scanning line delay circuits 14. Field delay circuits 15 and 16 (N
262 scan line period delay for TSC system, PAL and S
In the case of ECAM universal type, 612 scanning line delays), scanning line delay circuits 17 and their input/output signals "8'8'2'
8' is applied to an inter-field low-pass p-wave generator consisting of a load adder circuit 18 that adds a load of 8'. The field interval F
Similarly, the output of the waveform generator is sent to the scanning line delay circuits 19 and 2.
0 and 4'2' 4 are applied to a low frequency p-wave generator in the vertical direction of the screen, which is composed of a load adding circuit 21.

低域F波器に与えられ、さらにその出力は、2画素遅延
回路25と26及び4’2’4の荷重加算回路27から
なる第2の水平方向の低域戸波器に与えられp波器出力
となる。遅延出力は、フィルド遅延回路15の出力を走
査線遅延回路28と3画素遅延回路29で遅延したもの
を用いられる。
The output is further applied to a second horizontal low-frequency wave filter consisting of two-pixel delay circuits 25 and 26 and a 4'2'4 weight addition circuit 27, and the output is fed to a low-frequency wave filter, which is a p-wave generator. This becomes the output. The delayed output is obtained by delaying the output of the field delay circuit 15 by the scanning line delay circuit 28 and the 3-pixel delay circuit 29.

第4図の2次元ろ波器の通過帯域は、NTSC方式にお
いて色副搬送波の4倍の周波数の標本化による処理で画
素遅延を標本化周期とした場合、第5図の斜線で示す2
次元空間周波数帯域となる。
The passband of the two-dimensional filter in Fig. 4 is 2 as shown by the diagonal line in Fig. 5 when the pixel delay is the sampling period in processing by sampling at a frequency four times the color subcarrier in the NTSC system.
dimensional spatial frequency band.

すなわち、垂直方向は525/8 (ライン/高さ)以
下、水平方向は、1.8MHz以下である。
That is, the frequency is 525/8 (line/height) or less in the vertical direction and 1.8 MHz or less in the horizontal direction.

第1図に戻って、2次元戸波器13の出力は。Returning to FIG. 1, the output of the two-dimensional door transducer 13 is as follows.

差回路30によって遅延出力との差が取られると共に和
回路31により遅延回路12からの入力信号の時間的低
域成分に加えられる。
A difference circuit 30 takes the difference from the delayed output, and a sum circuit 31 adds it to the temporal low frequency component of the input signal from the delay circuit 12.

差回路30の出力は1画面の変化成分のエツジや微細構
造に対応する時間的かつ空間的に高周波な成分であシ1
時間圧縮回路32に与えられる。
The output of the difference circuit 30 is a temporally and spatially high-frequency component corresponding to the edges and fine structure of the changing component of one screen.
The signal is applied to the time compression circuit 32.

時間圧縮回路31は、入力信号を衣示側での順次走査に
対応して時間を半分に圧縮すると共にその振幅を調整す
るものである。振幅は、順次走査において時間圧縮回路
32の出力は一走査線おきにしか出力されないので倍程
度にするが1画質の好みにより倍からかな9ずらせても
良い。時間圧縮回路としては、たとえば、第6図に示す
ものを用いられる。
The time compression circuit 31 compresses the time of the input signal in half in response to sequential scanning on the display side and adjusts its amplitude. Since the output of the time compression circuit 32 is output only every other scanning line in sequential scanning, the amplitude is approximately doubled, but it may be shifted by a factor of 9 to 9 depending on the image quality preference. As the time compression circuit, for example, the one shown in FIG. 6 can be used.

第6図の時間圧縮回路においては、入力信号は、1ず、
後述の高域成分以外の補間による遅れと合すための遅延
回路33Aによジ遅延される。遅延された信号は、1走
査線分の容量を持つ緩衝記憶回路3311に入力され、
出力が係数回路34により2倍にされて時間圧縮回路3
2の出力となる。
In the time compression circuit of FIG. 6, the input signals are 1,
The signal is delayed by a delay circuit 33A for combining with a delay due to interpolation other than high-frequency components, which will be described later. The delayed signal is input to a buffer memory circuit 3311 having a capacity for one scanning line,
The output is doubled by the coefficient circuit 34 and sent to the time compression circuit 3.
The output will be 2.

係数回路34は、ディジタル処理の場合には単なる桁ず
らして実現できる。緩衝記憶回路33Bは。
In the case of digital processing, the coefficient circuit 34 can be realized by simply shifting digits. The buffer memory circuit 33B.

書込みと読出しを独立に行なえる記憶回路で、を込読出
制御回路35からの書込指令信号と書込アドレス信号及
び続出指令信号と読出レアドレス信号により駆動されて
いる。緩衝記憶回路33f(は。
It is a memory circuit that can perform writing and reading independently, and is driven by a write command signal, a write address signal, a continuation command signal, and a read address signal from the read/write control circuit 35. Buffer storage circuit 33f (ha.

書込読出制御回路35からの制御によシ、入力信号を走
査線の半分以上書込んだ時点から、書込みの2倍の速度
で走査線の先頭から最後まで1度たけ読出す。また、緩
衝記憶回路33Bは、読出しが行なわれていない場合は
信号レベルを零として出力する。これにより、入力信号
が走査線単位に半分に時間圧縮されて順次走査の段階で
1走査線おきに出力てれる信号となる。
Under the control of the write/read control circuit 35, from the time when the input signal has been written to more than half of the scanning line, the scanning line is read out once from the beginning to the end at twice the writing speed. Further, the buffer storage circuit 33B outputs the signal level at zero when no reading is performed. As a result, the input signal is time-compressed in half in units of scanning lines, and becomes a signal that is output every other scanning line in the sequential scanning stage.

一方、第1図に戻って、和回路31の出力の入力信号r
から時間的かつ空間的高域成分を差引かれた信号は、従
来の飛越走査−順次走査変換用補間回路36により補間
さ扛る。補間回路36としては、たとえば、第7図に示
すものを用いることができる。
On the other hand, returning to FIG. 1, the input signal r of the output of the summation circuit 31
The signal from which temporal and spatial high-frequency components have been subtracted from the signal is interpolated by a conventional interlaced scan-to-progressive scan conversion interpolation circuit 36. As the interpolation circuit 36, for example, one shown in FIG. 7 can be used.

第7図の補間回路においては、人力信号はフィルド遅延
回路37(15,16と同じもので良い)と走査線遅延
回路38とフィルド遅延回路39を縦続接続したものに
加えられ、走査線遅延回路38の出力が元の走査線の信
号として時間圧縮用の緩衝記憶回路40に入力される。
In the interpolation circuit shown in FIG. 7, the human input signal is added to a field delay circuit 37 (which may be the same as 15 and 16), a scanning line delay circuit 38, and a field delay circuit 39 connected in cascade. The output of 38 is input to a time compression buffer memory circuit 40 as an original scanning line signal.

人力信号とフィルド遅延回路39の出力信号は平均回路
41で平均されて入力信号に時間的な変化が無い場合の
補間走査線の信号として係数回路42により可変の係数
ljヲ乗せられて平均回路43の一方の入力端子に与え
られる。一方、走査線遅延回路38の入力と出力の信号
は、平均回路44で平均されて人力信号に時間的変化が
ある場合の補間走査線の信号として係数回路45により
可変の係数(1−β)を乗ぜら扛て平均回路43の他方
の入力に与えられる。平均回路43は、係数回路42と
45の出力を平均して補間走査線の信号として緩衝記憶
回路46に入力する。また、差回路47により発生させ
られたフィルド遅延回路37の入力信号とフィルド遅延
回路39の出力信号との差は、動き検出回路48に与え
られて係数回路42と45の可変係数βと(1−β)を
制御するのに用いられる。
The human input signal and the output signal of the field delay circuit 39 are averaged by an averaging circuit 41, and a variable coefficient lj is added to the signal by a coefficient circuit 42 as an interpolation scanning line signal when there is no temporal change in the input signal, and then the average circuit 43 is applied to one input terminal of . On the other hand, the input and output signals of the scanning line delay circuit 38 are averaged by an averaging circuit 44, and a variable coefficient (1-β) is calculated by a coefficient circuit 45 as an interpolation scanning line signal when there is a temporal change in the human input signal. is multiplied by , and applied to the other input of the averaging circuit 43 . The averaging circuit 43 averages the outputs of the coefficient circuits 42 and 45 and inputs the averaged signal to the buffer storage circuit 46 as an interpolation scanning line signal. Further, the difference between the input signal of the field delay circuit 37 and the output signal of the field delay circuit 39 generated by the difference circuit 47 is given to the motion detection circuit 48, and the difference between the variable coefficients β of the coefficient circuits 42 and 45 and (1 −β).

動き検出回路48は、差回路47の出力の振幅により、
振幅が小さければ係数βが大きく、太さければβが小さ
くなるような制御信号を係数回路42と45に与える。
The motion detection circuit 48 uses the amplitude of the output of the difference circuit 47 to
A control signal is given to the coefficient circuits 42 and 45 such that the smaller the amplitude, the larger the coefficient β, and the smaller the amplitude, the smaller the coefficient β.

これにより、平均回路43の出力の補間走査線の信号は
、入力信号の画面の動き(変化)の小太に応じて前後の
フレームの走査線の平均信号から上下の走査線の平均信
号1での間で変化することになる。なお、 Vl、 v
’75゜V’Bの入力信号が複合カラーテレビジョン信
号から分離されたものである場合には、複合カラーテレ
ビジョン信号の段階または分離の中間段階で行なわれた
別の動き検出による制御信号も第1図及び第3図の点線
で示すように動き検出回路48に入力して検出の精度を
上げることもできる(カメラからの入力信号の場合には
、たとえば、カメラ自体の動きの情報を制御信号として
用いることもできる)。最後に、1走査線分の容量を持
つ緩衝記憶回路33Bと同様の緩衝記憶回路40と46
に入力された信号は、書込読出制御回路49からの書込
指令信号と書込アドレス信号及び読出指令信号及び読出
アドレス信号により半分に時間圧縮されて、書込読出制
御回路49からの切換信号により制御されるスイッチ5
0により順次走査の走査の順に走査線単位に並べられる
。すなわち、記憶回路40の入力の現走査線の信号は走
査線の中央まで書込まれた時点から書込の倍の速度で読
出され、記憶回路46の入力の補間走査線の信号は走査
線が書込まれ終った時点から倍の速度で読出され、前記
再出力の読出し期間がスイッチ50により選択されて補
間回路出力の順次走査信号となる。
As a result, the interpolated scanning line signal output from the averaging circuit 43 changes from the average signal of the scanning lines of the previous and subsequent frames to the average signal of the upper and lower scanning lines of 1 depending on the width of the screen movement (change) of the input signal. It will change between. In addition, Vl, v
If the '75°V'B input signal is separated from a composite color television signal, the control signal may also be derived from another motion detection performed at the composite color television signal stage or at an intermediate stage of separation. As shown by the dotted lines in FIGS. 1 and 3, the detection accuracy can be increased by inputting the signal to the motion detection circuit 48 (in the case of an input signal from a camera, for example, information about the movement of the camera itself can be controlled). (Can also be used as a signal). Finally, buffer memory circuits 40 and 46 similar to buffer memory circuit 33B having a capacity for one scanning line are shown.
The time of the input signal is compressed in half by the write command signal, write address signal, read command signal, and read address signal from the write/read control circuit 49, and the switching signal from the write/read control circuit 49 is switch 5 controlled by
0, they are arranged in scanning line units in the order of sequential scanning. In other words, the signal of the current scanning line input to the memory circuit 40 is read out at twice the writing speed from the point when it is written to the center of the scanning line, and the signal of the interpolated scanning line input to the memory circuit 46 is read out from the point where the scanning line reaches the center. The data is read out at twice the speed from the time when writing is completed, and the re-output readout period is selected by the switch 50 to become a sequential scanning signal of the interpolation circuit output.

1次第1図に戻って、時間圧縮回路32と補間回路36
からの出力は、和回路51により合算され、順次走査に
補間されfc−r信号すなわちr′倍信号なる。なお、
時間圧縮回路32の出力の信号が零でない期間は、補間
回路36の出力の現走査線の期間に一致させられる。す
なわち、第6図の時間圧縮回路と第7図の補間回路を用
いる場合、遅延回路33Aの遅延を263走査線分とし
て記憶回路33Bの書込み読出しを記憶回路40と同じ
にすれば良い。最後に、和回路51の出力信号r′は、
人間の眼の感覚において線形な信号からカラー受像管を
駆動するための信号に逆変換するため、V7I不丙丘近
似した変換を行なう非線形変換回路52に与えられて補
間回路IRの順次走査に変換された出力信号Vπ7とな
る。
Returning to Figure 1, the time compression circuit 32 and interpolation circuit 36
The outputs are summed by a summation circuit 51 and interpolated in a sequential scanning manner to form an fc-r signal, that is, an r'-fold signal. In addition,
The period during which the output signal of the time compression circuit 32 is not zero is made to coincide with the period of the current scanning line of the output of the interpolation circuit 36. That is, when using the time compression circuit of FIG. 6 and the interpolation circuit of FIG. 7, the delay of the delay circuit 33A may be set to 263 scanning lines, and the writing and reading of the memory circuit 33B may be made the same as that of the memory circuit 40. Finally, the output signal r' of the summation circuit 51 is
In order to reversely convert a linear signal in the sense of the human eye into a signal for driving a color picture tube, it is supplied to a nonlinear conversion circuit 52 that performs a conversion approximating V7I, and is converted into a sequential scanning signal by an interpolation circuit IR. The resulting output signal becomes Vπ7.

以上説明したように、第1図の構成によれば。As explained above, according to the configuration shown in FIG.

時間的にも空間的にも高い周波数成分である差回路30
の出力を順次走査において等制約に飛越走査の11にし
て飛越走査の入力テレビジョン信号を順次走査のテレビ
ジョン信号に補間して変換することができる。
Difference circuit 30 which is a high frequency component both temporally and spatially
It is possible to interpolate and convert an input television signal of interlaced scanning into a television signal of progressive scanning by using the output of 11 of interlaced scanning with equal constraints in progressive scanning.

以上、不発明の一芙施例について説明したけnども、本
発明はその精神に征って次のように変形することもでき
る。
Although one embodiment of the invention has been described above, the present invention can be modified as follows in keeping with the spirit thereof.

ます、上記の説明では本発明を3原色信号それぞれに施
すこととしているけれども、輝度信号だけに施しても、
人間の目の色に対する解像度が低いことから十分な画質
改善効果が得られる。これは、NTSC,PAL 、S
ECAMの各方式はもちろん、MAC(マルチフレック
ス、アナログ、コンポーネント)方式、さらには、たと
えばノ1イビジョン方式の輝度信号に適用できる。
In the above explanation, the present invention is applied to each of the three primary color signals, but even if applied only to the luminance signal,
Since the resolution of the human eye color is low, a sufficient image quality improvement effect can be obtained. This is NTSC, PAL, S
It can be applied to luminance signals of not only ECAM systems but also MAC (Multiflex, Analog, Component) systems, and, for example, No. 1 Vision system.

次に、第1図の構成では時間的にも空間的にも高周波の
成分を飛越走査のま1としているけれども、回路規模を
減らすために5たとえば2次元戸波器13と遅延回路1
2を省略して差回路11と時間圧縮回路32及び時間F
波器3の戸波器出力と補間回路36を直結し、時間的高
周波成分全体を飛越走査の11としても従来技術に比べ
て大きな画質改善が得られる。なお、第1図においては
時間的高周波成分の時間圧縮回路32と補間回路36へ
の振り分けを2次元戸波器13と差回路30によって行
なっているけれども、この振り分けは、たとえば高周波
成分自身さらには元のテレビジョン1ご号も含めての画
面の局所的性質(たとえば壁間周波数成分の高低及び振
幅など)により第7図の係数μと(l−β)のような係
数を乗じて振り分けることもできる。
Next, in the configuration shown in FIG. 1, high frequency components are scanned temporally and spatially by interlaced scanning, but in order to reduce the circuit scale, for example, a two-dimensional wave filter 13 and a delay circuit 1 are used.
2 is omitted and the difference circuit 11, time compression circuit 32, and time F
Even if the transducer output of the transducer 3 is directly connected to the interpolation circuit 36 and the entire temporal high frequency component is subjected to interlaced scanning 11, a large improvement in image quality can be obtained compared to the prior art. In FIG. 1, the distribution of temporal high frequency components to the time compression circuit 32 and the interpolation circuit 36 is performed by the two-dimensional wave filter 13 and the difference circuit 30, but this distribution is performed by, for example, not only the high frequency components themselves but also the source. Depending on the local characteristics of the screen (for example, the height and amplitude of the inter-wall frequency component), including the TV No. 1, it is also possible to divide by multiplying the coefficient μ by a coefficient such as (l-β) in Figure 7. can.

捷た1本発明の補間回路の入出力の非線形変換回路2と
52は、省略まfC,は簡素化することもできる。たと
えば、コントラストの弱い画面だけを扱う場合には、系
の非直線性が問題にならないので省略しても何ら差しつ
かえない。また、多くの場合、カンマ補正の逆変換とそ
のまた逆変換に簡素化しても差しつかえない。さらに、
非線形変換の特性を、撮像と表示のカンマに応じて変え
たり、人間の眼以外のたとえば機械的読取り処理用に変
えたりすることは当然の変形である。
The input/output nonlinear conversion circuits 2 and 52 of the interpolation circuit of the present invention may be omitted or fC may be simplified. For example, when dealing only with screens with low contrast, there is no problem in omitting the nonlinearity of the system. Furthermore, in many cases, it may be simplified to the inverse transformation of comma correction and its inverse transformation. moreover,
It is a natural variation to change the characteristics of the non-linear transformation depending on the comma for imaging and display, or for processing other than the human eye, for example, mechanical reading.

さらに才た、第1図の構成は各構成要素間が独立になっ
ているけれども、回路規模を減らすために谷構成要素間
で遅延回路等を共用できるものは共有することができる
。さらに、本発明の補間回路の内たけでなく、複合カラ
ーテレビジョン(1の輝度信号、色差信号分離回路など
とも回路を共用することができる。
Even better, in the configuration of FIG. 1, each component is independent, but in order to reduce the circuit scale, delay circuits and the like can be shared between the valley components. Furthermore, the interpolation circuit of the present invention can be used not only internally, but also with a luminance signal and color difference signal separation circuit of a composite color television (1).

最後に、これ1での説明では入力信号が飛越走置のテレ
ビジョン信号であるとしてきたけれども、本発明は、た
とえば入力信号自体が順次走査であって走査線するいは
フレーム数またはそれらの両方を倍化するような時間当
りの走査線数を増すところの補間と時間圧縮を用いる走
査線補間回路に適用できる。前記の例の場合、時間圧縮
だけ行なう信号成分の例としては、フレーム毎の走査線
数倍増の場合は垂直方向の高域成分、フレーム数も倍増
する場合には飛越走査の信号が入力の場合と同様に時間
的にも空間的にも高域の成分がある。
Finally, although the description in Part 1 has been made in which the input signal is an interlaced television signal, the present invention can be applied, for example, if the input signal itself is sequentially scanned and has a number of scan lines and/or frames. It can be applied to a scanning line interpolation circuit that uses interpolation and time compression to increase the number of scanning lines per time, such as doubling the number of scanning lines per time. In the above example, examples of signal components that only perform time compression include vertical high-frequency components when the number of scanning lines per frame is doubled, and interlaced scanning signals when the number of frames is also doubled. Similarly, there are high-frequency components both temporally and spatially.

〔発明の効果] 以上詳しく説明したように、本発明によれば。〔Effect of the invention] As explained in detail above, according to the present invention.

画面の時間的変化に対応する信号成分などを補間せずに
走査線数の変換ができるので、従来回路に比べて動画像
の画質が改善された飛越走査−順次走査変換のためなど
の補間を行なえる。
Since the number of scanning lines can be converted without interpolating signal components that correspond to temporal changes in the screen, the image quality of moving images has been improved compared to conventional circuits. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図と第3図は
第1図中の時間p波器の構成例、第4図は第1図中の2
次元戸波器の構成例、第5図は第4図の2次元戸波器の
通過特性を示す図面、第6図は第1図中の時間圧縮回路
の構成例、第7図は第1図中の補間回路の構成例である
。 IR,IC,III、  36−・補間回路、2.52
−・・非線形変換回路、3・・・時間p波器、4,8.
9・・・フレーム遅延回路、5,11,30.47・・
・差回路、6,34・・・係数回路、7,31.51・
・・和回路、10.18,21,24.27・・・荷重
加算回路、12.33A・・・遅延回路、13・・・2
次元戸波器、14,17,19,20,28.38・・
・走査線遅延回路、15,16,37.39・・・フィ
ルド遅延回路、22.23・・・画素遅延回路、25゜
26・・・2画素遅延回路、29・・・3画素遅延回路
、33B、40.46・・・緩衝記憶回路、35.49
・・・書込読出制御回路、41,43.44・・・平均
回路、42.45・・・可変係数回路、48・・・動き
検出回路、50・・・スイッチ。
FIG. 1 is a configuration diagram of one embodiment of the present invention, FIGS. 2 and 3 are configuration examples of the time p-wave generator in FIG. 1, and FIG.
An example of the configuration of a dimensional door transducer, FIG. 5 is a drawing showing the passage characteristics of the two-dimensional door transducer shown in FIG. 4, FIG. 6 is an example of the configuration of the time compression circuit in FIG. 1, and FIG. This is an example of the configuration of an interpolation circuit. IR, IC, III, 36-・Interpolation circuit, 2.52
---Nonlinear conversion circuit, 3... Time p-wave unit, 4, 8.
9...Frame delay circuit, 5, 11, 30.47...
・Difference circuit, 6,34...Coefficient circuit, 7,31.51・
...Sum circuit, 10.18, 21, 24.27...Load addition circuit, 12.33A...Delay circuit, 13...2
Dimensional door wave device, 14, 17, 19, 20, 28. 38...
・Scanning line delay circuit, 15, 16, 37.39... Field delay circuit, 22.23... Pixel delay circuit, 25° 26... 2 pixel delay circuit, 29... 3 pixel delay circuit, 33B, 40.46...Buffer memory circuit, 35.49
...Write/read control circuit, 41, 43.44... Average circuit, 42.45... Variable coefficient circuit, 48... Motion detection circuit, 50... Switch.

Claims (1)

【特許請求の範囲】 1、補間と時間圧縮により入力テレビジョン信号をより
走査線数の多い出力テレビジョン信号に変換する走査線
補間回路において、変換された前記出力テレビジョン信
号に前記入力テレビジョン信号の一部の成分を時間圧縮
だけした信号で構成する手段を有してなることを特徴と
する走査線補間回路。 2、第1項記載の走査線補間回路において、前記入力テ
レビジョン信号が飛越走査のテレビジョン信号であって
、前記出力テレビジョン信号が順次走査のテレビジョン
信号であることを特徴とする走査線補間回路。 3、第1項又は第2項に記載において上記走査線補間回
路が、前記走査線補間回路の入出力にガンマ補正による
非直線性の補正と逆補正を行なう非線形変換回路を設け
て構成されたことを特徴とする走査線補間回路。 4、第1項,第2項又は第3項の記載において上記走査
線補間回路が、前記時間圧縮だけされた信号成分の振幅
が前記入力信号に比べて倍にされていることを特徴とす
る走査線補間回路。
[Claims] 1. In a scanning line interpolation circuit that converts an input television signal into an output television signal with a larger number of scanning lines by interpolation and time compression, the input television signal is added to the converted output television signal. 1. A scanning line interpolation circuit comprising means for configuring a part of a signal as a signal obtained only by time compression. 2. The scanning line interpolation circuit according to item 1, wherein the input television signal is an interlaced scanning television signal, and the output television signal is a progressive scanning television signal. interpolation circuit. 3. In paragraph 1 or 2, the scanning line interpolation circuit is configured by providing a nonlinear conversion circuit that performs nonlinearity correction and inverse correction by gamma correction at the input and output of the scanning line interpolation circuit. A scanning line interpolation circuit characterized by: 4. In the first, second, or third paragraph, the scanning line interpolation circuit is characterized in that the amplitude of the time-compressed signal component is doubled compared to the input signal. Scan line interpolation circuit.
JP62016076A 1987-01-28 1987-01-28 Scanning line interpolation circuit Pending JPS63185291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016076A JPS63185291A (en) 1987-01-28 1987-01-28 Scanning line interpolation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016076A JPS63185291A (en) 1987-01-28 1987-01-28 Scanning line interpolation circuit

Publications (1)

Publication Number Publication Date
JPS63185291A true JPS63185291A (en) 1988-07-30

Family

ID=11906469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016076A Pending JPS63185291A (en) 1987-01-28 1987-01-28 Scanning line interpolation circuit

Country Status (1)

Country Link
JP (1) JPS63185291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147829A1 (en) 2008-06-03 2009-12-10 Canon Kabushiki Kaisha Image pickup apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147829A1 (en) 2008-06-03 2009-12-10 Canon Kabushiki Kaisha Image pickup apparatus
EP2286582A1 (en) * 2008-06-03 2011-02-23 Canon Kabushiki Kaisha Image pickup apparatus
EP2286582A4 (en) * 2008-06-03 2012-05-23 Canon Kk Image pickup apparatus
US8803996B2 (en) 2008-06-03 2014-08-12 Canon Kabushiki Kaisha Image pickup apparatus for preventing unnatural motion of a motion image

Similar Documents

Publication Publication Date Title
KR930005189B1 (en) Tv-signal processing circuit
JPS58117788A (en) Color television signal processing circuit
JP2572043B2 (en) Sequential scanning system
US4673978A (en) Progressive scan processor with plural frequency band interpolation
JPS60165186A (en) Scanning line interpolation circuit
JPS6281888A (en) Video signal interpolator
JPH06113175A (en) Reduction method of video noise
JP2736699B2 (en) Video signal processing device
JPS6388981A (en) Successive scanning display system
JPH0420314B2 (en)
JP3295762B2 (en) Progressive scan converter
JP2893801B2 (en) Television receiver
JPS63185291A (en) Scanning line interpolation circuit
JP2574370B2 (en) Scan converter for image quality improvement
US4616251A (en) Progressive scan television system employing a comb filter
JPS58101583A (en) Highly fining signal conversion circuit for color television
JPS58177078A (en) Television signal processing circuit
JPS6112185A (en) Circuit for interpolating scanning line
JP2557474B2 (en) Static display control circuit of MUSE decoder
JP3603393B2 (en) Television circuit
JP2730065B2 (en) Television receiver and motion detection circuit
JPH0229177A (en) Picture quality improving circuit for television video signal
JPS623580A (en) Picture signal converter
JPH037198B2 (en)
JPH0229188A (en) Picture quality improving circuit for television video signal