JPS63183157A - Warm-forging steel - Google Patents

Warm-forging steel

Info

Publication number
JPS63183157A
JPS63183157A JP1678487A JP1678487A JPS63183157A JP S63183157 A JPS63183157 A JP S63183157A JP 1678487 A JP1678487 A JP 1678487A JP 1678487 A JP1678487 A JP 1678487A JP S63183157 A JPS63183157 A JP S63183157A
Authority
JP
Japan
Prior art keywords
steel
grains
forging
grain size
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1678487A
Other languages
Japanese (ja)
Inventor
Takeshi Nakahara
中原 猛
Takehiko Kato
加藤 猛彦
Sadayoshi Furusawa
古澤 貞良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1678487A priority Critical patent/JPS63183157A/en
Publication of JPS63183157A publication Critical patent/JPS63183157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent internal grain coarsening at the time of carburizing treatment after warm forging, by adding Ni in combination with specific amounts of Al and N to a steel with a specific composition. CONSTITUTION:This case-hardending steel for warm forging has a composition consisting of, by weight, 0.10-0.30% C, <=0.50% Si, 0.3-2.0% Mn, 0.10-0.40% Ni, 0.60-2.0% Cr, 0.02-0.05% Al, 0.0010-0.0060% N, and the balance Fe and containing, if necessary, 0.10-0.30% Mo and also has a structure in which internal grains after carburizing treatment is formed into graded fine grains of grain size No. 6-10. In this steel, Ni is necessary in order to form initial austenite grains into graded fine grains of the above grain size number, neither coarse grains nor fine grains, at the time of carburizing heating by the combined addition with prescribed amounts of Al and N. For this purpose, >=0.10% is required as additive quantity and the above effect increases with the increase of the additive quantity, but, even if the additive quantity exceeds 0.40%, the above effect is saturated and steel manufacturing costs are needlessly increased.

Description

【発明の詳細な説明】 皇栗上皇剋王立団 本発明は、温間鍛造用肌焼鋼に関し、詳しくは、温間鍛
造後の浸炭処理において、内部の結晶粒が粗大化しない
温間鍛造用肌焼鋼に関する。
[Detailed Description of the Invention] The present invention relates to a case-hardened steel for warm forging, and more specifically, for warm forging in which internal crystal grains do not become coarse during carburizing treatment after warm forging. Regarding case hardening steel.

従来の技術 近年、機械構造用部品の製造において、工程の省略や省
エネルギーを目的として、温間鍛造の採用が広がりつつ
ある。この温間鍛造とは、従来の熱間鍛造と冷間鍛造の
それぞれの長所を取り入れた鍛造法であって、その加工
温度域が熱間鍛造に比べて低いために、スケールの生成
や熱歪が少なく、冷間鍛造に近い寸法精度を得ることが
でき、他方、冷間鍛造において発生する加工硬化が殆ど
起こらないために、冷間鍛造では必要とされる鍛造後の
焼きなまし処理を省略し得る等の利点を有している。
BACKGROUND OF THE INVENTION In recent years, warm forging has been increasingly adopted in the production of mechanical structural parts for the purpose of eliminating process steps and saving energy. Warm forging is a forging method that incorporates the advantages of conventional hot forging and cold forging, and because its processing temperature range is lower than that of hot forging, it causes problems such as scale formation and thermal distortion. dimensional accuracy close to that of cold forging can be obtained, and on the other hand, since the work hardening that occurs in cold forging hardly occurs, post-forging annealing treatment required in cold forging can be omitted. It has the following advantages.

他方、歯車等のような機械構造用部品については、耐摩
耗性を向上させるために、成形後に浸炭処理が施される
ことが多いが、この浸炭処理は、高温での長時間にわた
る加熱を要する処理であるため、部品内部において、結
晶粒が粗大化し、歪を発生させ、或いは靭性を低下させ
る。そこで、従来、かかる問題を解決するために、冷間
鍛造用鋼と同様に、例えば、AjSNb、Ti等の細粒
化元素と多量のNを添加することによって、窒化物や炭
化物を形成させ、加熱時の結晶粒の粗大化を防止するこ
とが提案されているが、尚、十分な効果を達成していな
い。
On the other hand, mechanical structural parts such as gears are often carburized after forming to improve wear resistance, but this carburizing process requires heating at high temperatures for a long time. Because of this treatment, crystal grains become coarser inside the component, causing strain or reducing toughness. Conventionally, in order to solve this problem, nitrides and carbides are formed by adding grain refining elements such as AjSNb and Ti and a large amount of N, as in the case of cold forging steel. Although it has been proposed to prevent coarsening of crystal grains during heating, sufficient effects have not yet been achieved.

従って、従来、そのための対策として、温間鍛造後、焼
きならし処理を施して、浸炭時の結晶粒の粗大化を防止
したり、或いは、温間鍛造温度を結晶粒の粗大化しない
熱間鍛造温度域に近接させる等が採用されているが、か
かる対策を採用することは、即ち、上記した温間鍛造の
利点を著しく損なうものであることが明らかである。
Therefore, conventional countermeasures have been to perform normalizing treatment after warm forging to prevent coarsening of crystal grains during carburizing, or to change the warm forging temperature to a hot temperature that does not cause coarsening of crystal grains. Although measures such as bringing the temperature close to the forging temperature range have been adopted, it is clear that adopting such measures significantly impairs the advantages of warm forging described above.

日が解決しようとする問題点 本発明は、上記した従来の温間鍛造用鋼における問題を
解決するためになされたものであって、温間鍛造後の浸
炭処理において、内部の結晶粒が粗大化しない肌焼鋼を
提供することを目的とする。
Problems to be Solved by Japan The present invention was made to solve the above-mentioned problems with the conventional warm forging steel.In the carburizing treatment after warm forging, the internal crystal grains The purpose of the present invention is to provide case hardening steel that does not harden.

問題点を”・′するための手段 本発明による温間鍛造用鋼は、重量%でC0.10〜0
.30%、 Si0.50%以下、 Mn  0.3〜2.0%、 Ni0.10〜0.40%、 Cr  0.60〜2.0%1 .10.02〜0.05%、 N   0.0010〜0.0060%、残部鉄及び不
可避的不純物よりなり、浸炭処理後の内部の結晶粒度番
号が6〜10の整細粒であることを特徴とする。
Means for solving the problems The warm forging steel according to the present invention has a C0.10 to 0 in weight%.
.. 30%, Si 0.50% or less, Mn 0.3-2.0%, Ni 0.10-0.40%, Cr 0.60-2.0%1. It consists of 10.02~0.05%, N 0.0010~0.0060%, the balance iron and inevitable impurities, and is characterized by being fine grains with an internal grain size number of 6~10 after carburizing. shall be.

本発明による温間鍛造用鋼における化学成分の限定理由
について説明する。
The reason for limiting the chemical composition of the warm forging steel according to the present invention will be explained.

Cは、機械構造用部品として必要な強度を付与するため
に、少なくとも0.10%を添加することが必要である
。0.10%よりも少ないときは、所要の強度を付与す
ることができないうえに、一定のC濃度を得るために、
著しく長い浸炭時間を必要とする。しかし、過多に添加
するときは、浸炭焼入れ材において実施される低温焼戻
しによっては、十分な内部靭性を得ることができないた
め、添加量は0.30%以下の範囲とする。
C needs to be added in an amount of at least 0.10% in order to provide strength necessary for mechanical structural parts. When it is less than 0.10%, the required strength cannot be imparted, and in order to obtain a constant C concentration,
Requires significantly longer carburizing times. However, when adding too much, sufficient internal toughness cannot be obtained depending on the low-temperature tempering performed on the carburized and quenched material, so the addition amount is set to be within a range of 0.30% or less.

Siは、鋼の脱酸元素としてと共に、機械構造用部品と
しての所要の強度を得るための焼入れ性向上元素及び固
溶強化元素として添加される。しかし、過多に添加する
ときは、ケイ酸塩系介在物を増大させ、温間加工性を阻
害すると共に、温間鍛造後の硬さを高くし、その後の仕
上冷間加工性や切削加工性を低下させ、更には、浸炭後
の内部硬さを高くし、内部靭性を低くするので、添加量
の上限を0.50%とする。
Si is added as a deoxidizing element for steel, and as a hardenability improving element and solid solution strengthening element to obtain the required strength as a mechanical structural component. However, when added in excess, silicate-based inclusions increase, inhibiting warm workability, and increasing the hardness after warm forging, resulting in poor finishing cold workability and cutting workability. The upper limit of the amount added is set at 0.50% because it lowers the internal hardness after carburizing and lowers the internal toughness.

Mnは、鋼の脱酸及び焼入れ性向上の効果を有する。こ
のような効果を有効に得るためには、少なくとも0.3
%の添加が必要である。しかし、過多に添加するときは
、温間鍛造後の冷却時にベイナイトやマルテンサイト組
織が生成し、その後の仕上冷間加工や切削加工性を阻害
すると共に、微細なベイナイト組織が浸炭時の結晶粒の
粗大化を助長するので、添加量の上限を2.0%とする
Mn has the effect of deoxidizing steel and improving hardenability. In order to effectively obtain such an effect, at least 0.3
% addition is required. However, when adding too much, bainite and martensitic structures are generated during cooling after warm forging, which impairs subsequent finishing cold working and machinability. The upper limit of the amount added is set at 2.0% because it promotes coarsening.

Niは、所定量のAJ及びNとの複合添加によって、浸
炭加熱時、初期のオーステナイト粒を粗大粒や微細粒に
することなく、粒度番号にて6〜9程度の整細粒とする
ために必要な元素であって、本発明においては、0.1
0%以上を添加することが必要である。かかる効果は、
Niの添加量の増大と共に高まるが、反面、0.4%を
越えて過多に添加しても、上記効果が飽和し、鋼の製造
費用を徒に高めることとなる。
By adding Ni in combination with a predetermined amount of AJ and N, it is possible to make the initial austenite grains into fine grains with a grain size number of about 6 to 9 without making them coarse or fine during carburizing heating. A necessary element, in the present invention, 0.1
It is necessary to add 0% or more. Such an effect is
It increases as the amount of Ni added increases, but on the other hand, even if it is added in excess of 0.4%, the above effect will be saturated and the manufacturing cost of steel will increase unnecessarily.

Crは、鋼の焼入れ性を向上させ、強度及び靭性をバラ
ンスよく高める効果を有し、かかる効果を有効に得るた
めに、0.60%以上を添加することが必要である。し
かし、過多に添加するときは、温間鍛造時の変形抵抗を
高くし、金型寿命を短くすると共に、鍛造後の冷却に際
して、ベイナイト組織を生成させ、その後の仕上冷間加
工性や切削加工性を阻害するので、添加量は2.0%以
下とする。
Cr has the effect of improving the hardenability of steel and increasing the strength and toughness in a well-balanced manner, and in order to effectively obtain this effect, it is necessary to add 0.60% or more. However, when adding too much, it increases the deformation resistance during warm forging, shortens the life of the mold, and generates a bainite structure during cooling after forging, which reduces the subsequent finish cold workability and cutting process. The amount added should be 2.0% or less since it impedes the performance.

A2は、鋼の脱酸の効果を有すると共に、限定量のNと
の組み合わせによって、適当量のAINを析出させ、更
に、後述するNiとの複合添加によって、浸炭加熱時の
初期のオーステナイト結晶粒の粗大化を防止する効果を
有する。かかる効果を有効に得るには、0.02%以上
の添加を必要とする。しかし、過多に添加するときは、
AhOl等の非金属介在物量の増大や、靭性の阻害等の
有害な影響があられれるので、添加量は0.05%以下
とする。
A2 has the effect of deoxidizing the steel, and when combined with a limited amount of N, it precipitates an appropriate amount of AIN, and furthermore, when combined with Ni, which will be described later, the initial austenite crystal grains during carburizing heating are reduced. It has the effect of preventing coarsening of the grains. To effectively obtain such effects, it is necessary to add 0.02% or more. However, when adding too much,
Since this may have harmful effects such as an increase in the amount of nonmetallic inclusions such as AhOl and inhibition of toughness, the amount added should be 0.05% or less.

Nは、前述したように、適当量のAINを析出させ、N
iとの複合添加によって、浸炭加熱時の初期のオーステ
ナイト結晶粒が粗大粒に成長することを防止すると共に
、反対に、微細粒になることをも防止し、かくして、初
期粒を結晶粒度番号にて6〜9程度の整細粒とする効果
を有する。これらの効果を有効に得るためには、少な(
とも0゜0010%を添加する必要がある。しかし、過
多に添加することは、過多量の/INを析出させ、初期
粒が微細粒や、或いは微細粒を含む混粒となり、浸炭終
了後の粒度を逆に粗大化させるので、添加量は0.00
60%以下とする。
As mentioned above, N precipitates an appropriate amount of AIN, and N
The combined addition of i prevents the initial austenite crystal grains from growing into coarse grains during carburizing heating, and also prevents them from becoming fine grains, thus increasing the initial grain size to the grain size number. This has the effect of making the particles evenly sized to about 6 to 9. In order to effectively obtain these effects, a small amount (
It is necessary to add 0°0010% for both. However, if too much is added, too much /IN will precipitate, and the initial grains will become fine grains or mixed grains containing fine grains, and the grain size after carburization will become coarser, so the amount added is 0.00
60% or less.

本発明による温間鍛造用肌焼鋼は、上記した元素に加え
て、鋼の強度及び靭性を更に向上させるために、必要に
応じてMoを含有することができる。上記効果を有効に
得るためには、0.10%以上を添加することが必要で
ある。しかし、0.3%を越える量のMOの添加は、温
間鍛造後の冷却過程において、ベイナイトやマルテンサ
イトの発生を顕著にすると共に、MOは高価な元素であ
るで、実用上の見地から、添加量は0.3%以下で十分
である。
In addition to the above-mentioned elements, the case hardening steel for warm forging according to the present invention may contain Mo, if necessary, in order to further improve the strength and toughness of the steel. In order to effectively obtain the above effects, it is necessary to add 0.10% or more. However, addition of MO in an amount exceeding 0.3% causes significant generation of bainite and martensite during the cooling process after warm forging, and MO is an expensive element, so it is difficult to use from a practical standpoint. , an addition amount of 0.3% or less is sufficient.

発」坏蟇1限 以上のように、本発明による温間鍛造用肌焼鋼は、特に
、所定量のAl及びNと共に、Niを複合添加すること
によって、浸炭加熱時、初期のオーステナイト粒を粗大
粒や微細粒にすることなく、粒度番号にて6〜9程度の
整細粒とするので、温間鍛造後の浸炭処理において、内
部の結晶粒が粗大化せず、かくして、内部において、結
晶粒度番号にて6〜9の整細粒を有し、強度及び靭性に
すぐれる浸炭製品を得ることができる。
As described above, the case-hardened steel for warm forging according to the present invention is particularly capable of removing initial austenite grains during carburizing and heating by adding Ni together with a predetermined amount of Al and N. Since the grain size is not made into coarse grains or fine grains, but is made into fine grains with a grain size number of about 6 to 9, the internal crystal grains do not become coarse during the carburizing treatment after warm forging, and thus, A carburized product having fine grains with a grain size number of 6 to 9 and excellent strength and toughness can be obtained.

大施■ 第1表に示す化学成分を有する鋼を溶製し、4011径
の棒鋼に熱間圧延した後、直径40龍、長さ601mに
機械加工して試験材とし、これを温間据込み鍛造して、
温間変形抵抗等の温間加工性や、温間鍛造後の組織及び
硬さを調べた。更に、温間鍛造後、950℃で3時間の
浸炭処理を施して、結晶粒度はかの緒特性を調べ、また
、粒の成長過程を示すために、加熱初期のオーステナイ
ト結晶粒度を調べた。この初期粒度は、温間鍛造後の試
験材を900℃で30分間加熱した後、水焼き入れ処理
を行なって調べた。以上の結果を第2表に示す。
Oshi ■ Steel having the chemical composition shown in Table 1 was melted and hot-rolled into a 4011-diameter steel bar, which was then machined into a test material with a diameter of 40mm and a length of 601m, which was then used for warm installation. Fully forged,
Warm workability such as warm deformation resistance, microstructure and hardness after warm forging were investigated. Furthermore, after warm forging, a carburizing treatment was carried out at 950° C. for 3 hours, and the characteristics of the crystal grain size were investigated, and the austenite crystal grain size at the initial stage of heating was also investigated to show the grain growth process. The initial grain size was determined by heating the test material after warm forging at 900° C. for 30 minutes and then water-quenching it. The above results are shown in Table 2.

第1表において、本発明鋼を*印を付して示す。In Table 1, the steels of the present invention are indicated with an asterisk.

比較鋼1は、C量が低いために、表面硬さくHv)が5
10しかなく、本発明鋼に比べて相当に低い。
Comparative steel 1 has a low surface hardness (Hv) of 5 due to the low C content.
It is only 10, which is considerably lower than that of the steel of the present invention.

比較鋼5は、Niを含まないために、初期粒度及び浸炭
処理後の粒度共に6以下の粗粒であって、内部靭性も本
発明鋼に比べて劣る。
Since Comparative Steel 5 does not contain Ni, both the initial grain size and the grain size after carburizing treatment are coarse grains of 6 or less, and the internal toughness is also inferior to the steel of the present invention.

比較鋼6及び7は、従来、粗大化防止のために広く採用
されているように、N量を高くした鋼を示す。しかし、
いずれもNによる結晶粒の粗大化の効果は乏しく、内部
靭性も低い。比較鋼9は、Si量が過多の例を示し、温
間鍛造時の変形抵抗が本発明鋼に比べてかなりに大きく
、加工性に劣るとことが明らかである。また、温間鍛造
後の硬さも高いので、後工程での仕上冷間鍛造性や仕上
切削性が低い。
Comparative Steels 6 and 7 are steels with a high N content, which is conventionally widely used to prevent coarsening. but,
In either case, the effect of coarsening the crystal grains due to N is poor, and the internal toughness is also low. Comparative Steel 9 shows an example in which the amount of Si is excessive, and it is clear that the deformation resistance during warm forging is considerably greater than that of the steel of the present invention, and that the workability is inferior. In addition, since the hardness after warm forging is high, the finish cold forgeability and finish machinability in the subsequent process are low.

比較鋼10は、Mn量が本発明にて規定する量よりも著
しく低い例を示し、内部硬さが低(、部品としての強度
に欠ける。他方、比較鋼12は、Mn量が過多である例
を示し、温間変形抵抗や温間鍛造後の硬さ等の点で問題
を生じ、また、浸炭後の結晶粒も粗大化が著しい。更に
、この比較鋼12は、Ni及びN量は、本発明で規定す
る範囲内にあるが、Mn量が過多であるために、鍛造後
の組織が部分的に微細なベイナイトとなったために、初
期粒が微細粒となり、最終的に逆に粗大化が促進された
ものである。
Comparative steel 10 shows an example in which the amount of Mn is significantly lower than the amount specified in the present invention, and the internal hardness is low (lack of strength as a part. On the other hand, comparative steel 12 has an excessive amount of Mn. As an example, problems arise in terms of warm deformation resistance and hardness after warm forging, and the crystal grains also become coarser after carburizing.Furthermore, this comparative steel 12 has a low Ni and N content. , is within the range specified in the present invention, but due to the excessive Mn content, the structure after forging partially becomes fine bainite, so the initial grains become fine grains and eventually become coarse. This has led to the promotion of

比較鋼13は、Ni量が高い例を示し、本発明鋼3及び
4に比較して、特性的には差違はないが、Niを過多に
添加しても、特に、一層の効果を得ることができないこ
とが示されている。比較鋼14及び15は、Cr量が本
発明にて規定す範囲をはずれている例を示し、Mn量が
本発明で規定する範囲をはずれる場合と同様の問題を生
じている。
Comparative steel 13 shows an example with a high amount of Ni, and there is no difference in properties compared to inventive steels 3 and 4, but even if excessive Ni is added, particularly, further effects can be obtained. It has been shown that this is not possible. Comparative steels 14 and 15 show examples in which the Cr content is outside the range specified by the present invention, and the same problems occur when the Mn content is out of the range specified by the present invention.

比較鋼16及び19は、/l量が本発明による規定範囲
をはずれる例である。比較鋼16はAl量が過多である
例を示し、Ni添加及び低N化の効果によって、結晶粒
の粗大化は生じないが、アルミナ系介在物量の増大によ
って、内部靭性が極端に劣化している。他方、比較鋼1
9は、Ajli量が極端に低い場合であって、初期粒度
4.5から明らかなように、加熱初期にて粒の粗大化が
認められ、浸炭後もそのまま結晶粒が粗大化して、靭性
を阻害している。比較鋼18は、C量が高い例を示し、
温間鍛造後の硬さが高く、また、浸炭後の内部硬さが著
しく、靭性の劣化が著しい。
Comparative steels 16 and 19 are examples in which the /l amount is outside the specified range according to the present invention. Comparative Steel 16 shows an example in which the amount of Al is excessive, and although grain coarsening does not occur due to the effects of Ni addition and low N, the internal toughness is extremely deteriorated due to the increase in the amount of alumina inclusions. There is. On the other hand, comparative steel 1
9 is a case where the Ajli amount is extremely low, and as is clear from the initial grain size of 4.5, coarsening of the grains is observed at the initial stage of heating, and the grains continue to coarsen even after carburizing, resulting in poor toughness. It's hindering. Comparative steel 18 shows an example with a high amount of C,
The hardness after warm forging is high, and the internal hardness after carburizing is significant, resulting in significant deterioration of toughness.

比較鋼20は、多量のMOを添加した例を示し、本発明
鋼17に比べて、変形抵抗、温間鍛造後の硬さが高く、
多量のMO添加が却って有害であることが示される。ま
た、組織のベイナイト化によって、浸炭時の結晶粒も粗
大化している。
Comparative Steel 20 is an example in which a large amount of MO is added, and compared to Invention Steel 17, it has higher deformation resistance and hardness after warm forging;
It is shown that adding a large amount of MO is rather harmful. Furthermore, due to the bainitic structure, the crystal grains during carburization also become coarse.

比較鋼21は、微細化元素として、従来より用いられて
いるNbを添加した例を示し、Nb炭窒化物の粗大化防
止効果によって、初期粒は結晶粒度番号にて10であっ
て、極めて小さいが、高温長時間にわたる浸炭処理後に
は、その防止効果はなく、粗大化が明らかである。
Comparative Steel 21 shows an example in which Nb, which is conventionally used as a refining element, is added, and due to the coarsening prevention effect of Nb carbonitride, the initial grain is extremely small with a grain size number of 10. However, after carburizing treatment at high temperatures and over a long period of time, there is no effect of preventing this, and coarsening is evident.

上記した比較鋼に対して、本発明鋼によれば、浸炭加熱
の内部の結晶粒度が6〜9であって、内部靭性にすぐれ
る。
In contrast to the comparative steel described above, the steel of the present invention has an internal grain size of 6 to 9 during carburizing, and has excellent internal toughness.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で C0.10〜0.30%、 Si0.50%以下、 Mn0.3〜2.0%、 Ni0.10〜0.40%、 Cr0.60〜2.0%、 Al0.02〜0.05%、 N0.0010〜0.0060%、 残部鉄及び不可避的不純物よりなり、浸炭処理後の内部
の結晶粒度番号が6〜10の整細粒であることを特徴と
する温間鍛造用肌焼鋼。
(1) C0.10-0.30%, Si0.50% or less, Mn0.3-2.0%, Ni0.10-0.40%, Cr0.60-2.0%, Al0. 02~0.05%, N0.0010~0.0060%, balance iron and unavoidable impurities, and is characterized by being fine grains with an internal grain size number of 6~10 after carburizing. Case hardened steel for forging.
(2)重量%で C0.10〜0.30%、 Si0.50%以下、 Mn0.3〜2.0%、 Ni0.10〜0.40%、 Cr0.60〜2.0%、 Al0.02〜0.05%、 N0.0010〜0.0060%、 Mo0.10〜0.30%、 残部鉄及び不可避的不純物よりなり、浸炭処理後の内部
の結晶粒度番号が6〜10の整細粒であることを特徴と
する温間鍛造用肌焼鋼。
(2) C0.10-0.30%, Si0.50% or less, Mn0.3-2.0%, Ni0.10-0.40%, Cr0.60-2.0%, Al0. 02~0.05%, N0.0010~0.0060%, Mo0.10~0.30%, balance iron and unavoidable impurities, and the internal grain size number after carburizing is 6~10. A case hardening steel for warm forging characterized by grains.
JP1678487A 1987-01-26 1987-01-26 Warm-forging steel Pending JPS63183157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1678487A JPS63183157A (en) 1987-01-26 1987-01-26 Warm-forging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1678487A JPS63183157A (en) 1987-01-26 1987-01-26 Warm-forging steel

Publications (1)

Publication Number Publication Date
JPS63183157A true JPS63183157A (en) 1988-07-28

Family

ID=11925812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1678487A Pending JPS63183157A (en) 1987-01-26 1987-01-26 Warm-forging steel

Country Status (1)

Country Link
JP (1) JPS63183157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447838A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Curburizing steel
WO2008126939A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447838A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Curburizing steel
WO2008126939A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel
JP2009108398A (en) * 2007-04-11 2009-05-21 Nippon Steel Corp Forging steel
EP2762593A1 (en) 2007-04-11 2014-08-06 Nippon Steel & Sumitomo Metal Corporation Forging steel
US9657379B2 (en) 2007-04-11 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Forging steel

Similar Documents

Publication Publication Date Title
JP2719892B2 (en) Surface carburized stainless steel alloy for high temperature, product made therefrom, and method of manufacturing the same
EP2562283B1 (en) Steel part having excellent in temper softening resistance
JPWO2010109778A1 (en) Carbon steel sheet having excellent carburizing and quenching properties and method for producing the same
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP2006348321A (en) Steel for nitriding treatment
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP4488228B2 (en) Induction hardening steel
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPS63183157A (en) Warm-forging steel
JPH04371547A (en) Production of high strength and high toughness steel
KR20200021754A (en) High-strength wire rod with excellent hydrogen brittleness resistance, steel for volt using the same, and methods for manufacturing thereof
JP2002146438A (en) Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JP6881497B2 (en) Parts and their manufacturing methods
JPH0227408B2 (en)
JPH0572442B2 (en)
JPS5916950A (en) Soft-nitriding steel
JPH02166257A (en) Spheroidal graphite cast iron and its production
JP2019049032A (en) Steel material for carburization processing
JP6881496B2 (en) Parts and their manufacturing methods
JPH04160135A (en) Steel for carburization
JP6881498B2 (en) Parts and their manufacturing methods
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method
JP5287183B2 (en) Manufacturing method of carburizing steel