JPS63183625A - Optical disk device - Google Patents

Optical disk device

Info

Publication number
JPS63183625A
JPS63183625A JP1468587A JP1468587A JPS63183625A JP S63183625 A JPS63183625 A JP S63183625A JP 1468587 A JP1468587 A JP 1468587A JP 1468587 A JP1468587 A JP 1468587A JP S63183625 A JPS63183625 A JP S63183625A
Authority
JP
Japan
Prior art keywords
light
diffracted light
order diffracted
circular
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1468587A
Other languages
Japanese (ja)
Inventor
Seiji Nishiwaki
青児 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1468587A priority Critical patent/JPS63183625A/en
Publication of JPS63183625A publication Critical patent/JPS63183625A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To obtain an optical disk device having a high CN ratio by detecting a reproducing signal by a differential detecting method for offsetting a noise caused by a relative fluctuation of an optical system or an electric system. CONSTITUTION:Only a 1/4 circular light part 14a of a circular luminous flux 14 is allowed to pass through a phase difference plate 3 and a phase is delayed by theta and the luminous flux of this circular light part 14a and the luminous flux of the remaining 3/4 circular light part 14b are projected to a light recording surface 7, and a reflection and a diffraction are generated therein. When the optical amplitude of a 0-th order diffracted light 15b of the 3/4 circular light part is denoted as Ao, the optical amplitude of a 0-th order diffracted light 15a of the 1/4 circular light part becomes AoEXP(jtheta), and also, as for the primary diffracted light, the primary diffracted light 16b of the 3/4 circular light part and the primary diffracted light 16c of the 1/4 circular light part having a phase delay are superposed, and as for the -primary diffracted light, it becomes only the -primary diffracted light 16a of the 3/4 circular light part. In such a way, the luminous flux to which the 0-th order diffracted light and the + or -primary diffracted light have been superposed is led to an optical system split mirror 9, made incident on a differential amplifier through a photosensor 10, and a desired reproducing signal is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は情報を光ディスクに記録または再生する光ディ
スク装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical disc device for recording or reproducing information on an optical disc.

従来の技術 従来の光ディスク装置の構成について以下図面に基づい
て説明する。第4図に示すように、半導体レーザ1から
出た光は集光レンズ2により集光され、偏向ビーt\ス
プリッタ4.1/4波長板5および絞りレンズ6により
光ディスク記録面7に絞り込まれる。この光ディスク記
録面7より反射された光は、ふたたび紋りレンズ6およ
び1/4波長板5を通り、偏向ビームスプリッタ4に到
達し、これを直進して凸レンズ8により絞られる。
2. Description of the Related Art The configuration of a conventional optical disc device will be described below with reference to the drawings. As shown in FIG. 4, the light emitted from the semiconductor laser 1 is focused by a condensing lens 2, and focused onto the optical disk recording surface 7 by a deflection beat splitter 4, a quarter-wave plate 5, and an aperture lens 6. . The light reflected from the optical disc recording surface 7 passes through the fringe lens 6 and the quarter-wave plate 5 again, reaches the deflection beam splitter 4, travels straight through this, and is condensed by the convex lens 8.

この光の一部はフォーカスエラー検出器21に、また残
りの光は分割ミラー9により反射されトラッキングエラ
ー検出器20に受光される。
A part of this light is reflected by the focus error detector 21, and the remaining light is reflected by the splitting mirror 9 and received by the tracking error detector 20.

これら2つの検出器に受光される光分電図を第5図(a
)、(b)に示す。(a)図はトラッキングエラー検出
器20に受光される光の分布図、同様に(b)図はフォ
ーカスエラー検出器21の光分重囲である。
Figure 5 (a
) and (b). (a) is a distribution diagram of light received by the tracking error detector 20, and similarly, (b) is a light distribution diagram of the focus error detector 21.

(a)図に示すように、トラッキングエラー検出器20
には分割ミラー9によって、光ディスク記録面7からの
反射光のほぼ1/2の半円光23aが受光される。この
半円光23aの分布は、走査光が追従しているトラック
面からの反射による0次回折光24に、このトラックお
よび回りの周期的な他の複数のトラックによる1次回折
光24aおよび一1次回折光24bが重畳した光分布と
なっている。
(a) As shown in the figure, a tracking error detector 20
The splitting mirror 9 receives semicircular light 23a, which is approximately 1/2 of the reflected light from the optical disc recording surface 7. The distribution of this semicircular light 23a is such that the 0th-order diffracted light 24 is reflected from the track surface that the scanning light is following, the 1st-order diffracted light 24a and the The light distribution is such that the folded lights 24b are superimposed.

ここで、O次回折光24.1次回折光24aおよび一1
次回折光24bの光振幅は、それぞれO次回折光の光振
幅=A0 1次回折光の光振幅= A +EXP[jlφ−2z(
x/p)l]−1次回折光の光振幅= A+EXP[j
l φ+2π(x/p)II(jr虚数単位) と表現できる。
Here, O-order diffracted light 24, first-order diffracted light 24a and -1
The optical amplitude of the order diffracted light 24b is as follows: Optical amplitude of the O-order diffracted light = A0 Optical amplitude of the 1st-order diffracted light = A +EXP[jlφ-2z(
x/p)l]-light amplitude of first-order diffracted light = A+EXP[j
It can be expressed as l φ+2π(x/p)II (jr imaginary unit).

ただし、(x/p)は光ディスク記録面7上の走査光の
溝中心からのずれ!!Lxと溝のピッチpとの比を現す
。AOlAIおよびφに関しては光ディスク記録面7の
溝形状によって一義的に決定され、溝の深さ;d1溝の
幅;w1溝のピッチ;pとした場合、レーザの波長をλ
とするとAo=w/p+ (1−w/p)EXP(−j
4πd/λ)AIEXP(jφ) = l 1−EXP
(−j4πd/λ)l  +5IN(πw/p)/π) である。
However, (x/p) is the deviation of the scanning light from the groove center on the optical disc recording surface 7! ! It represents the ratio between Lx and the groove pitch p. AOlAI and φ are uniquely determined by the groove shape of the optical disk recording surface 7, and when groove depth; d1 groove width; w1 groove pitch; p, the wavelength of the laser is λ.
Then, Ao=w/p+ (1-w/p)EXP(-j
4πd/λ)AIEXP(jφ) = l 1-EXP
(-j4πd/λ)l +5IN(πw/p)/π).

この光分布が、はぼこのトラックセンターに対応する分
割線25により2分割されたフォトセンサー20a、2
0bにより光電変換され、差動増幅器26により増幅さ
れトラッキングエラー信号(TE)を得る。このため、
トラッキングエラー信号(TE)は1次回折光の光量か
ら一1次回折光の光量を引いた以下の式(A)に比例す
る。
This light distribution is divided into two by a dividing line 25 corresponding to the track center of the hollow photo sensor 20a, 2.
0b, and is amplified by a differential amplifier 26 to obtain a tracking error signal (TE). For this reason,
The tracking error signal (TE) is proportional to the following equation (A) obtained by subtracting the light amount of the 1st-order diffracted light from the light amount of the 1st-order diffracted light.

1 l Ao+A+EXP[jlφ−2π(x/pN]
 l 2− I A。
1 l Ao+A+EXP[jlφ−2π(x/pN]
l2-IA.

+A+EXP[jlφ+2π(x/p)II l 21
−−−(A)従って、走査光がドラッグのセンターに制
御されている時(x / p = Oの時)は上述の1
次回折光24aと一1次回折光24bの振幅と位相が等
しいためトラッキングエラー信号(TE)は出力されな
い。しかしながら、走査光がトラックのセンターからづ
れた場合はこの1次回折光24aと一1次回折光24b
に位相差が生じ、この位相差による光量差が差動増幅器
26により増幅されトラッキングエラー信号(TE)を
得る。
+A+EXP[jlφ+2π(x/p)II l 21
--- (A) Therefore, when the scanning light is controlled to the drag center (when x / p = O), the above 1.
Since the amplitude and phase of the second-order diffracted light 24a and the first-order diffracted light 24b are equal, no tracking error signal (TE) is output. However, when the scanning light deviates from the center of the track, the first-order diffracted light 24a and the first-order diffracted light 24b
A phase difference occurs, and a difference in light amount due to this phase difference is amplified by the differential amplifier 26 to obtain a tracking error signal (TE).

更に、再生信号(RF)はこれら2分割されたフォトセ
ンサー20a、20bに受光される光信号の和信号とし
て検出され、ジャストトラッキング時(x/p=oの時
)には以下の式(B)に比例したものとなる。
Furthermore, the reproduced signal (RF) is detected as a sum signal of the optical signals received by these two divided photosensors 20a and 20b, and at the time of just tracking (when x/p=o), the following equation (B ) will be proportional to

21 l AOlt+ l A+EXP(j;6) l
 21−−−(B) 従って、光ディスク記録面7上に形成される記録ドツト
もしくは記録あるいは番地ビットによる反射光量の変化
をαとすると、記録データによる再生信号振幅は以下の
式(C)に比例したものとなる。
21 l AOlt+ l A+EXP(j;6) l
21--(B) Therefore, if α is the change in the amount of reflected light due to recording dots or recording or address bits formed on the optical disk recording surface 7, the amplitude of the reproduced signal due to the recorded data is proportional to the following equation (C). It becomes what it is.

2 (1−a)  (I AO12+ I A+EXP
(jφ) IB−−−(C) また、凸レンズ8により絞られフォーカスエラー検出器
21に集光される半円光23bは、上記半円光23aと
ベアをなす半円光を更に絞りこんだものである。従って
、その分布はO次回折光27に1次回折光27aおよび
一1次回折光27bが重畳した光分布となっている。こ
の光分布が、半円光23bの切断直径に平行な分割1m
28により2分割されたフォトセンサー21a、21b
により光電変換され、ついで差動増幅器29により増幅
されてフォーカスエラー信号(FE)を得る。
2 (1-a) (I AO12+ I A+EXP
(jφ) IB---(C) Furthermore, the semicircular light 23b that is narrowed down by the convex lens 8 and focused on the focus error detector 21 is a further narrowed semicircular light that forms the bare semicircular light 23a. It is something. Therefore, the distribution is such that the first-order diffracted light 27a and the first-order diffracted light 27b are superimposed on the O-order diffracted light 27. This light distribution is divided into 1 m parallel to the cutting diameter of the semicircular light 23b.
Photosensors 21a and 21b divided into two by 28
The signal is photoelectrically converted and then amplified by a differential amplifier 29 to obtain a focus error signal (FE).

発明が解決しようとする問題点 しかしながら上記の様な構成では、再生信号(RF)が
トラッキングエラー検出器20を構成する2つのフォト
センサー20a、20bに受光される信号の和信号とし
て検出される。このため再生信号(RF)は光学系のず
れや散乱光あるいは回路系のノイズによる相対的な信号
の揺らぎに対して弱いとゆう問題点がある。
Problems to be Solved by the Invention However, in the above configuration, the reproduced signal (RF) is detected as a sum signal of the signals received by the two photosensors 20a and 20b forming the tracking error detector 20. Therefore, there is a problem in that the reproduced signal (RF) is vulnerable to relative signal fluctuations due to deviations in the optical system, scattered light, or noise in the circuit system.

本発明はこのような問題点に鑑みて、新たに再生信号(
RF)を差動信号により得られる光学系構成とし、従来
の光学系のずれや散乱光あるいは回路系のノイズによる
相対的な信号の揺らぎに対しても充分良いキャリア対ノ
イズ(C/N)特性の再生信号(RF)が得られる光デ
ィスク装置を提供することを目的とする。
In view of these problems, the present invention has newly developed a reproduction signal (
RF) with an optical system configuration obtained by differential signals, and has sufficiently good carrier-to-noise (C/N) characteristics even against relative signal fluctuations due to deviations in conventional optical systems, scattered light, or circuit noise. An object of the present invention is to provide an optical disc device that can obtain a reproduction signal (RF) of

問題点を解決するための手段 本発明は走査光の射出手段と、前記走査光の一部の位相
を一様に後らせる位相遅延手段と、この位相遅延手段に
より位相遅延を施された前記走査光の光束Aと位相遅延
を施されていない前記走査光の他の光束Bとを光ディス
ク記録面に集光させる集光手段と、前記光ディスク記録
面からの前記光束AのO次回折光と前記光束Bの一1次
回折光の重畳光束を光電変換する第1の光電変換手段と
、前記光ディスク記録面からの前記光束Aの1次回折光
と前記光束Bの0次回折光の重畳光束を充電変換する第
2の光電変換手段と、この第2の光電変換手段と前記第
1の光電変換手段からの信号差を得る差動増幅器と、こ
の差動増幅器からの信号を再生信号とする再生信号出力
手段とを備えた光ディスク装置である。
Means for Solving the Problems The present invention provides a scanning light emitting means, a phase delaying means for uniformly delaying the phase of a part of the scanning light, and a phase delaying means for delaying the phase of the scanning light by the phase delaying means. a condensing means for condensing the light beam A of the scanning light and the other light beam B of the scanning light which has not been phase-delayed on an optical disk recording surface; A first photoelectric conversion means photoelectrically converts a superimposed light beam of the 1st-order diffracted light of the light flux B, and charges and converts the superimposed light flux of the 1st-order diffracted light of the light flux A and the 0th-order diffracted light of the light flux B from the optical disk recording surface. a second photoelectric conversion means, a differential amplifier that obtains a signal difference between the second photoelectric conversion means and the first photoelectric conversion means, and a reproduced signal output means that uses the signal from the differential amplifier as a reproduced signal. This is an optical disc device comprising:

作用 位相遅延手段により走査光の一部のみの位相を一様に後
らせることか出来る。この部分的に位相遅延された走査
光の光ディスク記録面からの回折光のうち、位相遅した
光束Aの0次回折光と位相遅延していない光束Bの一1
次回折光の重畳部を第1の光電変換手段により受光する
ことが出来る。 また、前記位相遅した光束Aの1次回
折光と位相遅延していない光束BのO次回折光の重畳部
を第2の光電変換手段により受光することが出来る。更
に、差動増幅器によりこれら第1の光電変換手段と第2
の光電変換手段により出力される信号の差信号をとり、
その信号を出力する再生信号出力手段により再生信号を
得ることが出来る。
By means of the operational phase delay means, it is possible to uniformly delay the phase of only a portion of the scanning light. Among the diffracted lights from the optical disk recording surface of this partially phase-delayed scanning light, the 0th-order diffracted light of the phase-delayed light beam A and the part 1 of the light beam B whose phase is not delayed.
The superimposed portion of the next-order diffracted light can be received by the first photoelectric conversion means. Further, the superimposed portion of the first-order diffracted light of the light beam A whose phase has been delayed and the O-th order diffracted light of the light beam B whose phase has not been delayed can be received by the second photoelectric conversion means. Furthermore, a differential amplifier is used to connect the first photoelectric conversion means and the second photoelectric conversion means.
Take the difference signal of the signals output by the photoelectric conversion means,
A reproduced signal can be obtained by the reproduced signal output means that outputs the signal.

実施例 以下本発明の実施例を添付図面に基づいて説明する。尚
、従来の光ディスク装置の構成部品と同一のものは同一
番号を添付する。
EXAMPLES Hereinafter, examples of the present invention will be described based on the accompanying drawings. Note that components that are the same as those of a conventional optical disc device are given the same numbers.

第1図に本発明の−の実施例を示す。第1図に示すよう
に、半導体レーザ1から出た走査光は集光レンズ2によ
り集光され、偏向ビームスプリッタ4.1/4波長板5
および絞りレンズ6により光ディスク記録面7に絞り込
まれる。ただし、集光レンズ2により集光される走査光
の一部が位相差板3を通過することに特徴を有する。
FIG. 1 shows an embodiment of the present invention. As shown in FIG. 1, the scanning light emitted from the semiconductor laser 1 is condensed by a condensing lens 2, a polarizing beam splitter 4, and a quarter-wave plate 5.
The aperture lens 6 focuses the light onto the optical disc recording surface 7 . However, a feature is that a part of the scanning light condensed by the condenser lens 2 passes through the retardation plate 3.

この位相差板3を通過する走査光の一部と通過しない走
査光の他の部分が、光ディスク記録面7に集光され、反
射回折されて、ふたたび絞りレンズ6および1/4波長
板5を通り、偏向ビームスプリッタ4に到達し、更にこ
れを直進して凸レンズ8により紋られる。この絞られた
光の一部が分割ミラー9により2つの光束に分離され、
1つは再生信号(RF)検出器10に他はハーフミラ−
11に分岐される。更に、このハーフミラ−11でトラ
ッキングエラー検出器12に受光される反射光とフォー
カスエラー検出器13に受光される透過光に分割される
A part of the scanning light that passes through the retardation plate 3 and another part of the scanning light that does not pass through are focused on the optical disk recording surface 7, reflected and diffracted, and then passed through the aperture lens 6 and the quarter-wave plate 5 again. The beam passes through the beam, reaches the deflection beam splitter 4, and then travels straight ahead to be reflected by the convex lens 8. A part of this focused light is separated into two beams by a splitting mirror 9,
One is a reproduction signal (RF) detector 10 and the other is a half mirror.
It is branched into 11. Further, the half mirror 11 divides the light into reflected light, which is received by a tracking error detector 12, and transmitted light, which is received by a focus error detector 13.

これらの光学系の構成による主要部分での光分電図をそ
れぞれ第2図(a)から(g)に示し、以下これにもと
づいてこの実施例の光学系の動きを具体的に説明する。
Photodistribution diagrams of the main parts of these optical system configurations are shown in FIGS. 2(a) to 2(g), and the operation of the optical system of this embodiment will be specifically explained based on these diagrams.

第2図(a)に示すように、円状の光束14の1/4円
光部分14aのみを位相差板3を通過させ、位相をθ遅
らせる。このθ位相遅れた1/4円光部分14aの光束
と、残りの3/4円光部分14bの光束の光ディスク記
録面7からの反射回折による0次回折光および±1次回
折光を説明の便宜上各々(b)図と(C)図に分けて示
す。
As shown in FIG. 2(a), only the 1/4 circular light portion 14a of the circular light beam 14 is passed through the retardation plate 3, and its phase is delayed by θ. For convenience of explanation, the 0th-order diffracted light and the ±1st-order diffracted light due to reflection diffraction from the optical disk recording surface 7 of the light beam of the 1/4 circular light portion 14a with a phase delay of θ and the remaining 3/4 circular light portion 14b are respectively referred to. It is shown separately in Figure (b) and Figure (C).

(b)図に於て、3/4円光部分のO次回折光15bの
光振幅をAOとすると1/4円光部分のO次回折光15
aの光振幅はAOEXP (jθ)となる。また、(C
)図に示すように1次回折光に関しては、3/4円光部
分の1次回折光16bと位相遅れを有する1/4円光部
分の1次回折光16cが重畳し、−1次回折光に関して
は3/4円光部分の一1次回折光16aのみである。
(b) In the figure, if the optical amplitude of the O-order diffracted light 15b in the 3/4 circular part is AO, then the O-order diffracted light 15 in the 1/4 circular part is
The optical amplitude of a is AOEXP (jθ). Also, (C
) As shown in the figure, for the first-order diffracted light, the first-order diffracted light 16b of the 3/4 circular light part and the first-order diffracted light 16c of the 1/4 circular light part having a phase delay are superimposed, and for the -1st-order diffracted light, the first-order diffracted light 16b of the 1/4 circular light part is superimposed. It is only the 1st-order diffracted light 16a of the /4 circular light portion.

これら(b)および(c)図に示されるO次回折光と±
1次回折光が重畳した光束が上記光学系の分割ミラー9
に導かれ、(d)図のごとき充分布となる。即ち、光分
布は15a、bおよび16aからdまでの6つの領域を
有する。これらの光束が分割ミラー9のエツジ9aによ
って2分割され、再生信号(RF)検出器10には(e
)図のごと(この円状の光束の右半円光23cが2分割
されたフォトセンサー10a、bに受光され、更に差動
増幅器30により増幅出力され再生信号(RF)を得る
The O-order diffracted light shown in these figures (b) and (c) and ±
The light beam in which the first-order diffracted light is superimposed is sent to the split mirror 9 of the optical system.
, resulting in a full distribution as shown in figure (d). That is, the light distribution has six regions 15a, b and 16a to d. These luminous fluxes are split into two by the edge 9a of the splitting mirror 9, and the reproduced signal (RF) detector 10 receives (e
) As shown in the figure (the right semicircular light 23c of this circular luminous flux is received by two divided photosensors 10a and 10b, and further amplified and outputted by a differential amplifier 30 to obtain a reproduction signal (RF).

ここで、半円光23cの各々光分布領域の光振幅は、 16 c ; Ao+ A+EXP[jlθ+φ−2π
(x/p)Ill 6 d ; AOEXP[jl θ
l]十AIEXP[jlφ+2π(x/p)l]15 
a ; AoEXP[Nθ)1 15b;AO(j;虚数単位) となり、それぞれの光量は 16 c ; l Ao+A+EXP[jlθ+φ−2
π(x/p)11 l 216 d ; l AoEX
P[l e l]+ A+EXP[jl ψ+2π(x
/p)l] l 2 = l EXP[jl θl] l 2 l Ao+A
tEXP[jl−θ+φ+2π(x/p)1112 = l Ao+A+EXPl−θ+φ+2π(x/p)
)] l 2(1EXP[jlθl]12=1ヨリ)1
5 a  ;  l AoEXP[jlθ)]1215
b;1AO12 となる。
Here, the light amplitude of each light distribution area of the semicircular light 23c is 16 c ; Ao+A+EXP[jlθ+φ−2π
(x/p)Ill 6 d; AOEXP[jl θ
l] 10 AIEXP [jlφ+2π(x/p)l] 15
a; AoEXP[Nθ)1 15b;AO(j; imaginary unit), and the amount of light for each is 16 c; l Ao+A+EXP[jlθ+φ−2
π(x/p)11 l 216 d ; l AoEX
P[l e l]+ A+EXP[jl ψ+2π(x
/p)l] l 2 = l EXP[jl θl] l 2 l Ao+A
tEXP[jl-θ+φ+2π(x/p) 1112 = l Ao+A+EXPl-θ+φ+2π(x/p)
)] l 2 (1EXP[jlθl]12=1yori) 1
5 a; l AoEXP[jlθ)]1215
b: 1AO12.

また、l Ao l 2= l AoEXPlθ111
21’あり、15aの光量と15bの光量が等しいため
、2分割されたフォトセンサー10a、10bにより受
光され、その差動信号から得られる再生信号(RF)は
、以下の式(Dl)に比例する。
Also, l Ao l 2= l AoEXPlθ111
21', and the light amount of 15a and 15b are equal, so the light is received by the two divided photosensors 10a and 10b, and the reproduced signal (RF) obtained from the differential signal is proportional to the following equation (Dl) do.

l Ao+A+EXP[jlθ+φ−2π(x/p)l
] l 2− l AO+A+EXP[jl−θ十φ+
2z(x/p)l]  l  2−−−  (Dl) ここで、走査光が光ディスク記録面上のトラックに集光
されている場合は、(x/p)=Oである。従って、上
記(Dl)式は以下の式(D2)となる。
l Ao+A+EXP[jlθ+φ−2π(x/p)l
] l 2- l AO+A+EXP[jl-θtenφ+
2z(x/p)l] l 2 --- (Dl) Here, when the scanning light is focused on a track on the recording surface of the optical disk, (x/p)=O. Therefore, the above equation (Dl) becomes the following equation (D2).

l Ao+ A+EXP[jl e、+φ1112− 
I Ao+A+EXP[j(−θ+φll1g−−− 
(D2) この式(D2)よって表される再生信号(RF)の値を
以下で具体的に検討する。
l Ao+ A+EXP[jl e, +φ1112-
I Ao+A+EXP[j(-θ+φll1g---
(D2) The value of the reproduced signal (RF) expressed by this equation (D2) will be specifically examined below.

第3図は、位相遅れ量θに対する光振幅IAO+ A 
+EXP[jl e+φ111 z(7)値ヲ示Lr第
1) 、ti1幅W = 0 、8 μrn N溝深さ
d=λ/8、溝ピッチP=1.6μmの光ディスクにつ
いて計算した結果である。
Figure 3 shows the optical amplitude IAO+A with respect to the phase delay amount θ.
+EXP[jl e+φ111 z(7) value shown Lr 1st), ti1 width W = 0, 8 μrn N Groove depth d = λ/8, groove pitch P = 1.6 μm These are the results calculated for an optical disc.

今、上記条件の光ディスクではφ=π/2であり、位相
差板3の位相遅れ量θをπ/2に設定すれば、l Ao
+A+EXP[jl θ+φl] l 2ハ第3図P点
、またl Ao+A+EXP[jl−θ+φ11+2は
Q点となる。即ち、差動出力は第3図上の最大振幅Hに
比例する。更に、光ディスク記録面7に形成されている
記録ドツトもしくは番地あるいは記録ビットによる反射
光量の変化をα(〉1)とすれば、差動出力はαHに比
例する。従って、再生信号(RF)振幅は、(α−1)
Hとなる。
Now, in the optical disc under the above conditions, φ=π/2, and if the phase delay amount θ of the retardation plate 3 is set to π/2, l Ao
+A+EXP[jl θ+φl] l2c is point P in Figure 3, and lAo+A+EXP[jl-θ+φ11+2 is point Q. That is, the differential output is proportional to the maximum amplitude H in FIG. Further, if α (>1) is the change in the amount of reflected light due to recording dots, addresses, or recording bits formed on the optical disk recording surface 7, the differential output is proportional to αH. Therefore, the reproduced signal (RF) amplitude is (α-1)
It becomes H.

この再生信号(RF)8幅は従来の再生信号振幅と同程
度であるが、差動方式による検出方法を採用しているた
めに、信号の相対的な揺らぎに強い。また、光学的なノ
イズおよび電気的なノイズに対してもそれらが相殺され
、再生信号特性(CZN比)の飛躍的な向上が図れる。
The width of this reproduced signal (RF) 8 is about the same as the conventional reproduced signal amplitude, but since a differential detection method is employed, it is resistant to relative fluctuations in the signal. Further, optical noise and electrical noise are also canceled out, and the reproduced signal characteristics (CZN ratio) can be dramatically improved.

また、分割ミラー9により反射されないもう一方の半円
光23dの光束は、ハーフミラ−11により2光束に分
離され、各々トラッキングエラー検出器12とフォーカ
スエラー検出器13に受光される。これらの光分布を第
2図(f)、(g)に示す。トラッキングエラー検出器
12に受光される光分布は、(f)図に示すように、位
相遅延θの処理を受けていない3/4円光部分のO次回
折光15bに、この3/4円光部分の±1次回折光16
a、16bが重畳した分布である。それぞれの光信号の
振幅は以下のようになる。
The other semicircular beam 23d that is not reflected by the splitting mirror 9 is separated into two beams by the half mirror 11, and each is received by a tracking error detector 12 and a focus error detector 13. These light distributions are shown in FIGS. 2(f) and (g). The light distribution received by the tracking error detector 12 is as shown in FIG. ±1st order diffracted light of the part 16
This is a distribution in which a and 16b are superimposed. The amplitude of each optical signal is as follows.

16 a ; Ao+ A+EXP[jlφ−2π(x
/p)1116 b ; Ao+ A+EXP(Nφ+
2r(x/p)f]15b;AO (j;虚数単位) ここで、トラッキングエラー信号(TE)は2分割され
たフォトセンサー12a、bに受光され、これらの差動
信号により得られる。その大きさは、従来のものと全く
同じであり、位相差板3の挿入による影響は全く受けな
い。また、(g)図のフォーカスエラー検出器13に受
光される光分布に関しても従来のものと全く同じである
16 a; Ao+ A+EXP[jlφ−2π(x
/p) 1116 b; Ao+ A+EXP(Nφ+
2r(x/p)f] 15b; AO (j: imaginary unit) Here, the tracking error signal (TE) is received by the two divided photosensors 12a and 12b, and is obtained by the differential signal thereof. Its size is exactly the same as the conventional one, and is not affected by the insertion of the retardation plate 3 at all. Furthermore, the distribution of light received by the focus error detector 13 shown in FIG. 3(g) is also exactly the same as that of the conventional one.

以上、この実施例では、トラッキングエラー信号(TE
)あるいはフォーカスエラー信号(FE)に関しては従
来の光ディスク装置と全く同様である。再生信号(RF
)に関しては、光学系の光路の一部に位相差板3を挿入
することにより差動増幅を可能とし光学系のノイズや電
気系のノイズによる相対的な信号の揺らぎを抑制し、極
めて安定でノイズに強(充分な再生信号比(C/N比)
を有する再生信号が得られる。従って、光ディスク装置
の性能の安定化にとって極めて有効な手段を提供するも
のである。
As described above, in this embodiment, the tracking error signal (TE
) or the focus error signal (FE) are exactly the same as those of conventional optical disc devices. Reproduction signal (RF
), inserting a retardation plate 3 in a part of the optical path of the optical system enables differential amplification, suppresses relative signal fluctuations due to optical system noise and electrical system noise, and is extremely stable. Strong against noise (sufficient reproduction signal ratio (C/N ratio)
A reproduced signal having . Therefore, it provides an extremely effective means for stabilizing the performance of an optical disc device.

発明の効果 以上述べてきたように、本発明によれば従来の安定なト
ラッキングエラー信号(TE)検出方法とフォーカスエ
ラー信号(FE)検出方法を変えることなく、光学系や
電気系の相対的な揺らぎによるノイズを相殺する差動検
出方法による再生信号検出を可能とすることが出来る。
Effects of the Invention As described above, according to the present invention, the relative relationship between the optical system and the electrical system can be improved without changing the conventional stable tracking error signal (TE) detection method and focus error signal (FE) detection method. It is possible to detect reproduced signals using a differential detection method that cancels out noise caused by fluctuations.

従って、光ディスク装置の再生信号の安定化、高性能化
に極めて有用である。
Therefore, it is extremely useful for stabilizing reproduction signals and improving performance of optical disc devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に於ける光ディスク装置の構
成原理図、第2図は同装置の主要部分に於ける光束の分
布図、第3図は同装置に挿入された位相差板による位相
遅れθと光量変化の関係を示す特性図、第4図は従来の
光ディスク装置の構成原理図、第5図は同装置の検出器
上の光分電図である。 1・・・半導体レーザ、3・・・位相差板、4・・・偏
向ビームスプリッタ、6・・・絞りレンズ、7・・・光
ディスク記録面、8・・・凸レンズ、9・・・分割ミラ
ー、10・・・再生信号(RF)検出器、12・・・ト
ラッキングエラー検出器、13・・・フォーカスエラー
検出器代理人の氏名 弁理士 中尾敏男 ほか1名I 
−手4体レーザ ? −真先レンズ 3−a相鼻状 4−1−備尤ど−ムスブゾフク 5−lムλ長祇 6− 萩リレンχ 7− 光ディスク記録面 8−・・凸レンズ 9〜 分割ミラー 10・−RF(it検出器 11−八−フミラー 第 1 図        !2−トラッキングエラー
検出器13−1−フォーカスエラー検出器 h 第 3 図 ?O−トラフ午ングエラー挟出器 第 5 図             為、八−フオド
℃ンプー27−− フォーlヌエヲー横$6 nb−−−r次riJ緯尤 2B ・+ tl u η−・−差勧増惟姦 (b)
Fig. 1 is a diagram showing the basic structure of an optical disk device according to an embodiment of the present invention, Fig. 2 is a distribution diagram of light flux in the main parts of the device, and Fig. 3 is a retardation plate inserted in the device. FIG. 4 is a diagram showing the principle of construction of a conventional optical disk device, and FIG. 5 is a photovoltaic diagram on a detector of the same device. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 3... Retardation plate, 4... Polarizing beam splitter, 6... Aperture lens, 7... Optical disk recording surface, 8... Convex lens, 9... Dividing mirror , 10... Reproduction signal (RF) detector, 12... Tracking error detector, 13... Focus error detector Name of agent Patent attorney Toshio Nakao and one other person I
-4 hands laser? - Straight front lens 3 - a phase nose 4 - 1 - Preparation - Musbuzofuku 5 - lmu λ Nagami 6 - Hagi Riren χ 7 - Optical disc recording surface 8 - Convex lens 9 ~ Divided mirror 10 - RF ( IT detector 11-8-Full mirror Fig. 1 !2-Tracking error detector 13-1-Focus error detector h Fig. 3?O-Trough error pincher Fig. 5 --Four Nuewo horizontal $6 nb---r next riJ latitude 2B ・+ tl u η−・− difference increase incest (b)

Claims (1)

【特許請求の範囲】[Claims] 走査光の射出手段と、前記走査光の一部の位相を一様に
後らせる位相遅延手段と、この位相遅延手段により位相
遅延を施された前記走査光の光束Aと位相遅延を施され
ていない前記走査光の他の光束Bとを光ディスク記録面
に集光させる集光手段と、前記光ディスク記録面からの
前記光束Aの0次回折光と前記光束Bの−1次回折光と
の重畳光束を光電変換する第1の光電変換手段と、前記
光ディスク記録面からの前記光束Aの1次回折光と前記
光束Bの0次回折光との重畳光束を光電変換する第2の
光電変換手段と、この第2の光電変換手段と前記第1の
光電変換手段からの信号差を得る差動増幅器と、この差
動増幅器からの信号を再生信号とする再生信号出力手段
とを備えた光ディスク装置。
a scanning light emitting means, a phase delaying means for uniformly retarding the phase of a part of the scanning light, and a beam A of the scanning light whose phase has been delayed by the phase delaying means, and a beam A of the scanning light whose phase has been delayed by the phase delaying means. a condensing means for condensing the other light beam B of the scanning light that has not been detected on the optical disk recording surface; and a superimposed light beam of the 0th-order diffracted light of the light beam A and the -1st-order diffracted light of the light beam B from the optical disk recording surface. a first photoelectric conversion means for photoelectrically converting the light beam; a second photoelectric conversion means for photoelectrically converting a superimposed light beam of the first-order diffracted light of the light beam A and the zero-order diffracted light of the light beam B from the optical disk recording surface; An optical disc device comprising: a differential amplifier that obtains a signal difference from the second photoelectric conversion means and the first photoelectric conversion means; and a reproduced signal output means that uses the signal from the differential amplifier as a reproduced signal.
JP1468587A 1987-01-23 1987-01-23 Optical disk device Pending JPS63183625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1468587A JPS63183625A (en) 1987-01-23 1987-01-23 Optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1468587A JPS63183625A (en) 1987-01-23 1987-01-23 Optical disk device

Publications (1)

Publication Number Publication Date
JPS63183625A true JPS63183625A (en) 1988-07-29

Family

ID=11868061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1468587A Pending JPS63183625A (en) 1987-01-23 1987-01-23 Optical disk device

Country Status (1)

Country Link
JP (1) JPS63183625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260049B2 (en) 1999-12-28 2007-08-21 Ricoh Company, Ltd. Optical pickup device, information reproduction/recording apparatus, and information processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260049B2 (en) 1999-12-28 2007-08-21 Ricoh Company, Ltd. Optical pickup device, information reproduction/recording apparatus, and information processing apparatus

Similar Documents

Publication Publication Date Title
JPH02187936A (en) Optical pickup device
JPS58147823A (en) Detector of track shift
JPH0772944B2 (en) Error signal generation device for optical disk device
JPS63183625A (en) Optical disk device
JP2594445B2 (en) Hologram optical head
JPH07192281A (en) Optical pickup device
JPH05144031A (en) Optical information reproducing device
JPH0626023B2 (en) Signal detector
JPS5984352A (en) Device for detecting focal error
JP2788723B2 (en) Optical spot position error detection device
JPS5888842A (en) Photodetecting element
KR930002162B1 (en) Tracking error detecting apparatus for an optical head
JP2870236B2 (en) Optical recording / reproducing device
JP3366527B2 (en) Optical head device
JPS6093643A (en) Optical head
JPS61230633A (en) Focus position detecting device
JPH0743835B2 (en) Focus error detector
JPS62217426A (en) Optical head device
JPH0721867B2 (en) Optical disk device
JPS62266738A (en) Optical head
JP2636659B2 (en) Focusing error detector
JP2690550B2 (en) Optical pickup device
JPS63259841A (en) Optical disk device
JPH0668503A (en) Focus error detection system
JPH05325244A (en) Optical head