JPS63183707A - Skew roll rolling method for metal tube - Google Patents

Skew roll rolling method for metal tube

Info

Publication number
JPS63183707A
JPS63183707A JP1483687A JP1483687A JPS63183707A JP S63183707 A JPS63183707 A JP S63183707A JP 1483687 A JP1483687 A JP 1483687A JP 1483687 A JP1483687 A JP 1483687A JP S63183707 A JPS63183707 A JP S63183707A
Authority
JP
Japan
Prior art keywords
plug
angle
rolling
hollow shell
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1483687A
Other languages
Japanese (ja)
Other versions
JPH055562B2 (en
Inventor
Tomio Yamakawa
富夫 山川
Takeo Yamada
山田 建夫
Yutaka Kano
裕 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1483687A priority Critical patent/JPS63183707A/en
Publication of JPS63183707A publication Critical patent/JPS63183707A/en
Publication of JPH055562B2 publication Critical patent/JPH055562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE:To form high quality tubes having no thickness deviation by maintaining respective specific relations of a skew roll outlet face angle, an angle of a plug reeling part, and a guide shoe outlet face angle to the path center of a rolled stock. CONSTITUTION:Angles of an outlet face 13 of skew rolls 1l, 1r a reeling part 22 of a plug 2, and a guide shoe outlet face respectively forming with the path center of a rolled stock are denoted by theta1, theta2 and theta3, respectively. Rolling is performed under conditions between theta1-theta3 such that -2<=theta2-theta1<=-0.5 deg. when 0 deg.<theta3<=1.5 deg., -1 deg.<theta2-theta1<=0 deg. when 1.5 deg.<=theta3<=3.0 deg., and 0<theta2-theta1<=1.0 deg. when 3.0 deg.<theta3<=5 deg.. Thus, the high quality tube having not thickness deviation is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は継目無金属管の代表的製造方法であるマンネス
マン製管法等において広く採用されている穿孔831(
ピアサ−)による圧延方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the perforation 831 (
This relates to a rolling method using a piercer.

〔従来技術〕[Prior art]

一般にマンネスマン製管法による継目無鋼管は、先ず加
熱した丸鋼片をピアサ−に通し、その中心部に穿孔して
ホローシェルを得、これを直接、又は必要があればホロ
ーシェルをエロンゲータに通し、拡径、延伸圧延を施し
た後、例えばプラグミルにて更に延伸圧延し、リーラ、
サイザにて磨管、形状f3正、サイジングを行い、精整
工程を経て製造されている。ところで上記したピアサ−
においては丸鋼片のパスセンタに対して軸心線を傾11
させた樽形の圧延ロール(以下傾斜ロールという)、と
7°ラグとを組合せた所謂傾斜圧延機が用いられる。′
例えばピアサ−にお□いては、第5図に示す如く、軸長
方向の中間に・直径が最大となるゴージ部11を備え、
このゴージ部11の両側に夫々端末側に向うに従い直径
が漸減されて円錐台形をなす入口面12、出口面13を
備えた一対の傾斜ロール11゜1rと、全体として弾頭
形状をなし、先端側から略円錐体状をなす圧延部21、
これに続く略円錐台状をなすリーリング部22及び基端
床に向うに従って縮径された。逃げ部23を具備するプ
ラグ2とを組み合せて構成されており、両傾斜ロールI
C’lrは丸鋼片Bのパスセンタの両側に夫々平面視で
軸心線がパスセンタと平行(又は交叉角αだけ傾斜させ
て)に、また側面視で一方の傾斜ロールは入口面12が
上側を向くように、又他方は下側を向くように傾斜角β
だけパスセンタに対し傾斜させて配設され、更にプラグ
2はその軸心線をパスセンタに一致せしめて配設されて
いる。加熱された丸鋼片Bは白抜矢符で示す如く軸長方
向に移送され、てきて両傾斜ロール11.lrの人口面
12.12間に噛み込まれ、軸心線回りに回転されつつ
軸長方向に移送される、所謂螺進移動せしめられつつそ
の中心部にプラグ2が貫入せしめられ、傾斜ロールB。
In general, seamless steel pipes made using the Mannesmann pipe manufacturing method are first made by passing a heated round piece of steel through a piercer, drilling a hole in its center to obtain a hollow shell, and expanding it either directly or, if necessary, by passing the hollow shell through an elongator. After being subjected to diameter and elongation rolling, it is further elongated and rolled in a plug mill, for example, to form a reeler,
The tube is polished using a sizer, the shape is corrected to F3, and sizing is performed, and the product is manufactured through a refining process. By the way, the piercer mentioned above
In this case, the axis line is tilted 11 with respect to the pass center of the round steel piece.
A so-called inclined rolling mill is used, which is a combination of barrel-shaped rolling rolls (hereinafter referred to as inclined rolls) and a 7° lug. ′
For example, as shown in FIG. 5, a piercer is provided with a gorge portion 11 having a maximum diameter in the middle in the axial direction,
On both sides of this gorge part 11, there is a pair of inclined rolls 11°1r each having an inlet surface 12 and an outlet surface 13, each having a truncated conical shape with a diameter that gradually decreases toward the end, and a warhead-shaped roll as a whole. A rolled portion 21 having a substantially conical shape,
The diameter of the reeling portion 22, which follows this and has a substantially truncated conical shape, is reduced toward the base end floor. It is constructed by combining a plug 2 with a relief part 23, and a double inclined roll I.
C'lr is on both sides of the pass center of the round steel piece B, and the axis line is parallel to the pass center (or inclined by the intersection angle α) in plan view, and one inclined roll has the entrance surface 12 facing upward in side view. The inclination angle β is set so that the
The plug 2 is disposed so as to be inclined relative to the pass center, and the plug 2 is disposed with its axis aligned with the pass center. The heated round steel piece B is transferred in the axial direction as shown by the white arrow, and is transferred to the double inclined roll 11. The plug 2 is inserted between the artificial surfaces 12 and 12 of the lr, and is rotated around the axis and transferred in the axial direction, so-called spiral movement, and the plug 2 is penetrated into the center of the inclined roll B. .

1rとプラグ2とによって穿孔圧延されるようになって
いる。
1r and plug 2 to perform piercing rolling.

ところでこのようにして製造される継目無管には圧延条
件によって種々の欠陥が発生するが、特にホローシェル
の内、外面に螺旋状に発生した偏肉底は、後工程でエロ
ンゲータ、マンドレルミル、ストレンチ・レデユーサ、
リーラに通しても解消するのが難しく、成品品質に与え
る影響が極めて大きいという問題があった。
By the way, various defects occur in the seamless pipes manufactured in this way depending on the rolling conditions, and in particular, uneven thickness bottoms that occur in a spiral shape on the inner and outer surfaces of the hollow shell are treated with elongators, mandrel mills, and trenches in the subsequent process.・Reducer,
There was a problem in that it was difficult to solve even if it was passed through a leeler, and it had an extremely large effect on the quality of the finished product.

本発明者は上述した如き偏肉底の発生原因につき実験研
究を行った結果、第5図に示す如く、プラグ2のリーリ
ング部周面と各傾斜ロールB。
The inventor of the present invention conducted an experimental study on the cause of the uneven bottom thickness as described above, and as a result, as shown in FIG.

lrの出口面13との対向面又はその接線がパスセンタ
に対してなす角度、即ちプラグ2のリーリング部22と
対向する傾斜ロールIl、lrの10面13又はその接
線とパスセンタとの角度θ1とプラグのリーリング部表
面又は接線とパスセンタとの角度θ2との関係が01≦
02となっていることにその原因があることを知見した
。このようなプラグ2のリーリング部22と傾斜ロール
11.lrの出口面13との対向面又はその接線とパス
センタとの角度θ1.θ2が螺旋状の偏肉現象を生ぜし
める理由は概路次のように推測される。
The angle θ1 between the surface facing the exit surface 13 of lr or its tangent to the pass center, that is, the angle θ1 between the inclined roll Il facing the reeling part 22 of the plug 2, the 10 surface 13 of lr or its tangent, and the pass center. The relationship between the angle θ2 between the surface or tangent of the reeling part of the plug and the path center is 01≦
It was discovered that the reason for this was that it was 02. The reeling part 22 of such a plug 2 and the inclined roll 11. The angle θ1 between the surface of lr opposite to the exit surface 13 or its tangent and the path center. The reason why θ2 causes the spiral thickness unevenness phenomenon is estimated as follows.

なお、本発明におけるθ1.θ2の定義は傾斜角β=0
の状態での値である。
Note that θ1 in the present invention. The definition of θ2 is the inclination angle β = 0
This is the value in the state of

第6図は第5図のvr−vr線による模式的断面図であ
り、プラグ2によって穿孔された丸鋼片はプラグ2と傾
斜ロールlj!’+1rとの対向面間で加圧。
FIG. 6 is a schematic sectional view taken along the vr-vr line in FIG. '+1r and pressurize between opposing surfaces.

延伸されてホローシェルHに成形されるが、この過程で
はプラグ2と傾斜ロール1j’+1rとの対向面間で加
圧されたホローシェルHはこの部分で薄肉化され、この
部分の材料は軸長方向、周方向に展延されるが、周方向
への展延によってホローシェルHは外径を拡大しようと
する力を受ける。しかしホローシェルHの上、下部はガ
イドシュー33u。
The hollow shell H is stretched and formed into a hollow shell H. In this process, the hollow shell H that is pressurized between the facing surfaces of the plug 2 and the inclined rolls 1j'+1r is thinned in this part, and the material in this part is thinned in the axial direction. , the hollow shell H is expanded in the circumferential direction, but due to the expansion in the circumferential direction, the hollow shell H receives a force that tends to increase the outer diameter. However, the upper and lower parts of the hollow shell H are guide shoes 33u.

33dに摺接しており外径の拡大が抑制されるために外
径を拡大しようとする力は逆に圧縮力として作用し、こ
の圧縮力がプラグ2と傾斜ロールB。
Since it is in sliding contact with 33d and the expansion of the outer diameter is suppressed, the force that tries to expand the outer diameter acts as a compressive force, and this compressive force is applied to the plug 2 and the inclined roll B.

1rとの対向面間部分を除く他の部分で増肉を生じさせ
る。ちなみにプラグ2の軸中心、プラグ2と傾斜ロール
l#、lrとの対向面中心を通る平面(Y−Y面)及び
これと直交する平面(Z−Z面)による各断面における
ホローシェルの肉厚はl:1.1〜1.4程度である。
Thickening is caused in other parts except for the part between the opposing surfaces with 1r. By the way, the wall thickness of the hollow shell in each cross section taken by the axial center of the plug 2, the plane passing through the center of the facing surfaces of the plug 2 and the inclined rolls l# and lr (Y-Y plane), and the plane perpendicular to this (Z-Z plane) is l: about 1.1 to 1.4.

ところでこのようなピアサ−により穿孔圧延されるホロ
ーシェルHは、その軸心線回りに2周回転せしめられる
都度プラグ2と傾斜ロールIIl。
By the way, the hollow shell H that is pierced and rolled by such a piercer is rotated twice around its axis each time by the plug 2 and the inclined roll IIl.

lrとの間及びガイドシュ33u、33dとの摺接位置
を交互に通過し、減肉過程、増肉過程を反復されること
となる。
It alternately passes through sliding contact positions with the guide shoes 33u and 33d, and repeats the thinning process and the thickening process.

第7図は第6図の■−■線による模式的断面図であり、
いまプラグ2と圧延ロール1rとの対向面間に位置する
ホローシェルHの部分AlはホローシェルHの×回転後
にはガイドシュ33dと接する部分A2に移動するが、
この過程ではプラグ2の圧延部21が丸鋼片Bに貫入し
た直後であって拡径率が大きく、それだけホローシェル
Hが受ける圧縮力も大きく当然ホローシェルHの増肉率
が大き(なる。ホローシェルHが更にA回転すると、A
2部分はプラグと傾斜ロール17!との間のA3部分に
移動するが、この過程では前述の如きθ1≦02の関係
からプラグ2と傾斜ロールII!との間隙が狭くなるこ
ともあって大きな減肉率となる。そしてホローシェルH
が更にA回転するとA3部分はガイドシュ33uと接す
るA4部分に移動するが、この過程ではA3部分がプラ
グ2の逃げ部23と対向する部分を通過するため、ホロ
ーシェルHがうける拡径しようとする力は小さく、従っ
て圧縮力も小さくなって増肉率も小さくA4部分は薄肉
の状態となる。
FIG. 7 is a schematic cross-sectional view taken along the line ■-■ in FIG.
The portion Al of the hollow shell H currently located between the facing surfaces of the plug 2 and the rolling roll 1r moves to the portion A2 in contact with the guide shoe 33d after × rotation of the hollow shell H.
In this process, immediately after the rolled part 21 of the plug 2 penetrates into the round steel piece B, the diameter expansion rate is large, and the compressive force that the hollow shell H receives is correspondingly large. Naturally, the thickness increase rate of the hollow shell H is also large. If you rotate A further, A
The second part is the plug and the inclined roll 17! However, in this process, due to the relationship θ1≦02 as described above, the plug 2 and the inclined roll II! This also results in a large thinning rate due to the narrowing of the gap between the two. And Hollow Shell H
When it rotates further A, the A3 part moves to the A4 part that contacts the guide shoe 33u, but in this process, the A3 part passes through the part of the plug 2 that faces the relief part 23, so the hollow shell H tries to expand its diameter. The force is small, so the compressive force is also small, and the rate of increase in thickness is also small, making the A4 portion thin.

一方第7図においてA1部分から周方向に2開隔ててリ
ーリング部22の前端と対向する位置で下部ガイドシュ
33dと接するB、部分についてみると、ホローシェル
HがA回転されるとプラグ2と圧延ロールIlとの対向
面間であるB2部分に移動するが、この過程では減肉さ
れる0次にホローシェルHがA回転されると82部分は
上部ガイド、・シュ33uと接する83部分に移動する
が、この過程での拡径率は大きくホローシェルHの受け
る圧縮力も大きく、大きく増肉される。そして更にホロ
ーシェルHがA回転されると83部分は84部分に移動
するが、この過程ではプラグ2の逃げ部23を通過する
ため殆ど減肉されることなく84部分は厚肉の状態とす
る。
On the other hand, in FIG. 7, when looking at the part B which contacts the lower guide shoe 33d at a position facing the front end of the reeling part 22 at a distance of 2 openings in the circumferential direction from the part A1, when the hollow shell H is rotated A, the plug 2 and It moves to the B2 part between the facing surfaces with the rolling roll Il, but when the zero-order hollow shell H, which is thinned in this process, is rotated A, the 82 part moves to the 83 part that contacts the upper guide and the shoe 33u. However, the diameter expansion rate during this process is large and the compression force applied to the hollow shell H is also large, resulting in a large increase in thickness. When the hollow shell H is further rotated A, the portion 83 moves to the portion 84, but in this process, it passes through the relief portion 23 of the plug 2, so there is almost no thinning, leaving the portion 84 thick.

而してホローシェルHの周方向にA両隅てられた部分は
結果的に交互に薄肉部分A4、厚肉部分B、となって現
われるために、a’旋状の偏肉が形成されることとなる
のである。
As a result, the portions A of the hollow shell H that are cornered in the circumferential direction alternately appear as thin portions A4 and thick portions B, so that an a'-circular uneven thickness is formed. It becomes.

第8図は前記したA1部分、81部分がプラグ2の先端
と対向する位置からプラグ2を通過する間における肉厚
の推移を示したグラフであって、横軸にホローシェルH
の進行方向への距離を、また縦軸には肉厚をとって示し
ている。
FIG. 8 is a graph showing the change in wall thickness of the A1 portion and the 81 portion as they pass through the plug 2 from the position facing the tip of the plug 2, and the horizontal axis is the hollow shell H.
The distance in the traveling direction is shown, and the vertical axis shows the wall thickness.

このグラフから明らかな如く、プラグ2によって穿孔が
開始されたとき、その部分が周方向のいずれの位置、即
ち、左、右の傾斜ロールLL1rと対向する位置が、或
いは上、下のガイドシュ33u。
As is clear from this graph, when drilling is started by the plug 2, the position of that part in the circumferential direction, that is, the position facing the left and right inclined rolls LL1r, or the upper and lower guide shoes 33u .

33dと対向する位置かによって薄肉化、或いは厚肉化
することとなり、その結果、第9図に示す如(プラグ2
を通過後はホローシェルHの軸長方向に厚肉部分、薄肉
部分が交互に表われる螺旋状の偏肉が生ずることが解る
Depending on the position facing the plug 33d, the wall will be thinner or thicker, and as a result, as shown in FIG.
It can be seen that after passing through the hollow shell H, a spiral thickness unevenness occurs in which thick and thin parts alternate in the axial direction of the hollow shell H.

このため、本願出願人は、穿孔圧延での偏肉の発生を抑
制し、管品質の大幅な向上を図るべく、傾斜ロールの出
口面とプラグのリーリング部との対向面又はその接線が
被圧延材のパスセンタに対してなす角度をθ1〉θ2の
関係に維持して圧延する方法を提案している(特開昭6
0−191609号)。
Therefore, in order to suppress the occurrence of uneven thickness during piercing rolling and to significantly improve pipe quality, the applicant has proposed that the facing surface between the exit surface of the inclined roll and the reeling portion of the plug, or the tangent line thereof, be covered. proposed a method of rolling while maintaining the angle formed with the pass center of the rolled material in the relationship θ1>θ2 (Japanese Unexamined Patent Publication No. 6
No. 0-191609).

次に、この方法を具体的に説明する。Next, this method will be specifically explained.

第8図に示す如くホローシェルHに生じた肉厚変動幅を
δとすると、δはプラグ2のリーリング部22の軸長寸
法をlとして下記(1)式で与えられるが δ= l tan  Δθ。・(11 このΔθo (=arc tan(δ/E))を、プラ
グのリーリング部と対向する傾斜ロールの出口面又はそ
の接線と被圧延材のパスセンタとのなす角度θ1と傾斜
ロールの出口面と対向するプラグのり−リング部表面又
はその接線と被圧延材のパスセンタとのなす角度θ2に
対する修正角とし、θ1に加え、またθ2から減じた値
、即θIO+θ2oを設定する。即ち、 θlo=θ1+Δθ。、θ20=θ2・・・(2)又は θ1o−θ1.θ20=θ2−Δθ。・・・(3)更に
発明者等の実験結果によれば通常Δθ0は下記(4)式
の如くになるから、上記+21. (31式および(4
)式の関係から(5)式の関係が成立する。
As shown in FIG. 8, if the range of wall thickness variation occurring in the hollow shell H is δ, then δ is given by the following equation (1), where l is the axial length of the reeling part 22 of the plug 2, and δ= l tan Δθ .・(11) This Δθo (=arc tan(δ/E)) is defined as the angle θ1 between the exit surface of the inclined roll facing the reeling part of the plug or its tangent and the pass center of the rolled material, and the exit surface of the inclined roll. The correction angle for the angle θ2 formed by the surface of the plug glue-ring part facing or its tangent line and the pass center of the rolled material is set as θIO+θ2o, which is the value added to θ1 and subtracted from θ2. That is, θlo=θ1+Δθ ., θ20 = θ2... (2) or θ1o - θ1. θ20 = θ2 - Δθ... (3) Furthermore, according to the experimental results of the inventors, Δθ0 is usually as shown in equation (4) below. From the above +21. (Equation 31 and (4
), the relationship in equation (5) holds true.

Δθ。〉θ2−01≧0    ・・・(4)θIo>
θ2o        ・・・(5)従ってこれを実現
するよう傾斜ロールの出口面角、プラグのリーリング部
面角を設計し、また傾斜ロールの軸がパスセンタに対す
る角度、即ち交叉角α、傾斜角βを選定して圧延を行う
こととしている。
Δθ. 〉θ2-01≧0 ... (4) θIo>
θ2o...(5) Therefore, the outlet face angle of the inclined roll and the face angle of the reeling part of the plug are designed to realize this, and the angle of the axis of the inclined roll with respect to the pass center, that is, the intersection angle α and the inclination angle β, are designed. The selected material will be rolled.

この方法による場合には、第旬図に示す如く、圧延ロー
ル11 (lr)の出口面13とプラグ2のリーリング
面22との対向面が丸鋼片B等の被圧延材のパスセンタ
に対してなす角度がプラグ2のリーリング面22の角度
よりも圧延ロール11の出口面13の角度を大きく設定
しであるから、被圧延材料が穿孔され、延伸圧延を受け
る部分は第8図と同様にして第11図に示す如(周を方
向の位置に関係なく均一な肉厚に仕上げられることとな
って、管品質の格段の向上を図れる。
In the case of this method, as shown in the first diagram, the facing surface of the outlet surface 13 of the rolling roll 11 (lr) and the reeling surface 22 of the plug 2 is aligned with the pass center of the material to be rolled, such as the round billet B. Since the angle of the outlet surface 13 of the rolling roll 11 is set larger than the angle of the reeling surface 22 of the plug 2, the part where the material to be rolled is perforated and subjected to elongation rolling is the same as that shown in FIG. As shown in FIG. 11, the circumference can be finished with a uniform wall thickness regardless of the directional position, and the quality of the pipe can be significantly improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、ガイドシュのリーリング面22と対向す
る出口面部分と、パスセンタとの間隙がパスセンタに沿
って一定であるときには、偏肉の発生を抑制して品質の
良好な金属管を製造できたが、圧縮力を調整してより高
品質の金属管を製造すべく、ガイドシュとして前記間隙
が出口面においてパスセンタ入側よりも出側になる程広
くなるものを使用したときには、ガイドシュの出口面と
パスセンタとの広がり角度の大きさによっては従来同様
に螺旋状の偏肉が形成されるようになるということが判
明した。
However, when the gap between the exit surface portion facing the reeling surface 22 of the guide shoe and the pass center is constant along the pass center, it is possible to suppress the occurrence of uneven thickness and manufacture a metal tube of good quality. In order to manufacture a higher quality metal tube by adjusting the compression force, when using a guide shoe in which the gap is wider on the exit side of the pass center than on the entrance side of the pass center, the exit surface of the guide shoe is It has been found that depending on the size of the spread angle between the path center and the path center, a spiral thickness unevenness can be formed as in the conventional case.

本発明は斯かる事情に鑑みてなされたものであり、ガイ
ドシュの出口面とパスラインとの広がり角度の大きさに
拘わらず偏肉の発生を防止できる金属管の傾斜ロール圧
延方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for rolling a metal tube with inclined rolls, which can prevent the occurrence of uneven thickness regardless of the size of the spread angle between the exit surface of the guide shoe and the pass line. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明はガイドシュの出口面とパスセンタとのなす広が
り角度に応じて、プラグのリーリング部と対向する傾斜
ロール出口面又はその接線とパスセンタとの角度とプラ
グのり−リング部表面又はその接線とパスセンタとの角
度とを設定する。
The present invention is designed to adjust the angle between the outlet surface of the inclined roll facing the reeling part of the plug or its tangent to the pass center and the surface of the plug glue-ring part or its tangent, depending on the spread angle formed between the exit surface of the guide shoe and the pass center. Set the angle with the path center.

即ち、本発明に係る金属管の傾斜ロール圧延方法は、パ
スライン周りに交互に配された複数の傾斜ロール及び複
数のガイドシュの間に被圧延材をその軸心線方向に螺進
移動させつつ前記軸心線に沿ってプラグを貫入せしめて
被圧延材に穿孔圧延する過程において、前記プラグのり
−リング部と対向する傾斜ロールの出口面又はその接線
が被圧延材のパスセンタに対してなす角度(θ1)と、
傾斜ロールの出口面と対向するプラグのリーリング部表
面又はその接線がパスセンタに対してなす角度(θ2)
と、プラグのり−リング部と対向するガイドシュ出口面
又はその接線がパスセンタに対してなす角度(θ3)と
を下式の関係に維持して圧延することを特徴とする。
That is, the method for rolling a metal tube with inclined rolls according to the present invention involves spirally moving a material to be rolled in the axial direction between a plurality of inclined rolls and a plurality of guide shoes arranged alternately around a pass line. In the process of piercing and rolling the material to be rolled by penetrating the plug along the axial center line, the outlet surface of the inclined roll facing the plug glue-ring portion or its tangent line is made with respect to the pass center of the material to be rolled. Angle (θ1) and
Angle (θ2) between the exit surface of the inclined roll and the surface of the reeling part of the plug facing the surface or its tangent with respect to the pass center
and the angle (θ3) formed by the exit surface of the guide shoe facing the plug glue-ring portion or its tangent with respect to the pass center during rolling.

Q’<03≦1.5“のときには−2°≦θ2−01≦
−0,5°、1.5°≦θ3≦3.0°のときには一1
°<θ2−θ、≦0°、3.0°<θ3≦5゜のときに
は0°<θ2−01≦1.0゜つまり、ガイドシュ出口
面又はその接線の傾きによってはθ2−θ、を正又は負
とすることがある。
When Q'<03≦1.5", -2°≦θ2-01≦
-0.5°, 1.5°≦θ3≦3.0°
When °<θ2-θ, ≦0°, 3.0°<θ3≦5°, 0°<θ2-01≦1.0°.In other words, depending on the slope of the guide shoe exit surface or its tangent, θ2-θ May be positive or negative.

〔作用〕[Effect]

本発明にあっては、θ3が大きい場合には出側に向けて
のプラグとガイドシュとの間隙の広がり程度が大であり
、被圧延材のガイドシュから受ける圧縮力の減少率が大
きくなり、これにより増肉率が小さくなるが、このとき
θ2−θ、が正の値(負の場合もあるが小さい)である
ため傾斜角β設定時にはリーリング部の入側から出側に
向けてプラグと傾斜ロールとの間隙が略一定となるか又
は小さくなり、このため増肉率変化に拘わらず、同一周
方向部分において圧下率は略一定となる。
In the present invention, when θ3 is large, the gap between the plug and the guide shoe widens toward the exit side, and the reduction rate of the compressive force applied from the guide shoe to the rolled material increases. , this reduces the thickness increase rate, but at this time, θ2 - θ is a positive value (sometimes negative, but small), so when setting the inclination angle β, it is The gap between the plug and the inclined roll becomes substantially constant or becomes small, and therefore, regardless of changes in the thickness increase rate, the rolling reduction rate becomes substantially constant in the same circumferential direction portion.

また、これよりも1/4回転遅れで噛み込まれる被圧延
材部分も同様に圧延され、その結果、ガイドシュによる
増肉、減肉が抑制されて管周方向及び軸長方向に肉厚、
外径が夫々同値に揃えられる。
In addition, the part of the rolled material that is bitten with a 1/4 rotation delay is also rolled in the same way, and as a result, the thickness increase and decrease due to the guide shingle are suppressed, and the wall thickness increases in the pipe circumferential direction and the axial direction.
The outer diameters are set to the same value.

また、θ3が小さい場合には出側に向けてのプラグとガ
イドシュとの間隙の広がり程度が小さくなって被圧延材
のガイドシュから受ける圧縮力の減少率が小さくなり、
これにより増肉率が大きくなるが、このときθ2−01
が負の値であるためリーリング部の入側から出側に向け
てプラグと傾斜ロールとの間隙が大きくなり、このため
増肉率変化に拘わらず同一周方向部分において圧下率は
略一定となる。また、これよりも1/4回転遅れで噛み
込まれる被圧延材部分も同様に圧延され、その結果、増
肉、減肉が抑制されて管周方向及び軸長方向に肉厚、外
径が夫々同値に揃えられる。
In addition, when θ3 is small, the degree of widening of the gap between the plug and the guide shoe toward the exit side becomes small, and the rate of decrease in the compressive force received from the guide shoe on the rolled material becomes small.
This increases the thickness increase rate, but at this time θ2-01
Since is a negative value, the gap between the plug and the inclined roll increases from the entrance side to the exit side of the reeling section, and therefore, the rolling reduction rate is approximately constant in the same circumferential direction regardless of changes in the thickness increase rate. Become. In addition, the part of the rolled material that is bitten with a 1/4 rotation delay is rolled in the same way, and as a result, thickness increase and decrease are suppressed, and the wall thickness and outer diameter are reduced in the circumferential direction and axial direction. They are all set to the same value.

〔実施例〕〔Example〕

以下本発明をピアサ−に通用した実施例を示す図面に基
づき具体的に説明する。第1図(この被圧延材は第2図
のY−Y線による断面図である)は本発明方法において
用いるプラグと傾斜ロールとの関係を示す説明図、第2
図は第1図の11線による断面図であり、図中Bは丸鋼
片、Hはホローシェル、II!、lrは(15!斜ロー
ル、2はプラグを示している。丸鋼片Bは所定温度に加
熱された白抜矢符方向から軸長方向に移送されてきて、
ピアサ−に送り込まれ、外周面には傾斜ロール11゜l
rが転接し、これによって軸心線回りに回転せしめられ
つつ軸長方向に移動せしめられ、プラグ2が中心部に貫
入せしめられ穿孔されるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing an embodiment in which the present invention is applied to a piercer. FIG. 1 (this rolled material is a sectional view taken along the line Y-Y in FIG. 2) is an explanatory diagram showing the relationship between the plug and the inclined roll used in the method of the present invention,
The figure is a sectional view taken along line 11 in Figure 1, where B is a round steel piece, H is a hollow shell, and II! , lr are (15! diagonal rolls, 2 indicates a plug. The round steel piece B is heated to a predetermined temperature and is transferred from the direction of the white arrow in the axial direction,
It is fed into the piercer, and an 11° inclined roll is placed on the outer circumferential surface.
r comes into contact with each other, and as a result, the plug 2 is rotated around the axis and moved in the axial direction, and the plug 2 is inserted into the center and bored.

各傾斜ロール17!、1rはその軸長方向の中間部に直
径が最大となるゴージ部11を備え、またこの両側には
夫々ロール端側に向かうに従って直径が縮小されて円錐
台形をなす入口面12、出口面13を備えており、丸鋼
片Bのバスセンタの両側において、平面視で軸心線をバ
スセンタに対して夫々入口面12.12が相離反する向
き、換言すれば百出口面13.13が相接近する向きに
夫々所定の交叉角で傾斜させ、また側面視では傾斜ロー
ル1rはその入口面12を上方に、傾斜ロールIItは
その出口面13を下方に向けてバスセンタに対し互いに
上、下逆向きに夫々所定の傾斜角で傾斜させて配設され
、夫々図示しない駆動源にて矢符で示す如く同方向に回
転駆動せしめられている。
Each inclined roll 17! , 1r is provided with a gorge part 11 having a maximum diameter at the middle part in the axial direction, and on both sides thereof, an inlet face 12 and an outlet face 13 each having a truncated conical shape, the diameter of which decreases toward the roll end. On both sides of the bus center of the round steel piece B, the entrance surfaces 12.12 are oriented away from each other with respect to the bus center in plan view, in other words, the exit surfaces 13.13 are oriented toward each other. In side view, the inclined roll 1r has its entrance surface 12 facing upward, and the inclined roll IIt has its exit surface 13 facing downward, so that they are oriented upwardly and downwardly with respect to the bus center. They are respectively arranged to be inclined at predetermined inclination angles, and are driven to rotate in the same direction as indicated by arrows by a drive source (not shown).

一方プラグ2は弾頭状に形成され、その先端部側を丸鋼
片Bの移送されてくる側に向けた状態でバスセンタに沿
わせてマンドレルバ−Mの先端基部に細心邪に軸心線回
りに回転自在に枢支されている。プラグ2は先端部が丸
味を帯びた略円錐体をなす圧延部21、この圧延部21
に連なり略円錐台をなすリーリング部22及びこのリー
リング部22に連なり基端末側が縮径された逃げ部23
を備えている。
On the other hand, the plug 2 is formed in the shape of a warhead, and is placed along the bus center with its tip side facing the side from which the round steel piece B is being transferred, and is carefully placed around the axial line at the tip base of the mandrel bar M. It is rotatably supported. The plug 2 includes a rolled portion 21 having a substantially conical shape with a rounded tip.
A reeling part 22 that is connected to the reeling part 22 and has a substantially truncated conical shape, and a relief part 23 that is connected to the reeling part 22 and has a reduced diameter on the proximal end side.
It is equipped with

傾斜ロール11,1r近傍における丸鋼片Bの移送域の
上、下には、プラグ2と対向する面をプラグ2に向けて
凹状となしてあり、管軸長方向に長いガイドシュ3u、
3dが設けられている。ガイドシュ3u、3dはプラグ
2のリーリング面22に対向する出口面31u、31d
を有し、その出口面31u、31dはプラグ2との間隙
が管軸長方向において出側になる程広くなるように形成
している。
Above and below the transfer area of the round steel piece B in the vicinity of the inclined rolls 11 and 1r, there are guide shoes 3u whose surfaces facing the plug 2 are concave toward the plug 2 and which are long in the longitudinal direction of the tube axis.
3d is provided. The guide shoes 3u, 3d have outlet surfaces 31u, 31d facing the reeling surface 22 of the plug 2.
The outlet surfaces 31u and 31d are formed such that the gap with the plug 2 becomes wider toward the outlet side in the longitudinal direction of the tube axis.

本発明方法はこのように構成された傾斜圧延機により実
施される。即ち、プラグ2のリーリング面と対向する傾
斜ロールLl、1rの出口面13.13又はその接線と
バスセンタとの角度θ1とプラグ2のリーリング面又は
その接線とバスセンタとの角度θ2とを、ガイドシュの
出口面とバスセンタとの角度θ3の範囲に応じて、つま
り0くθ3≦1.5 、1.5≦θ3≦3.0 、3.
0 <03≦5に応じて該当する下記(61,(71,
(81式を満足するように定めて圧延する。このとき、
穿孔圧延比(E/)を考慮する。
The method of the present invention is carried out using an inclined rolling mill configured as described above. That is, the angle θ1 between the reeling surface of the plug 2, the outlet surface 13.13 of the inclined rolls Ll, 1r facing the opposite side, or a tangent thereof, and the bus center, and the angle θ2 between the reeling surface of the plug 2, or its tangent, and the bus center, Depending on the range of the angle θ3 between the exit surface of the guide shoe and the bath center, that is, 0≦θ3≦1.5, 1.5≦θ3≦3.0, 3.
0 The following (61, (71,
(Rolling is carried out in a manner that satisfies formula 81. At this time,
Consider the piercing and rolling ratio (E/).

一2°≦Δθ≦−0.5°   ・・・(6)−1°≦
Δθ≦O°      ・・・(7)0°くΔθ≦1.
0°    ・・・(8)但し、Δθ=θ2−01 なおθ3及び穿孔圧延ひ(E J )を考慮する必要が
ある場合には(6)、 17)、 f8)式に替えてE
l及び傾斜角設定時の補正量Δβに関する関係、例えば
下記(9)式にて示す回帰式から求めてもよい。
-2°≦Δθ≦−0.5° ・・・(6)−1°≦
Δθ≦O° ... (7) 0° Δθ≦1.
0° ... (8) However, Δθ = θ2-01 If it is necessary to take into account θ3 and piercing rolling (E J ), replace E with (6), 17), f8)
The relationship between l and the correction amount Δβ at the time of setting the inclination angle may be obtained, for example, from a regression equation shown in equation (9) below.

θ2−に1 ・θ1+に2 ・θ3+に3 ・ E7!
+Δβ・・・(9) 但し、K、、に2.に3:回帰係数 また、このようにθ2を定めた場合には、θ。
1 for θ2- ・2 for θ1+ ・3 for θ3+ ・E7!
+Δβ...(9) However, K, 2. 3: Regression coefficient Also, when θ2 is determined in this way, θ.

と02との差分Δθを確保するようにロール交叉角を調
整してもよい。
The roll crossing angle may be adjusted to ensure the difference Δθ between and 02.

第3図は第7.10図に対応する図面であって、パスラ
インX−X線よりも上方はパスラインX−X線を通り、
プラグ2と傾斜ロール11(又はlr)との対向面中央
を通る面による断面を、またパスラインX−X線よりも
下方はパスラインX−X線を通り、ガイドシュ3d (
又は3u)中央を通る面による断面を夫々示している。
FIG. 3 is a drawing corresponding to FIG. 7.10, and the upper part of the pass line XX passes through the pass line XX,
A cross section taken by a plane passing through the center of the facing surfaces of the plug 2 and the inclined roll 11 (or lr), and a section below the pass line XX line passing through the pass line XX line, the guide shoe 3d (
or 3u) Each shows a cross section taken by a plane passing through the center.

いまプラグ2と傾斜ロール1rとの対向面間に位置する
ホローシェルl(の部分A、はホローシェルHが1/4
回転する都度A2.A3.A4の如く、又部分Blは同
様にしてホローシェルHが1/4回転する都度B2 、
B3 + B4の如く夫々その位置及び肉厚が変化する
こととなるが、部分A、と84との肉厚は略等しい肉厚
に圧延される。この理由は次のように説明される。
The part A of the hollow shell l located now between the facing surfaces of the plug 2 and the inclined roll 1r is 1/4 of the hollow shell H.
A2 every time it rotates. A3. As shown in A4, the part Bl is similarly changed to B2 every time the hollow shell H rotates 1/4,
Although the positions and wall thicknesses of parts A and 84 change as in B3 + B4, the wall thicknesses of portions A and 84 are rolled to approximately the same thickness. The reason for this is explained as follows.

先ずプラグ2の圧延部21と傾斜ロールllのゴージ部
11との間に位置するホローシェルHのA1部分はホロ
ーシェルHの1/4回転後にはガイドシュ3dと接する
部分A2に移動するが、この過程ではホローシェルHの
直径を拡大する力が作用するため、この力がガイドシュ
3dとの接触により圧縮力として作用し、A2部分は増
肉された状態となる。
First, the A1 portion of the hollow shell H located between the rolling portion 21 of the plug 2 and the gorge portion 11 of the inclined roll ll moves to the portion A2 in contact with the guide shoe 3d after 1/4 rotation of the hollow shell H; Since a force is applied to enlarge the diameter of the hollow shell H, this force acts as a compressive force due to contact with the guide shoe 3d, and the A2 portion becomes thickened.

この増肉量はガイドシュ3dの出口面角度θ3に応じて
変化する圧縮力により変わる。つまりθ3(〉0)が小
さくなる程、圧縮力が大きくなって増肉量は大きくなり
、逆に03が大きくなる程、圧縮力が小さくなって増肉
量は小さくなる。またホローシェルHが更に174回転
すると、A2部分はプラグ2と傾斜ロール1rとの間の
A3部分に移動し減肉される。このとき、上述した如く
プラグ2のリーリング部22と傾斜ロール1rの出口面
との対向面間隔は、ガイドシュ3dの出口面角度が正の
範囲で大又は小となる程、ホローシェルHの進行方向に
対して漸増又は漸減している。このため、厚肉部がA3
部分である場合には上記対向面間隔が大きく、薄肉部が
A3部分である場合には対向面間隔が狭いので、厚みに
拘わらす圧下刃の調整、例えば略一定となるように圧下
刃の調整を図り得る。
The amount of increase in thickness changes depending on the compressive force that changes depending on the exit surface angle θ3 of the guide shoe 3d. That is, as θ3 (>0) becomes smaller, the compression force becomes larger and the amount of increase in thickness becomes larger, and conversely, as 03 becomes larger, the compression force becomes smaller and the amount of increase in thickness becomes smaller. Further, when the hollow shell H rotates another 174 times, the A2 portion moves to the A3 portion between the plug 2 and the inclined roll 1r, and is thinned. At this time, as described above, the distance between the facing surfaces of the reeling part 22 of the plug 2 and the exit surface of the inclined roll 1r is such that the progress of the hollow shell H increases or decreases as the exit surface angle of the guide shoe 3d becomes larger or smaller within a positive range. It gradually increases or decreases in the direction. Therefore, the thick part is A3
If the thickness is A3, the spacing between the facing surfaces is large, and if the thin wall is an A3 portion, the spacing between the facing surfaces is narrow. can be achieved.

更にホローシェルHが1/4回転するとA3部分はA2
部分に移動するが、この過程でプラグ2の逃げ部と対向
する部分を通過するため、拡径力が小さく、ホローシェ
ルの圧縮力も小さく増肉率が小さい、一方ブラグ2の圧
延部21とガイドシュ3u、3d間に位置している部分
B、はホローシェルHの回転に従って174回転すると
夫々B2.B3゜B、の如く推移するが、B2部分に至
る過程ではプラグ2のリーリング部22と傾斜ロールI
Ilのゴージ部11とによって減肉される6次にホロー
シェルHが1/4回転すると82部分はガイドシュ3d
に接するB3位置に達するが、この過程ではガイドシュ
とバスセンタとの対向面間距離が1/4回転に伴う軸長
方向への移動によりA3部分の場合よりも更に大きくな
るため、A3部分と比べてその分だけ拡径力が小さくな
り、またホローシェルHが受ける圧縮力も小さくなる。
Furthermore, when the hollow shell H rotates 1/4, the A3 part changes to A2.
However, in this process, it passes through the part facing the relief part of the plug 2, so the diameter expansion force is small, the compressive force of the hollow shell is also small, and the thickness increase rate is small. When the parts B located between 3u and 3d rotate 174 times according to the rotation of the hollow shell H, they become B2. B3°B, but in the process of reaching the B2 part, the reeling part 22 of the plug 2 and the inclined roll I
When the sixth hollow shell H, which is thinned by the gorge part 11 of Il, rotates 1/4, the 82 part becomes the guide shoe 3d.
However, in this process, the distance between the facing surfaces of the guide shoe and the bus center becomes even larger than that of the A3 part due to the movement in the axial length direction due to the 1/4 rotation. The diameter expansion force is reduced accordingly, and the compressive force that the hollow shell H receives is also reduced.

この圧縮力の小さくなる傾向はガイドシュ3dの出口面
角度によっても変化しており、ガイドシュ3dの出口面
角度が小さくなる程少なくなり、逆にガイドシュ3dの
出口面角度が大きくなる程著しくなる。
This tendency for the compressive force to decrease also changes depending on the exit surface angle of the guide shoe 3d, and decreases as the exit surface angle of the guide shoe 3d becomes smaller, and conversely, increases as the exit surface angle of the guide shoe 3d increases. Become.

このとき、プラグ2のリーリング部22と傾斜ロール1
rの出口面との対向面間隔はガイドシュ3dの出口面角
度が正の範囲で成る値よりも大又は小となると、ホロー
シェルHの進行方向に対して夫々漸減又は漸増している
。このため圧縮力が小さくなる傾向が小さい場合には上
記対向面間隔が大きくなり、逆に圧縮力が小さくなる傾
向が著しい場合には対向面間隔が狭くなる。
At this time, the reeling part 22 of the plug 2 and the inclined roll 1
The distance between r and the exit surface gradually decreases or gradually increases in the traveling direction of the hollow shell H when the exit surface angle of the guide shoe 3d becomes larger or smaller than a value in a positive range. Therefore, when there is a small tendency for the compressive force to decrease, the distance between the opposing surfaces becomes large, and conversely, when the tendency that the compressive force tends to decrease significantly, the distance between the opposing surfaces becomes narrow.

従って1/4回転差によるプラグと傾斜ロールとの間隔
の変化成分と、ガイドシュの出口面角度差によるガイド
シュとプラグとの間隔の変化成分とに基づき生じた厚み
変化に拘わらず、圧下刃の調整が図られる。
Therefore, regardless of the thickness change caused by the change component in the distance between the plug and the inclined roll due to the 1/4 rotation difference, and the change component in the distance between the guide shoe and the plug due to the difference in exit surface angle of the guide shoe, the rolling blade Adjustments will be made.

更にホローシェルHが1/4回転すると83部分は84
部分に移動するが、この過程で83部分がプラグ2の逃
げ部23と対向する部分を通過するため、殆ど減肉され
ることがなく、またB1部分での厚みはA2部分での厚
みと同一になし得る。
Furthermore, when the hollow shell H turns 1/4, the 83 part becomes 84
However, in this process, the 83 part passes through the part facing the relief part 23 of the plug 2, so there is almost no thinning, and the thickness at the B1 part is the same as the thickness at the A2 part. It can be done.

而して、本発明方法による場合は夫々減肉、増肉が抑制
される結果、プラグ2を経た後のA1.84部分の肉厚
差が解消され、全体として周方向及び軸長方向に均一な
肉厚化が達成されることとなる。
Therefore, in the case of the method of the present invention, as a result of suppressing thickness reduction and thickness increase, the difference in wall thickness at the A1.84 portion after passing through the plug 2 is eliminated, and the thickness is uniform in the circumferential direction and the axial direction as a whole. This results in a thicker wall.

次に本発明のθ1.θ2.θ3の限定理由につき説明す
る。第1表はθ3及びΔθを変更して穿孔圧延し、その
ときに製造した管の偏肉率、圧延方法及び圧延状況をま
とめた表である。その穿孔圧延条件は、ロール交叉角:
0°、ロール傾斜角:12°、ロールゴージ径:  3
50t*φ、ロール入口面角:3.5°、ロール出口面
角=2.5°、3°。
Next, θ1 of the present invention. θ2. The reason for limiting θ3 will be explained. Table 1 is a table summarizing the uneven wall thickness, rolling method, and rolling conditions of the pipes produced by piercing and rolling while changing θ3 and Δθ. The piercing rolling conditions are roll crossing angle:
0°, roll inclination angle: 12°, roll gorge diameter: 3
50t*φ, roll inlet face angle: 3.5°, roll exit face angle = 2.5°, 3°.

3.5’、4“の4レベル、穿孔比:1.5〜3.7、
プラグリーリング面角:l°〜4“、プラグ径:381
1φ〜54鴎φ、ロール開度:521、ガイド開き=5
9〜61龍、ビレット径:60重粛φであった。
4 levels of 3.5', 4", perforation ratio: 1.5-3.7,
Plug reel ring surface angle: l°~4", plug diameter: 381
1φ~54φ, roll opening: 521, guide opening = 5
9-61 dragon, billet diameter: 60 heavy diameter.

この表より理解される如く、θ3とΔθとの組合せによ
って製品管の偏肉率が変化している。このため、θ3に
対してプラグのり−リング面角θ2の選択を誤ると偏肉
率は悪化することになる。
As can be understood from this table, the uneven thickness of the product pipe changes depending on the combination of θ3 and Δθ. Therefore, if the plug paste-ring surface angle θ2 is incorrectly selected with respect to θ3, the thickness unevenness rate will worsen.

従って、製品管の偏肉率を5%以下の良品とすべく、本
発明はこの表に基づき、 Q”<θ3≦1.5°のときには 一20≦02−01≦−0,5″″、 1.5°≦θ3≦3.Ooのときには 一1°≦θ2−θ1≦0a1 3.0°<θ3≦5°のときには 0°<θ2−01≦1.0゜ とした。
Therefore, in order to make the product pipe a good product with a thickness deviation rate of 5% or less, the present invention is based on this table, and when Q''<θ3≦1.5°, -20≦02-01≦-0.5″″ , when 1.5°≦θ3≦3.Oo, -1°≦θ2−θ1≦0a1, and when 3.0°<θ3≦5°, 0°<θ2−01≦1.0°.

C効果〕 第4図(alは本発明により穿孔圧延して製造した管の
内、外面における偏肉量を調査した結果を示した図であ
り、比較のために従来方法により製造した管の内、外面
における偏肉量の調査結果を第4図(blに併せて示し
ている。なお、穿孔圧延条件としては本発明の場合はθ
3=1.0’、  θ2−3.5°。
C effect] Figure 4 (al is a diagram showing the results of investigating the amount of uneven thickness on the inner and outer surfaces of the tube manufactured by piercing and rolling according to the present invention. For comparison, the inner wall of the tube manufactured by the conventional method is shown. The investigation results of the amount of uneven thickness on the outer surface are also shown in Figure 4 (bl).In the case of the present invention, the piercing rolling conditions are θ
3=1.0', θ2-3.5°.

θ1−2° (?)、従来方法の場合はθ3 = 1.
0°。
θ1-2° (?), in the case of the conventional method, θ3 = 1.
0°.

θ2−3.5°、al = 3.5°であった。θ2−3.5°, al=3.5°.

この図より理解される如く、従来方法による場合には内
、外面共に表面の凹凸差が大きく、例えば外面で凹凸差
が1鶴程度あったが、本発明による場合には内、外面共
にそれを小さくでき、例えば外面では凹凸差を0.2 
w程度と従来の115程度にできた。
As can be understood from this figure, when using the conventional method, there was a large difference in surface unevenness on both the inner and outer surfaces, for example, the difference in unevenness on the outer surface was about one crane, but in the case of the present invention, the difference in unevenness on both the inner and outer surfaces was large. For example, the unevenness difference on the outer surface can be reduced to 0.2
It was possible to make it about 115 w compared to the conventional one.

以上詳述した如く、本発明はプラグのり−リング部と対
向する傾斜ロールの出口面又はその接線が被圧延材のパ
スセンタに対してなす角度と、傾斜ロールの出口面と対
向するプラグのリーリング部表面又はその接線が被圧延
材のパスセンタに対してなす角度と、プラグのり−リン
グ部と対向するガイドシュの出口面又はその接線がパス
センタに対してなす角度とを所定範囲として圧延するの
で、偏肉の発生を防止して高品質の金属管を製造できる
優れた効果を奏する。
As described in detail above, the present invention is characterized by the angle that the exit surface of the inclined roll facing the plug glue ring part or its tangent line makes with the pass center of the rolled material, and the reeling of the plug facing the exit surface of the inclined roll. Since rolling is performed within a predetermined range, the angle that the part surface or its tangent line makes with the pass center of the material to be rolled, and the angle that the guide shoe exit surface facing the plug glue ring part or its tangent line makes with the pass center, It has the excellent effect of preventing uneven thickness and producing high-quality metal pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に用いるピアサ−における圧延ロー
ルとプラグとの関係を示す模式図、第2図は第1図のn
−n線による断面図、第3図は第2図のm−mによる断
面図、第4図は本発明の詳細な説明図、第5図は従来用
いられているピアサ−における圧延ロールとプラグとの
関係を示す模式図、第6図は第5図の■−vr線による
断面図、第7図は偏肉発生過程を示す説明図、第8図は
肉厚の推移を示すグラフ、第9図は従来方法により得た
ホローシェル上半分の外観図、第10図は他の従来方法
による場合の偏肉発生過程を示す説明図、第11図はそ
の場合の肉厚の推移を示すグラフである。 1 j!、Ir・・・傾斜ロール 2・・・プラグ3u
、3d・・・ガイドシュ 11・・・ゴージ部12・・
・入口面 13・・・出口面 21・・・圧延部22・
・・リーリング部 23・・・逃げ部B・・・丸鋼片 
H・・・ホローシェル特 許 出願人  住友金冗工業
株式会社代理人 弁理士  河  野  登  夫内面 第 41!1 椰 G 図
Fig. 1 is a schematic diagram showing the relationship between the rolling roll and the plug in the piercer used in the method of the present invention, and Fig. 2 is the n of Fig. 1.
3 is a sectional view taken along line m-m in FIG. 2, FIG. 4 is a detailed explanatory diagram of the present invention, and FIG. 6 is a cross-sectional view taken along the ■-vr line in FIG. Fig. 9 is an external view of the upper half of the hollow shell obtained by the conventional method, Fig. 10 is an explanatory diagram showing the process of uneven thickness when using another conventional method, and Fig. 11 is a graph showing the change in wall thickness in that case. be. 1 j! , Ir... Inclined roll 2... Plug 3u
, 3d... Guide shoe 11... Gorge part 12...
・Entrance surface 13...Exit surface 21...Rolling part 22・
... Reeling part 23 ... Relief part B ... Round steel piece
H...Hollow shell patent Applicant Sumitomo Kinjo Industries Co., Ltd. Agent Patent attorney Noboru Kono No. 41!1 Coconut G Figure

Claims (1)

【特許請求の範囲】 1、パスライン周りに交互に配された複数の傾斜ロール
及び複数のガイドシュの間に被圧延材をその軸心線方向
に螺進移動させつつ前記軸心線に沿ってプラグを貫入せ
しめて被圧延材に穿孔圧延する過程において、 前記プラグのリーリング部と対向する傾斜ロールの出口
面又はその接線が被圧延材のパスセンタに対してなす角
度(θ_1)と、傾斜ロールの出口面と対向するプラグ
のリーリング部表面又はその接線がパスセンタに対して
なす角度(θ_2)と、プラグのリーリング部と対向す
るガイドシュ出口面又はその接線がパスセンタに対して
なす角度(θ_3)とを下式の関係に維持して圧延する
ことを特徴とする金属管の傾斜ロール圧延方法。 0°<θ_3≦1.5°のときには −2°≦θ_2−θ_1≦−0.5°、 1.5°≦θ_3≦3.0°のときには −1°<θ_2−θ_1≦0°、 3.0°<θ_3≦5°のときには 0°<θ_2−θ_1≦1.0°
[Claims] 1. A material to be rolled is spirally moved in the axial direction between a plurality of inclined rolls and a plurality of guide shoes arranged alternately around the pass line, and the material is moved along the axial center line. In the process of piercing and rolling a material to be rolled by penetrating the plug into the material to be rolled, the angle (θ_1) that the exit surface of the inclined roll facing the reeling part of the plug or its tangent line makes with the pass center of the material to be rolled, and the inclination The angle (θ_2) that the surface of the reeling part of the plug, which faces the exit surface of the roll, or its tangent line makes with the pass center, and the angle that the exit surface of the guide shoe, which faces the reeling part of the plug, or its tangent, makes with the pass center. (θ_3) is maintained in the following relationship during rolling. A method for rolling a metal tube with inclined rolls. When 0°<θ_3≦1.5°, -2°≦θ_2-θ_1≦-0.5°; When 1.5°≦θ_3≦3.0°, -1°<θ_2-θ_1≦0°, 3 .0°<θ_3≦5°, 0°<θ_2−θ_1≦1.0°
JP1483687A 1987-01-23 1987-01-23 Skew roll rolling method for metal tube Granted JPS63183707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1483687A JPS63183707A (en) 1987-01-23 1987-01-23 Skew roll rolling method for metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1483687A JPS63183707A (en) 1987-01-23 1987-01-23 Skew roll rolling method for metal tube

Publications (2)

Publication Number Publication Date
JPS63183707A true JPS63183707A (en) 1988-07-29
JPH055562B2 JPH055562B2 (en) 1993-01-22

Family

ID=11872117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1483687A Granted JPS63183707A (en) 1987-01-23 1987-01-23 Skew roll rolling method for metal tube

Country Status (1)

Country Link
JP (1) JPS63183707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743106A1 (en) * 1995-05-19 1996-11-20 Nkk Corporation Method for manufacturing seamless pipe
US6988387B2 (en) * 2002-12-12 2006-01-24 Sumitomo Metal Industries, Ltd. Making method for seamless metallic tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743106A1 (en) * 1995-05-19 1996-11-20 Nkk Corporation Method for manufacturing seamless pipe
US5778714A (en) * 1995-05-19 1998-07-14 Nkk Corporation Method for manufacturing seamless pipe
US6073331A (en) * 1995-05-19 2000-06-13 Nkk Corporation Method for manufacturing seamless pipe
US6988387B2 (en) * 2002-12-12 2006-01-24 Sumitomo Metal Industries, Ltd. Making method for seamless metallic tube

Also Published As

Publication number Publication date
JPH055562B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
JPS63183707A (en) Skew roll rolling method for metal tube
JP3119160B2 (en) Manufacturing method of seamless pipe
US4392369A (en) Diagonal rolling of hollow stock
US7578157B2 (en) Piercing-rolling method and piercing-rolling apparatus for seamless tubes
JP3452039B2 (en) Rolling method of seamless steel pipe
JP3470686B2 (en) Rolling method of seamless steel pipe
JP3402268B2 (en) Method for piercing and rolling seamless metal pipes
JPS61137612A (en) Skew rolling method of metallic pipe and plug used for rolling
JPS60191609A (en) Rolling method of metallic pipe by inclined roll
JPS60206514A (en) Skew rolling method of metallic pipe
JP3036356B2 (en) Seamless pipe manufacturing apparatus and seamless pipe manufacturing method
JPH08294712A (en) Piercing rolling mill
JP3064822B2 (en) Tube rolling method by mandrel mill
JP2996124B2 (en) Perforation rolling method for seamless metal pipe
JPH105820A (en) Manufacture of seamless metallic tube
JPS63248502A (en) Manufacture of seamless tube
JPH07115050B2 (en) Method of reducing diameter of metal pipe
JP2692524B2 (en) Inclined elongation rolling method of hot seamless steel pipe
JP3166656B2 (en) Rolling method and rolling mill for section steel
JP2932958B2 (en) Perforation rolling method for seamless metal pipe
JPS6046805A (en) Control method of mandrel mill
JPS6349309A (en) Rolling roll for cold pilger mill
JPH02263506A (en) Cross helical rolling method
JPS6192710A (en) Manufacture of large-diameter seamless steel pipe and its device
JPS62212004A (en) Reeling pipe rolling method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees