JPS61137612A - Skew rolling method of metallic pipe and plug used for rolling - Google Patents
Skew rolling method of metallic pipe and plug used for rollingInfo
- Publication number
- JPS61137612A JPS61137612A JP25977684A JP25977684A JPS61137612A JP S61137612 A JPS61137612 A JP S61137612A JP 25977684 A JP25977684 A JP 25977684A JP 25977684 A JP25977684 A JP 25977684A JP S61137612 A JPS61137612 A JP S61137612A
- Authority
- JP
- Japan
- Prior art keywords
- plug
- rolling
- rolled
- roll
- reeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims description 21
- 230000004323 axial length Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 239000008186 active pharmaceutical agent Substances 0.000 abstract description 3
- 210000003127 knee Anatomy 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B25/00—Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B19/00—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
- B21B19/02—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
- B21B19/04—Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は継目無金属管の代表的製造方法であるマンネス
マン製管法等において広く採用されている穿孔機(ピア
サ−)、延伸圧延機(エロンゲータ)等、所謂傾斜ロー
ルを用いた圧延機による圧延方法及びその圧延に用いら
れるプラグに関するものである。[Detailed Description of the Invention] [Industrial Field of Application] The present invention applies to piercing machines (piercers), elongation rolling machines ( The present invention relates to a rolling method using a rolling mill using so-called inclined rolls, such as Elongator, and a plug used in the rolling.
一般にマンネスマン製管法による継目無の金属管は、先
ず加熱した丸鋼片をピアサ−に通し、その中心部に穿孔
してホローシェルを得、これを直接、又は必要があれば
ホローシェルをエロンゲータに通し、拡径、延伸圧延を
施した後、例えばプラグミルにて更に延伸圧延し、リー
ラ、サイプにて磨管、形状修正、サイジングを行い、精
整工程を経て製造されている。ところで上記したピアサ
−、エロンゲータにおいてはいずれも丸鋼片、ホローシ
ェルのバスセンタに対して軸心線を傾斜させた樽形の圧
延ロール(以下傾斜ロールという)とプラグとを組合せ
た所MM斜圧延機が用いられる0例えばピアサ−につい
てみると、第3図に示す如(、軸長方向の中間に直径が
最大となるゴージ部11を備えてこのゴージ部11の両
側に夫々端末側に向うに従い直径が漸減されて円錐台形
をなす入口面12、出口面13を備えた一対の傾斜ロー
ルlj!、1rと、全体として弾頭形状をなし、先端側
から略円錐体状をなす圧延部21、これに続く略円錐台
状をなすリーリング部22及び基端末に向うに従って縮
径された逃げ部23を具備するプラグ2とを組み合せて
構成されており、両傾斜ロール11゜lrは丸鋼片Bの
バスセンタの両側に夫々平面視で軸心線がバスセンタと
平行に、また側面視で一方の傾斜ロールは人口面12が
上側を向(ように、他方は下側を向くように傾斜角βだ
けバスセンタに対し傾斜させて配設され、更にプラグ2
はその軸心線をバスセンタに一致せしめて配設されてい
る。In general, seamless metal pipes made using the Mannesmann pipe manufacturing method are first made by passing a heated round steel piece through a piercer, drilling a hole in its center to obtain a hollow shell, and then passing this directly or, if necessary, passing the hollow shell through an elongator. After being subjected to diameter expansion and elongation rolling, it is further elongated and rolled using, for example, a plug mill, and is polished using a reeler and sipe, shape correction, and sizing, and is manufactured through a refining process. By the way, both the above-mentioned piercer and elongator are MM oblique rolling mills that combine a barrel-shaped rolling roll (hereinafter referred to as an "inclined roll") whose axis line is inclined with respect to the bus center of a round billet or hollow shell and a plug. For example, in the case of a piercer, as shown in FIG. A pair of inclined rolls lj!, 1r each having an inlet surface 12 and an outlet surface 13 which are gradually reduced in the shape of a truncated cone; It is constructed by combining a reeling part 22 having a substantially truncated conical shape and a plug 2 having a relief part 23 whose diameter is reduced toward the base end, and the both inclined rolls 11°lr are formed by a reeling part 22 having a substantially truncated conical shape, and a plug 2 having a relief part 23 whose diameter decreases toward the base end. On both sides of the bus center, the axis lines are parallel to the bus center in plan view, and in side view, one inclined roll faces upward (and the other side faces downward), so that the center line is parallel to the bus center by an inclination angle β. The plug 2 is arranged at an angle with respect to the
is arranged with its axis aligned with the bus center.
加熱された丸鋼片Bは白抜矢符で示す如く軸長方向に移
送されてきて両傾斜ロールH!、lrの人口面12.1
2間に噛み込まれ、軸心繰向りに回転されつつ軸長方向
に移送される、所謂蝉進移動せしめられつつその中心部
にプラグ2が貫入せしめられ、傾斜ロールILlrとプ
ラグ2とによって穿孔圧延されるようになっている。The heated round steel piece B is transferred in the axial direction as shown by the white arrow, and is transferred to the double inclined roll H! , lr population side 12.1
The plug 2 is inserted into the center of the plug 2 while being rotated in the axial direction and transferred in the axial direction, in a so-called semi-advanced movement. It is adapted to be pierced and rolled.
第4図は第3図のff−IV線による模式的断面図であ
り、プラグ2によって穿孔された丸鋼片はプラグ2と傾
斜ロールlj1.lrとの対向面間で加圧。FIG. 4 is a schematic cross-sectional view taken along the line ff-IV in FIG. Pressure is applied between the opposing surfaces with lr.
延伸されてホローシェルHに成形されるが、この過程で
はプラグ2と傾斜ロールL1.1rとの対向面間で加圧
されたホローシェルHはこの部分で薄肉化され、この部
分の材料は軸長方向、周方向に展延されるが、周方向へ
の展延によってホローシェルHは外径を拡大しようとす
る力を受ける。しかしホローシェルHの上、T:部はガ
イトンニー3u。The hollow shell H is stretched and formed into a hollow shell H. In this process, the hollow shell H, which is pressurized between the facing surfaces of the plug 2 and the inclined roll L1.1r, is thinned in this part, and the material in this part is thinned in the axial direction. , the hollow shell H is expanded in the circumferential direction, but due to the expansion in the circumferential direction, the hollow shell H receives a force that tends to increase the outer diameter. However, on the hollow shell H, the T: part is Guyton knee 3u.
3dに摺接しており外径の拡大が抑制されるために外径
を拡大しようとする力は逆に圧縮力として作用し、この
圧縮力がプラグ2と伊斜ロールle。Since it is in sliding contact with the plug 3d and the expansion of the outer diameter is suppressed, the force that tries to expand the outer diameter acts as a compressive force, and this compressive force acts on the plug 2 and the isometric roll le.
1rとの対向面間部分を除く他の部分で増肉を生しさせ
る。ちなみにプラグ2の軸中心、プラグ2と1’JIi
ロールH!、lrとの対向面中心を通る平面(Y−’Y
面)及びこれと直交する平面(Z−2面)による各断面
におけるホローシェルの肉厚は1:1;l−1,4程度
である。Thickening is caused in other parts except for the part between the opposing surfaces with 1r. By the way, the axis center of plug 2, plug 2 and 1'JIi
Roll H! , a plane passing through the center of the facing surface with lr (Y-'Y
The thickness of the hollow shell in each cross section taken by the plane (Z-2 plane) and the plane (Z-2 plane) perpendicular thereto is about 1:1; l-1.4.
ところでこのようなピアサ−により穿孔圧延されるホロ
ーシェルHはその軸心繰向りに2周回転せしめられる都
度プラグ2と傾斜ロールlIt、lrとの間及びガイト
ンニー3u、 3dとの摺接位置を交互に通過し、減肉
過程、増肉過程を反復されることとなる。By the way, each time the hollow shell H that is pierced and rolled by such a piercer is rotated twice around its axis, the sliding contact positions between the plug 2 and the inclined rolls lIt, lr and with the guyton knees 3u and 3d are alternated. Then, the thinning process and thickening process are repeated.
第5図は第4図のV−V線による模式的断面図であり、
いまプラグ2と圧延ロールbとの対向面間に位置するホ
ローシェルHの部分A IはホローシェルHの2回転後
にはガイドシュー3dと接する部分A2に移動するが、
この過程ではプラグ2の圧延部21が丸鋼片Bに貫入し
た直後であって拡径率が大きく、それだけホローシェル
Hが受ける圧縮力も大きく当然ホローシェルHの増肉率
が大きくなる。ホローシェルHが更に×回転すると、A
2部分はプラグ2におけるリーリング部22と傾斜ロー
ルHzとの間のA3部分に移動するが、プラグ2と傾斜
ロールlILとの間隙が狭くなることもあって大きな減
肉率となる。そしてホローシェルHが更にA回転すると
A3部分はガイトンニー3uと接するA4部分に移動す
るが、この過程ではA3部分がプラグ2の逃げ部23と
対向する部分を通過するため、ホローシェルHがうける
拡径しようとする力は小さく、従って圧縮力も小さくな
って増肉率も小さくA48分は薄肉の状態となる。FIG. 5 is a schematic cross-sectional view taken along line V-V in FIG. 4,
After two revolutions of the hollow shell H, the portion A I of the hollow shell H that is currently located between the facing surfaces of the plug 2 and the rolling roll b moves to the portion A2 that contacts the guide shoe 3d.
In this process, immediately after the rolled part 21 of the plug 2 penetrates into the round steel piece B, the diameter expansion rate is large, and the compressive force that the hollow shell H receives is correspondingly large. Naturally, the thickness increase rate of the hollow shell H becomes large. When the hollow shell H rotates further ×, A
The second portion moves to the A3 portion between the reeling portion 22 and the inclined roll Hz in the plug 2, but the gap between the plug 2 and the inclined roll lIL becomes narrower, resulting in a large thickness reduction rate. Then, when the hollow shell H rotates a further A, the A3 portion moves to the A4 portion where it contacts the guy knee 3u, but in this process, the A3 portion passes through the portion of the plug 2 that faces the relief portion 23, so the diameter of the hollow shell H increases. The pressing force is small, so the compressive force is also small, and the rate of increase in thickness is also small, resulting in a thin wall at A48.
一方第5図においてA+9f1分から周方向にA間隔て
てリーリング部22のiii端と対向する位置で下部ガ
イトンニー3dと接する81部分についてみると、ホロ
ーシェルHがA回転されるとプラグ2と圧延ロール11
との対向面間である82部分に移動するが、この過程で
は減肉される0次にホローシェルHがA回転されると8
2部分は上部ガイドシュー3uと接する83部分に移動
するが、この過程での拡径率は大きくホローシェルI]
の受+する圧縮力も大きく、大きく増肉される。そして
更にホローシェルHがA回転されるとB>fR分は84
部分に移動するが、この過程ではプラグ2の逃げ部23
を通過するため殆ど減肉されることなく84部分は厚肉
の状態となる。On the other hand, in FIG. 5, when looking at the part 81 which contacts the lower guy knee 3d at a position facing the iii end of the reeling part 22 at an interval A in the circumferential direction from A+9f1, when the hollow shell H is rotated A, the plug 2 and the rolling roll 11
When the zero-order hollow shell H is rotated A, it moves to the 82 part between the facing surfaces of the
The 2nd part moves to the 83rd part where it contacts the upper guide shoe 3u, but the diameter expansion rate in this process is large and the hollow shell I]
The compressive force it receives is also large, resulting in a large increase in thickness. Then, when the hollow shell H is further rotated by A, B>fR becomes 84
However, in this process, the relief part 23 of the plug 2
84 is in a thick state with almost no thickness reduction.
而してホローシェルHの周方向に2間隔てられた部分は
結果的に交互に薄肉部分A4、厚肉部分B、となって現
われるために、螺旋状の偏肉が形成されることとなるの
である。As a result, the portions of the hollow shell H spaced apart by two intervals in the circumferential direction alternately appear as thin portions A4 and thick portions B, resulting in the formation of a spiral uneven thickness. be.
第6図は1iI記したA1部分、Bls分がプラグ2の
先端と対向する位置からプラグ2を通過する間における
肉厚の推移を示したグラフであって、横軸にホローシェ
ルHの進行方向への距離を、また縦軸には肉厚をとって
示している。FIG. 6 is a graph showing the change in wall thickness of the A1 portion marked 1iI and the Bls portion as it passes through the plug 2 from the position facing the tip of the plug 2, and the horizontal axis is in the direction of movement of the hollow shell H. The vertical axis shows the wall thickness.
このグラフから明らかな如く、プラグ2によって穿孔が
開始されたとき、その部分が周方向のいずれの位置、即
ち、左、右の傾斜ロールIN、lrと対向する位置か、
或いは上、下のガイトンニー3u、 3dと対向する位
置かによって薄肉化−或いは厚肉化することとなり、プ
ラグ2を通過後はホローノニルHの軸長方向に厚肉部分
、薄肉部分が交互に表われるdIx旋状の偏肉が生ずる
ことが解る。As is clear from this graph, when drilling is started by the plug 2, which position in the circumferential direction is that part located, that is, the position facing the left and right inclined rolls IN and lr?
Alternatively, it becomes thinner or thicker depending on whether it faces the upper or lower guy knee 3u or 3d, and after passing through the plug 2, thick portions and thin portions appear alternately in the axial length direction of Holononyl H. It can be seen that a dIx spiral thickness unevenness occurs.
このようにして発生した偏肉は後工程でエロンゲ−y、
マンドレルミル、ストレッチ・レデューサ、リーラに通
しても解消するのが難しく、成品品質に与える影響が極
めて大きいという問題があった。The uneven thickness that occurs in this way is elongated in the subsequent process.
There was a problem in that it was difficult to solve the problem even by passing it through a mandrel mill, stretch reducer, or leeler, and it had an extremely large effect on the quality of the finished product.
本願発明者は上述した肉厚の不均一の発生原因につき、
実験、研究を行った結果、厚肉となる部分はプラグ2の
リーリング部とロールとによる圧延は一度しか行われて
いないことを知見した。即ち、曲述の第5図において、
プラグ2による穿孔が開始されたとき、ガイトンz
3u、3dとプラグ2のリーリング部22との間にある
部分(第5図における81部分)は、A回転して一方の
ロールにより減肉されるが、(第5図、82部分)、そ
の後A回転するとプラグ2のリーリング部22とガイト
ンニーとの間にて増肉され(第5図、B3)、さらにA
回転すると、その部分はプラグ2のリーリング部22周
回域を外れて逃げ部23の周回域に達することになり(
第5図、B、)、他力のロールによる減肉は行われない
。つまり、厚肉邪になるのは一力のロールによる圧延し
か行われなかった部分であり、少なくとも両方のロール
による圧延が行われた部分は減肉部となる。The inventor of the present application has determined that the above-mentioned cause of the non-uniformity of wall thickness occurs.
As a result of experiments and research, it was found that the thick portion was rolled only once by the reeling part of the plug 2 and the rolls. That is, in Figure 5 of the song description,
When drilling by plug 2 starts, Guyton z
The part between 3u, 3d and the reeling part 22 of the plug 2 (part 81 in Fig. 5) is thinned by one roll after rotating A, but (part 82 in Fig. 5), After that, when A is rotated, the thickness is increased between the reeling part 22 of the plug 2 and the guy's knee (Fig. 5, B3), and further A
When it rotates, that part leaves the area around the reeling part 22 of the plug 2 and reaches the area around the relief part 23 (
Figure 5, B), no thinning is performed by external rolls. In other words, the part that becomes thicker is the part that has been rolled only by one roll, and the part that has been rolled by at least both rolls is the part that has reduced thickness.
従って、被圧延材の肉厚の不均一をなくするためには、
一つのロールとプラグ2のリーリング部とにより圧延さ
れた部分が他のロールとプラグ2のリーリング部とによ
り圧延されればよく、換言すれば被圧延材が2回転する
間のその軸長方向への移動距離が、少なくともプラグ2
のリーリング部の軸長方向長さ以上となればよい。Therefore, in order to eliminate unevenness in the thickness of the rolled material,
It is sufficient that the part rolled by one roll and the reeling part of the plug 2 is rolled by another roll and the reeling part of the plug 2. In other words, the axial length of the rolled material during two rotations is sufficient. If the distance traveled in the direction is at least plug 2
The length in the axial direction of the reeling portion may be greater than or equal to the length in the axial direction of the reeling portion.
従来、プラグ2におけるリーリング部22の軸長方向長
さについては理論的な根拠がなく、経験的にプラグ2の
全長に対して0.15〜0.25となるようにされてい
た。Conventionally, there is no theoretical basis for determining the length of the reeling portion 22 in the axial direction of the plug 2, and it has been empirically determined to be 0.15 to 0.25 with respect to the entire length of the plug 2.
今、被圧延材の清適速度をV(その周方向成分をV、−
5軸心方向成分をν11)、圧i!後のホローシェルの
外径をDs、プラグ2のリーリング長をLRとすると、
被圧延材が軸長方向にリーリング匪LRだけ移動する間
に被圧延材が〃回転以上する条件は次のように表わされ
る。[!IIち、被圧延材が軸長方向にLRだけ移動す
るのに必要な時間はLLI/vlで表わされ、この間に
被圧延材の周方向の移動距離はVy・LIL/vjlで
表わされる。Now, the appropriate speed of the material to be rolled is V (its circumferential direction component is V, -
The component in the 5-axis direction is ν11), and the pressure i! If the outer diameter of the latter hollow shell is Ds, and the reeling length of plug 2 is LR, then
The conditions under which the rolled material rotates more than 〃 while the rolled material moves in the axial direction by the reeling power LR are expressed as follows. [! II. The time required for the rolled material to move by LR in the axial direction is expressed by LLI/vl, and the distance the rolled material moves in the circumferential direction during this time is expressed by Vy·LIL/vjl.
この距離がホローシェルのA周分より大となればよく次
式(1)が成立する。As long as this distance is larger than the A circumference of the hollow shell, the following equation (1) holds true.
v2・LR/vn≧□・Ds −・−(。v2・LR/vn≧□・Ds −・−(.
傾斜ロール1ffi、1rの傾斜角度をβとすると、傾
斜ロールが傾斜して回転していることにより被圧延材は
蝮進移動されるため、被圧延材の情進速度Vの周方向成
分V1(、軸方向成分Vy、傾斜角度βとの関係は第7
図に示すようになり、次式(2)にて表わされる。If the inclination angle of the inclined rolls 1ffi and 1r is β, the rolled material is moved forward by the inclined rolls rotating at an inclination, so the circumferential direction component V1 of the advancing speed V of the rolled material is , the relationship between the axial component Vy and the inclination angle β is the seventh
As shown in the figure, it is expressed by the following equation (2).
Vu/V2=tanβ ・−f2+(1)、(
2)式より次式が成立する。Vu/V2=tanβ・−f2+(1), (
From equation 2), the following equation holds true.
LQ ≧ □ I)stan β −(31一
方、プラグ2のリーリング長さLRは、プラグ2を設計
する際に、必要以トに大きくすると、プラグ2の重量増
加から作業性が恋化し、また経済性も1口なわれる。従
ってリーリング区さLPは極力抑制すべきである。LQ □ I) stan β - (31 On the other hand, when designing the plug 2, if the reeling length LR of the plug 2 is made larger than necessary, the workability will be compromised due to the increased weight of the plug 2, and Economic efficiency is also affected by one mouth.Therefore, the use of reeling LPs should be suppressed as much as possible.
本願発明者は、リーリング長さLRを(3)式の関係を
満足する範囲で変更してプラグを製作し実験を試みた。The inventor of the present application manufactured plugs and conducted experiments by changing the reeling length LR within a range that satisfies the relationship of equation (3).
その結果を第8図に示す。第8図より明らかなようにリ
ーリング長さLt+はπ・Ds ・jan β以上と
なっても、換言すればプラグとロールとの間での圧延が
4回以上行われても、被圧延材の圧延後の偏肉率にはほ
とんど差が認められないことを知見した。The results are shown in FIG. As is clear from Fig. 8, even if the reeling length Lt+ is π・Ds・jan β or more, in other words, even if rolling is performed four or more times between the plug and the roll, the rolled material It was found that there was almost no difference in the thickness unevenness rate after rolling.
従って、リーリング長さLPの、偏肉に対する限界長は
π・DS tanβとすればよく、次式が成立する。Therefore, the critical length of the reeling length LP with respect to uneven thickness may be π·DS tanβ, and the following equation holds true.
LQ≦π・DS Lanβ −+41(3)、(4
)式より下記(5)式が成立する。LQ≦π・DS Lanβ −+41 (3), (4
), the following equation (5) holds true.
−Ds −tan β≦しR≦π−Ds・Lan β
・・・(6)
〔作用〕
上記(5)式を満足するリーリング長LRとなったプラ
グを用いた場合における穿孔圧延過程の断面模式図を第
1図に、またこの場合の肉厚分布を第2図に示す。第2
図においては、第5図と同様、第4図の■−■線におけ
る断面として表わされている。さて、プラグ2と圧延ロ
ールlrとの対向面間に位置するホローシェルHの部分
C1は両者により減肉圧延され、ホローシェルHのA回
転後にはガイトノニー3dと接する部分C2に移動して
ここで若干増肉される。さらにホローシェルHが×回転
するとC2部分はプラグ2と停斜ロールIItとの間の
03部分に移動して再度肉厚臣下を受けて減肉され、次
のAの回転により03部分はガイトンニー30と接する
C1部分に達する。このとき、リーリング長さLRは上
記(5)式の関係を満足しているため、C4部分はリー
リング部22の周回域にあり、該リーリング部22とガ
イトノニー3uとによりホローノニルI(の拡管が拘束
されていることに起因する周方向圧縮応力により若干増
肉する。一方、第1図において01部分から周方向にA
隔てたガイトノニー3dと接する部分D1についてみる
と、ホローシェルHが2回転することによりプラグ2と
圧延ロールBとの対向面間であるD2部分に移動し、両
者により減肉される0次にホローシェルHが2回転する
とD2部分は上部ガイトノニー30と接するD3部分に
移動するが、この過程での拡径率は大きく、従ってホロ
ーノニルHの受ける圧縮力も大きいために、大きく増肉
される。−Ds −tan β≦R≦π−Ds・Lan β
...(6) [Operation] Figure 1 shows a schematic cross-sectional view of the piercing rolling process when a plug with a reeling length LR that satisfies the above formula (5) is used, and the wall thickness distribution in this case. is shown in Figure 2. Second
In the figure, like FIG. 5, it is shown as a cross section taken along the line ■--■ in FIG. 4. Now, the portion C1 of the hollow shell H located between the opposing surfaces of the plug 2 and the rolling roll lr is rolled to reduce its thickness by both, and after the A rotation of the hollow shell H, it moves to the portion C2 in contact with the guide nonny 3d, where it increases slightly. Become meat. When the hollow shell H further rotates ×, the C2 portion moves to the 03 portion between the plug 2 and the stop roll IIt, and is thinned again due to the wall thickness, and with the next rotation of A, the 03 portion becomes the Guyton knee 30. It reaches the contacting C1 part. At this time, since the reeling length LR satisfies the relationship of equation (5) above, the C4 portion is in the circumferential region of the reeling portion 22, and the reeling portion 22 and the guide nony 3u cause the hollow nonyl I( The wall thickness increases slightly due to compressive stress in the circumferential direction due to the restriction of pipe expansion.On the other hand, in Fig.
Looking at the part D1 in contact with the separated guide nony 3d, the hollow shell H rotates twice and moves to the D2 part between the facing surfaces of the plug 2 and the rolling roll B, and the zero-order hollow shell H is thinned by both. When it rotates twice, the D2 portion moves to the D3 portion that contacts the upper guide nony 30, but the diameter expansion rate during this process is large, and therefore the compression force applied to the hollow nonyl H is also large, so the thickness is increased significantly.
その(麦、さらにホローシェルHが2回転されるとD3
部分は、プラグ2とロールlrとの間の部分り。(Mugi, and when Hollow Shell H is rotated twice, D3
The part is between the plug 2 and the roll lr.
に達するが、プラグ2のリーリング部22の長さLRは
上記(5)式を満足しているために、D4部分はプラグ
2の逃げ部23の周回域に達することな(、リーリング
部22に当接しており、該リーリング部22とロールl
rとにより圧下されて減肉されることになる。However, since the length LR of the reeling part 22 of the plug 2 satisfies the above formula (5), the D4 portion does not reach the circumferential area of the escape part 23 of the plug 2 (the reeling part 22, and the reeling part 22 and the roll l
The thickness is reduced by being rolled down by r.
〔実h&1例〕
次に本発明を、丸鋼を穿孔圧延して中空素管を得るピア
サ−に実施した場合について税引する。[Actual Example & 1] Next, tax will be deducted for the case where the present invention is implemented in a piercer that obtains a hollow pipe by piercing and rolling round steel.
第1表に、本発明の実施に使用したプラグの諸元、該プ
ラグ使用時の穿孔段取、使用ロールの諸元、被圧延材諸
元を示す、なお従来のプラグを使用して穿孔圧延を行っ
た場合における同様の項目についても第1表に示す。Table 1 shows the specifications of the plug used in the implementation of the present invention, the drilling setup when using the plug, the specifications of the roll used, and the specifications of the rolled material. Table 1 also shows similar items in the case of carrying out.
第 1 表
また本発明により穿孔圧延を行った場合における穿孔未
完了材のホローノニル肉厚圧下過程、ノニル肉厚分布(
周方向、長手方向)、ホローノニル偏肉重分4を第9図
に示す。なお、第1O図に、従来法により穿孔圧延を行
った場合における穿孔未完了材のホローノニル肉厚圧下
過程、ノニル肉厚分布(周方向、長手方向)、ホローン
エル偏肉率分布を示す。第9図及び第101iJのグラ
フは、いずれも、横軸にプラグ先端からホロー/エルの
その進行方向側への距離を、縦軸には肉厚をとって示し
てあり、グラフ中○印は丸鋼片Bが穿孔され始めたとき
上方に位置する部分、即ぢガイドシュー3u側に位置す
る部分の肉厚の推移を示し、またΔ印は下方、即ちガイ
ドツユ−3d側に位置する部分の肉厚の推移を、・印は
傾斜ロール1 e fllJに位置する部分の肉厚の推
移を、さらにム印は傾斜ロールIr(IIに位置する部
分の肉厚の推移を夫々示している。このグラフから明ら
かなように本発明においては、プラグ2が通過した後の
位置では周方向の肉厚に殆ど差が生じていないことがわ
かる。Table 1 also shows the holononyl wall thickness reduction process and nonyl wall thickness distribution (
(circumferential direction, longitudinal direction) and holononyl uneven thickness weight 4 are shown in FIG. In addition, FIG. 1O shows the hollow nonyl wall thickness reduction process, nonyl wall thickness distribution (circumferential direction, longitudinal direction), and hollow wall thickness unevenness distribution of the unpierced material when piercing and rolling is performed by the conventional method. In both the graphs of Fig. 9 and 101iJ, the horizontal axis shows the distance from the tip of the plug to the direction of travel of the hollow/el, and the vertical axis shows the wall thickness. When the round steel piece B begins to be drilled, it shows the change in wall thickness of the part located above, that is, the part located on the guide shoe 3u side, and the Δ mark indicates the change in the wall thickness of the part located below, that is, on the guide shoe 3d side. The . mark indicates the change in wall thickness of the portion located on the inclined roll 1 e fllJ, and the mu mark indicates the change in the wall thickness of the portion located on the inclined roll Ir (II). As is clear from the graph, in the present invention, there is almost no difference in the wall thickness in the circumferential direction at the position after the plug 2 has passed.
またグラフ中X印のプロットは夫々偏肉率を示している
が、プラグ2を通過した後の偏肉率が大幅に改善されて
いることがわかる。Furthermore, the plots marked with X in the graph each indicate the thickness unevenness rate, and it can be seen that the thickness unevenness rate after passing through the plug 2 has been significantly improved.
なお、上述の説明では、丸鋼を用いて中空素管を製造す
るピアサ−について説明したが、これに限るものではな
く、中空素管を減肉伸長圧延するエロンゲータミルにつ
いても通用できる。またガイドシューはディクロール式
のものでもよいのは当然である。In the above description, a piercer that manufactures a hollow shell using round steel has been described, but the present invention is not limited to this, and can also be applied to an elongate mill that elongates a hollow shell with thinning. Further, it is natural that the guide shoes may be of the di-roll type.
第9図及び第10より明らかなように本発明によれば被
圧延材の穿孔、延伸圧延部分は周方向位置に関係なく均
一な肉厚に仕上げられ、管成品の品質は著しく向上する
。As is clear from FIGS. 9 and 10, according to the present invention, the perforated and elongated portions of the rolled material are finished to have a uniform wall thickness regardless of the circumferential position, and the quality of the tube product is significantly improved.
第1図は本発明における偏肉解消の過程を示す模式図、
第2図はその肉厚の推移を示すグラフ、第3図は圧延ロ
ールとプラグの関係を示す模式図、第4図は第3図のr
V−rV線における模式的断面図、第5図は偏肉発注過
程を示す模式図、第6図はその肉厚の推移を示すグラフ
、第7図はホローシェルの速度成分説明のための模式図
、第8図はプラグとロールとによる被圧延材の圧延回数
と偏肉率との関係を示すグラフ、第9図は本発明の実施
例における肉厚分布を示すグラフ、第1O図は従来例に
おける肉厚分布を示すグラフである。FIG. 1 is a schematic diagram showing the process of eliminating uneven thickness in the present invention,
Figure 2 is a graph showing the change in wall thickness, Figure 3 is a schematic diagram showing the relationship between the rolling roll and the plug, and Figure 4 is the r of Figure 3.
A schematic cross-sectional view along the V-rV line, Fig. 5 is a schematic diagram showing the uneven thickness ordering process, Fig. 6 is a graph showing the change in wall thickness, and Fig. 7 is a schematic diagram for explaining the velocity component of the hollow shell. , FIG. 8 is a graph showing the relationship between the number of times of rolling of a material to be rolled with a plug and a roll and the thickness unevenness ratio, FIG. 9 is a graph showing the wall thickness distribution in an embodiment of the present invention, and FIG. 1O is a conventional example. It is a graph showing wall thickness distribution in .
Claims (1)
をその軸長方向に螺進移動させつつ前記軸長方向に沿っ
てプラグを貫入せしめて被圧延材に穿孔圧延、又は拡径
、延伸圧延する過程において、一方のロールとプラグの
リーリング部とにより圧延された被圧延材部分を、少な
くとも他方のロールとプラグのリーリング部とにより再
度圧延することを特徴とする金属管の傾斜ロール圧延方
法。 2、対向配設された一対の傾斜ロールを用いて被圧延材
をその軸長方向に螺進移動させつつ前記軸長方向に沿っ
てプラグを貫入せしめて被圧延材に穿孔圧延、又は拡径
、延伸圧延する傾斜ロール圧延機において、そのリーリ
ング部の軸長方向長さL_Rが、 π/2・Ds・tanβ≦L_R≦π・Ds・tanβ
但しDs:被圧延材の圧延後の外径 β:傾斜ロールの傾斜角 となるようにしたことを特徴とするプラグ。[Claims] 1. Using a pair of inclined rolls disposed opposite to each other, the material to be rolled is spirally moved in the axial direction thereof, and a plug is penetrated into the material to be rolled along the axial direction. In the process of piercing rolling, diameter expansion, and elongation rolling, the part of the material to be rolled that has been rolled by one roll and the reeling part of the plug is rolled again by at least the other roll and the reeling part of the plug. Features: Inclined roll rolling method for metal tubes. 2. Using a pair of inclined rolls arranged to face each other, the material to be rolled is moved in a spiral direction in the axial direction, and a plug is penetrated along the axial direction to perform piercing rolling or diameter expansion of the material to be rolled. , in an inclined roll rolling mill that performs elongation rolling, the axial length L_R of the reeling portion is π/2・Ds・tanβ≦L_R≦π・Ds・tanβ
However, the plug is characterized in that Ds: outer diameter of the material to be rolled after rolling β: angle of inclination of the inclined roll.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25977684A JPS61137612A (en) | 1984-12-07 | 1984-12-07 | Skew rolling method of metallic pipe and plug used for rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25977684A JPS61137612A (en) | 1984-12-07 | 1984-12-07 | Skew rolling method of metallic pipe and plug used for rolling |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61137612A true JPS61137612A (en) | 1986-06-25 |
Family
ID=17338810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25977684A Pending JPS61137612A (en) | 1984-12-07 | 1984-12-07 | Skew rolling method of metallic pipe and plug used for rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61137612A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140713A (en) * | 1986-12-04 | 1988-06-13 | Kawasaki Steel Corp | Plug of skew roll rolling mill |
JPH04147706A (en) * | 1990-10-12 | 1992-05-21 | Kawasaki Steel Corp | Plug for producing seamless steel pipe |
EP0743106A1 (en) * | 1995-05-19 | 1996-11-20 | Nkk Corporation | Method for manufacturing seamless pipe |
-
1984
- 1984-12-07 JP JP25977684A patent/JPS61137612A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140713A (en) * | 1986-12-04 | 1988-06-13 | Kawasaki Steel Corp | Plug of skew roll rolling mill |
JPH04147706A (en) * | 1990-10-12 | 1992-05-21 | Kawasaki Steel Corp | Plug for producing seamless steel pipe |
EP0743106A1 (en) * | 1995-05-19 | 1996-11-20 | Nkk Corporation | Method for manufacturing seamless pipe |
US5778714A (en) * | 1995-05-19 | 1998-07-14 | Nkk Corporation | Method for manufacturing seamless pipe |
US6073331A (en) * | 1995-05-19 | 2000-06-13 | Nkk Corporation | Method for manufacturing seamless pipe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61137612A (en) | Skew rolling method of metallic pipe and plug used for rolling | |
US792231A (en) | Art of cross-rolling tubular bodies or blanks in a heated state. | |
US1957916A (en) | Apparatus for and method of producing metal tubes | |
US1056326A (en) | Manufacture of seamless tubes. | |
US721210A (en) | Art of rolling tubes. | |
JPH0333405B2 (en) | ||
US2233736A (en) | Method of making tubular workpieces | |
US4196838A (en) | Methods for the manufacture of longitudinal-seam welded tubes | |
US361954A (en) | mannesmann | |
JPS61144204A (en) | Skew rolling method of seamless pipe | |
JP6950858B1 (en) | Inclined rolling equipment, seamless pipe manufacturing method and seamless steel pipe manufacturing method | |
US721213A (en) | Art of rolling tubes. | |
US1858920A (en) | Method of making seamless tubes | |
JP2692524B2 (en) | Inclined elongation rolling method of hot seamless steel pipe | |
JPS6242682B2 (en) | ||
JPS6087907A (en) | Continuous rolling mill for steel pipe | |
JPH0199707A (en) | Method for cold rolling of tube and roll used in practice of that method | |
JPS6046805A (en) | Control method of mandrel mill | |
US1906286A (en) | Tube expanding mill | |
US5357773A (en) | Method of longitudinal rolling of seamless pipe | |
US721212A (en) | Machine for rolling tubes. | |
US1139957A (en) | Manufacture of seamless tubes. | |
JP2996124B2 (en) | Perforation rolling method for seamless metal pipe | |
JP6225893B2 (en) | Inclined rolling method for seamless metal pipe | |
JPS60191609A (en) | Rolling method of metallic pipe by inclined roll |