JPS63183154A - Temperature detecting element using ferrous shape memory alloy - Google Patents

Temperature detecting element using ferrous shape memory alloy

Info

Publication number
JPS63183154A
JPS63183154A JP1136287A JP1136287A JPS63183154A JP S63183154 A JPS63183154 A JP S63183154A JP 1136287 A JP1136287 A JP 1136287A JP 1136287 A JP1136287 A JP 1136287A JP S63183154 A JPS63183154 A JP S63183154A
Authority
JP
Japan
Prior art keywords
temperature
shape memory
memory alloy
less
reverse transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136287A
Other languages
Japanese (ja)
Inventor
Hiroaki Otsuka
広明 大塚
Hiroyuki Tanahashi
浩之 棚橋
Masahito Murakami
雅人 村上
Hiroyuki Yamada
寛之 山田
Shoichi Matsuda
松田 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1136287A priority Critical patent/JPS63183154A/en
Publication of JPS63183154A publication Critical patent/JPS63183154A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control transformation temp. to a value in the prescribed temp. range, by changing Mn content in a specific range in an Fe-Mn-Si shape memory alloy consisting of specific percentages of Si and Cr and the balance Mn and Fe. CONSTITUTION:A ferrous shape memory alloy is prepared by changing Mn content in a range of 20-40% in an Fe-Mn-Si shape memory alloy consisting of, by weight, 3.5-8% Si, <=10% Cr, and the balance Mn and Fe with inevitable impurities. When a temp. detecting element is formed by using the above alloy, the desired temp. between 50 and 300 deg.C can easily be detected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、形状記憶合金を用い食用油、機械油または
機械本体等の50〜300℃の範囲の温度を簡便に感知
する検出端に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention relates to a detection end that uses a shape memory alloy to easily sense the temperature of edible oil, machine oil, machine bodies, etc. in the range of 50 to 300°C. It is.

(従来の技術) 各種の物体の温度、例えば50℃から300℃の範囲の
温度を計測する方法は水銀温度計、熱電対、バイメタル
等を用いて測温している。
(Prior Art) The temperature of various objects, for example, the temperature in the range of 50° C. to 300° C., is measured using a mercury thermometer, a thermocouple, a bimetal, or the like.

しかし、水銀温度計は簡便に測温することは出来るが、
ガラスを用いるため破損防止のための注意が必要のこと
と最高200℃附近が限界であるため200℃から30
0℃附近の測温が出来ない。
However, although a mercury thermometer can easily measure temperature,
Since glass is used, care must be taken to prevent breakage, and the maximum temperature is around 200℃, so
It is not possible to measure temperatures around 0℃.

また熱電対やバイメタルの様に電気的信号を温度に転換
して測温する方法はそのための専用の設備が必要であり
任意の場所を任意の時点で簡便に測温することは出来な
い。
Furthermore, methods for measuring temperature by converting electrical signals into temperature, such as thermocouples and bimetals, require specialized equipment and cannot easily measure temperature at any location at any time.

次に形状記憶合金を用いた簡便な温度検出方法が特開昭
57−212722号公報、特開昭58−40720号
公報、特開昭58−146824号公報において開示さ
れているが、特開昭57−212722号公報による発
明の場合は使用温度が示されていないけれども水中で使
用する方法であるため、使用温度は100℃以下と考え
てよ(、また特開昭58−40720号公報による発明
の場合は動作温度が67℃の場合についての実施例が示
されている。更に特開昭58−146824号公報によ
る発明の場合は使用合金がNi −Ti系であること、
逆変態温度が一40℃〜110℃であり、この範囲の適
当な温度を選定で来るとしている。また各種の公知文献
によれば表1に示したように逆変態温度、即ち形状回復
温度は100℃以下或いは500℃ないし650℃であ
り、100℃〜500℃の温度範囲について検出するこ
とは出来ない。また本発明のようにFe−Mn−Si系
の形状記憶合金を用いた例の記載も見当らない。
Next, a simple temperature detection method using a shape memory alloy is disclosed in JP-A-57-212722, JP-A-58-40720, and JP-A-58-146824; In the case of the invention according to JP-A No. 57-212722, the operating temperature is not indicated, but since it is a method of using in water, the operating temperature should be assumed to be 100°C or less. In the case of , an example is shown in which the operating temperature is 67° C. Furthermore, in the case of the invention according to JP-A-58-146824, the alloy used is a Ni-Ti system;
The reverse transformation temperature is 140°C to 110°C, and an appropriate temperature within this range can be selected. Furthermore, according to various known documents, as shown in Table 1, the reverse transformation temperature, that is, the shape recovery temperature, is 100°C or less or 500°C to 650°C, and it is not possible to detect the temperature range of 100°C to 500°C. do not have. Further, there is no description of an example using a Fe-Mn-Si shape memory alloy as in the present invention.

(発明が解決しようとする問題点) 簡便な温度検出方法として形状記憶合金を使用する方法
は伸び回復素子、縮み回復素子または曲げ回復素子を被
測温体に接触させて形状回復の状態により温度を感知す
ることができるので、簡便であり、かつ検出端の形状を
被測温体に合せて作ることも可能であるため非常に応用
範囲の広い方法である。しかしながら100℃から50
0℃の範囲については表1に於て明らかなように測定す
ることが出来ない。
(Problem to be Solved by the Invention) A simple temperature detection method using a shape memory alloy is to bring an elongation recovery element, a shrinkage recovery element, or a bend recovery element into contact with a temperature-measuring object, and measure the temperature based on the state of shape recovery. This method is simple and has a wide range of applications because the shape of the detection end can be made to match the temperature of the object to be measured. However, from 100℃ to 50℃
As is clear from Table 1, measurements cannot be made in the 0°C range.

(問題点を解決するための手段) 本発明は従来の形状記憶合金より逆変態温度の高いFe
−Mn−Si系の形状記憶合金を用いてMn含有量を変
化させ、逆変態温度を50℃から300℃間の所望の温
度にコントロールした形状記憶合金を温度検出端とする
ことを特徴とする。
(Means for Solving the Problems) The present invention utilizes Fe, which has a higher reverse transformation temperature than conventional shape memory alloys.
-Mn-Si type shape memory alloy is used to change the Mn content, and the temperature detection end is a shape memory alloy in which the reverse transformation temperature is controlled to a desired temperature between 50°C and 300°C. .

形状記憶合金の逆変態温度が100℃以上のものを見い
出す目的で発明者等は特開昭61−201725号公報
で開示したFe−Mn−Si系の形状記憶合金の逆変態
温度が高いことに着目し成分含有量と逆変態温度との関
係を調査した。その結果、逆変態温度はMn含有量に逆
比例することを見い出した。尚Mn含有量が20%未満
或いは40%を超える場合は形状記憶効果が低下する。
In order to find a shape memory alloy with a reverse transformation temperature of 100°C or higher, the inventors discovered that the reverse transformation temperature of the Fe-Mn-Si-based shape memory alloy disclosed in JP-A No. 61-201725 was high. We focused on the relationship between component content and reverse transformation temperature. As a result, it was found that the reverse transformation temperature is inversely proportional to the Mn content. In addition, when the Mn content is less than 20% or more than 40%, the shape memory effect decreases.

その1例として第1図にFe−Mn−Si系厚形状記憶
金X Mn6Si5Cr (重量%(以下%)としてX
%のMn、  6%のSi、  5%のCrを含有した
Fe−Mn−5t茶系形記憶合金)の逆変態温度に及ぼ
すMn含有量の関係を示す。図中点線は逆変態開始温度
即ち形状回復開始温度を、実線は逆変態終了温度即ち形
状回復終了温度を示す。
As an example, Fig. 1 shows Fe-Mn-Si thick shape memory gold
The relationship between the Mn content and the reverse transformation temperature of a Fe-Mn-5t brown-based memory alloy (containing 5% Mn, 6% Si, and 5% Cr) is shown. In the figure, the dotted line indicates the reverse transformation start temperature, that is, the shape recovery start temperature, and the solid line indicates the reverse transformation end temperature, that is, the shape recovery end temperature.

例えばMn25%、Si6%、Cr5%、残部Feの場
合は第1図の横軸のMn25%の位置から垂直に線を伸
ばし、点線と実線の交点145℃で逆変態が開始し、2
10℃で逆変態が終了する。従って温度検出端としては
伸び回復素子、縮み回復素子または曲げ回復素子のいづ
れを用いてもよいが、それぞれの回復素子の特徴を生か
して形状回復開始の145℃から、形状回復終了の21
0℃までの任意の温度を検出することが可能となる。
For example, in the case of 25% Mn, 6% Si, 5% Cr, and the balance Fe, a line is extended perpendicularly from the position of 25% Mn on the horizontal axis in Figure 1, and the reverse transformation starts at 145°C, the intersection of the dotted line and the solid line.
Reverse transformation ends at 10°C. Therefore, any one of an elongation recovery element, a shrinkage recovery element, or a bending recovery element may be used as the temperature detection end, but by taking advantage of the characteristics of each recovery element, from 145 degrees Celsius when shape recovery begins, to 21 degrees Celsius when shape recovery ends.
It becomes possible to detect any temperature up to 0°C.

逆変態温度はSi、 Crの含有量を若干変えることに
より逆変態温度を50℃から300℃に広げることが可
能であることを見い出した。またN5 Co。
It has been found that the reverse transformation temperature can be increased from 50°C to 300°C by slightly changing the contents of Si and Cr. Also N5 Co.

Mo、  C,jVおよびCuは形状記憶特性、靭性、
熱間加工性および耐食性の向上に必要な元素であり逆変
態温度を50℃から300℃に変化させることによる上
記材質の劣化防止を目的として添加される。尚特許請求
の範囲で示したSt、 Cr、 Ni、 Co+Mo、
 C,A!およびCuの含有量の制限はいづれも形状記
憶合金の記憶特性を向上させるために定めたものである
Mo, C, jV and Cu have shape memory properties, toughness,
It is an element necessary for improving hot workability and corrosion resistance, and is added for the purpose of preventing deterioration of the above-mentioned material by changing the reverse transformation temperature from 50°C to 300°C. In addition, St, Cr, Ni, Co+Mo, shown in the claims
C, A! The limits on the content of Cu and Cu are both set in order to improve the memory properties of the shape memory alloy.

温度検出端の形状としては種々の形状が考えられ、特定
出来ないが、例えば使用目的に応じ箔、板、線、コイル
等に加工された本発明による形状記憶合金を逆変態点以
下の温度(例えば常温)で変形した後、被測温体に接触
もしくは直近の雰囲気にさらすことで測温を実施する。
Various shapes are conceivable as the shape of the temperature sensing end, and although it is not possible to specify, for example, the shape memory alloy according to the present invention processed into foil, plate, wire, coil, etc. depending on the purpose of use, may be heated at a temperature below the reverse transformation point ( After being deformed at room temperature (for example, room temperature), the temperature is measured by contacting the object to be measured or exposing it to the immediate atmosphere.

この時の形状記憶素子としては伸び回復素子、縮み回復
素子或いは曲げ回復素子のいづれを用いてもよい。
As the shape memory element at this time, any one of an elongation recovery element, a contraction recovery element, or a bending recovery element may be used.

(実施例) 以下に本発明の実施例を示す。(Example) Examples of the present invention are shown below.

実施例1 第2図はコイル1にMn25%、Si6%、Cr5%。Example 1 In Figure 2, coil 1 contains 25% Mn, 6% Si, and 5% Cr.

残Feの組成から成る本発明による形状記憶合金を用い
た天麩羅油の温度検出端である。300〜600℃の温
度でコイル1を縮んだ状態で数秒から数十分拘束してお
き、その形態を記憶させる形状記憶処理を行った。2は
コイル1を引き伸ばすための柄、3は油に浸漬して温度
を感知する部分であり、これは金属製の筒4により保護
されている。コイル1の先端は金属製筒4に固定され、
また金属製筒4のコイル1とは反対側に窓5があり柄2
に設置された温度表示物の色が識別出来る構造となって
いる。この実施例における逆変態温度((逆変態開始温
度十進変態終了温度)/2)は180℃である。
This is a temperature detection end for tempura oil using the shape memory alloy according to the present invention having a composition of residual Fe. The coil 1 was restrained in a contracted state at a temperature of 300 to 600° C. for several seconds to several tens of minutes, and a shape memory treatment was performed to memorize its shape. 2 is a handle for stretching the coil 1, and 3 is a part that is immersed in oil to sense temperature, which is protected by a metal cylinder 4. The tip of the coil 1 is fixed to a metal tube 4,
In addition, there is a window 5 on the opposite side of the metal tube 4 from the coil 1, and the handle 2
The structure is such that the color of the temperature indicator installed can be identified. The reverse transformation temperature ((reverse transformation start temperature decimal transformation end temperature)/2) in this example is 180°C.

この温度検出端の使用法は次の手順により行う。How to use this temperature sensing end is as follows.

■ 本発明による形状記憶合金で作られたコイル1を常
温において柄2を引くことにより伸び変形させる。
(2) The coil 1 made of the shape memory alloy according to the present invention is stretched and deformed by pulling the handle 2 at room temperature.

■温度感知部3を天麩羅油に浸す。■Immerse temperature sensor 3 in tempura oil.

■ 油の温度が180℃になるとコイル1が形状回復し
温度表示窓に適温になったことを示す色(例えば赤色)
があられれ、温度が適温になったことを感知する。勿論
色を目盛にすることも可能である。
■ When the oil temperature reaches 180℃, coil 1 recovers its shape and the temperature display window shows a color (for example, red) indicating that the temperature has reached the appropriate temperature.
It detects that the temperature has reached the appropriate temperature. Of course, it is also possible to use colors as graduations.

尚、この検出端は本発明による形状記憶合金から成るコ
イル1の組成を変えることにより50〜300℃の液体
の温度の検知に使用することが可能である。
Note that this detection end can be used to detect the temperature of a liquid of 50 to 300° C. by changing the composition of the coil 1 made of the shape memory alloy according to the present invention.

実施例2 組成としてMn25%、Si6%、Cr5%、Mo1%
Example 2 Composition: Mn 25%, Si 6%, Cr 5%, Mo 1%
.

残りFeである本発明による形状記憶合金の箔(20〜
50μ)に実施例1で示した形状記憶処理をほどこし、
これを適当な大きさに切り取り、常温にて曲げ変形を行
う。本曲げ回復素子の逆変態温度は180℃である。こ
の曲げ回復素子を実施例1の場合と同様に天麩羅油に浸
漬する。天麩羅油の温度が180℃に達すると形状が回
復し、適温になったことを感知する。
Shape memory alloy foil according to the present invention with the remainder being Fe (20~
50μ) was subjected to the shape memory treatment shown in Example 1,
This is cut to an appropriate size and bent at room temperature. The reverse transformation temperature of this bending recovery element is 180°C. This bending recovery element is immersed in tempura oil in the same manner as in Example 1. When the temperature of tempura oil reaches 180℃, it recovers its shape and senses that it has reached the appropriate temperature.

勿論合金組成を変えることにより50〜300℃の液体
の温度或いは機械、電気部品等の温度を本実施例の曲げ
回復素子を用いて測定することが可能である。
Of course, by changing the alloy composition, it is possible to measure the temperature of a liquid of 50 to 300°C or the temperature of a machine, an electrical component, etc. using the bending recovery element of this embodiment.

また同じ方法で製造した形状記憶合金の薄板をブザーま
たは電球、発光ダイオード等を含む警報回路の電気的接
点として使用した。警報器周囲の雰囲気温度が180℃
に達すると形状が回復し回路が閉じ、ブザーまたは電球
、発光ダイオードを作動させ完全に警報器として機能を
はたすことが出来た。
Shape memory alloy thin sheets produced in the same manner were also used as electrical contacts in alarm circuits including buzzers or light bulbs, light emitting diodes, etc. The ambient temperature around the alarm is 180℃
When it reached this point, it regained its shape, closed the circuit, and activated a buzzer, light bulb, or light-emitting diode, fully functioning as an alarm.

(発明の効果) 本発明により50℃から300℃の温度、特に従来形状
記憶合金を用いた測温検出端において検出できなかった
100℃から300℃の温度範囲を簡便に検出すること
が可能となった。
(Effects of the Invention) The present invention makes it possible to easily detect temperatures from 50°C to 300°C, especially the temperature range from 100°C to 300°C, which could not be detected with conventional temperature detection terminals using shape memory alloys. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の形状記憶合金の逆変態温度に及ぼすM
n含有量の影響を、第2図は天麩羅油等の液体の温度を
検知するための本発明の形状記憶合金を用いた温度検出
端の1例を示したものである。 2θ    zs     so     ssMn 
 (重量2) 第2図
Figure 1 shows the effect of M on the reverse transformation temperature of the shape memory alloy of the present invention.
Figure 2 shows an example of a temperature detection end using the shape memory alloy of the present invention for detecting the temperature of a liquid such as tempura oil. 2θ zs so ssMn
(Weight 2) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)重量%としてSi3.5〜8%、Cr10%以下
を含有し、残部はMn、Feおよび不可避不純物よりな
るFe−Mn−Si系形状記憶合金に於て、Mn含有量
を20〜40%の範囲内に変化させMn量に応じて変態
温度を50℃から300℃間の所望の温度にコントロー
ルした形状記憶合金を用いることを特徴とした鉄基の形
状記憶合金を用いた温度検出端。
(1) In a Fe-Mn-Si shape memory alloy containing 3.5 to 8% Si and 10% or less Cr by weight, with the remainder consisting of Mn, Fe, and unavoidable impurities, the Mn content is 20 to 40%. % and the transformation temperature is controlled to a desired temperature between 50°C and 300°C according to the amount of Mn. .
(2)重量%としてSi3.5〜8%、Cr10%以下
に加えてNi10%以下、Co10%以下、Mo2%以
下、C1%以下、Al1%以下、Cu1%以下の1種ま
たは2種以上を含有し、残部はMn、Feおよび不可避
不純物よりなるFe−Mn−Si系形状記憶合金に於て
、Mn含有量を20〜40%の範囲内に変化させMn量
に応じて変態温度を50℃から300℃間の所望の温度
にコントロールした形状記憶合金を用いることを特徴と
した鉄基の形状記憶合金を用いた温度検出端。
(2) In addition to Si 3.5 to 8% and Cr 10% or less, one or more of the following are added: Ni 10% or less, Co 10% or less, Mo 2% or less, C 1% or less, Al 1% or less, Cu 1% or less. In the Fe-Mn-Si shape memory alloy, the balance is Mn, Fe, and unavoidable impurities, the Mn content is varied within the range of 20 to 40%, and the transformation temperature is set to 50 ° C. A temperature sensing end using an iron-based shape memory alloy, characterized in that the shape memory alloy is controlled at a desired temperature between 300°C and 300°C.
JP1136287A 1987-01-22 1987-01-22 Temperature detecting element using ferrous shape memory alloy Pending JPS63183154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136287A JPS63183154A (en) 1987-01-22 1987-01-22 Temperature detecting element using ferrous shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136287A JPS63183154A (en) 1987-01-22 1987-01-22 Temperature detecting element using ferrous shape memory alloy

Publications (1)

Publication Number Publication Date
JPS63183154A true JPS63183154A (en) 1988-07-28

Family

ID=11775915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136287A Pending JPS63183154A (en) 1987-01-22 1987-01-22 Temperature detecting element using ferrous shape memory alloy

Country Status (1)

Country Link
JP (1) JPS63183154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149648A (en) * 1988-12-01 1990-06-08 Nisshin Steel Co Ltd Shape memory stainless steel and its shape memorizing method
WO2002034958A1 (en) * 2000-10-26 2002-05-02 Emerson Electric (China) Holdings Co. Ltd. Iron-manganese-silicon-based shape memory alloys containing chromium and nitrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149648A (en) * 1988-12-01 1990-06-08 Nisshin Steel Co Ltd Shape memory stainless steel and its shape memorizing method
WO2002034958A1 (en) * 2000-10-26 2002-05-02 Emerson Electric (China) Holdings Co. Ltd. Iron-manganese-silicon-based shape memory alloys containing chromium and nitrogen

Similar Documents

Publication Publication Date Title
US6622558B2 (en) Method and sensor for detecting strain using shape memory alloys
US3594675A (en) Temperature-sensing probe
US9933321B2 (en) High gage factor strain gage
KR870000064B1 (en) Non-crystal alloy
CN103443312B (en) Nickel-chromium-iron-aluminum alloy having good processability
KR19980079240A (en) NiMnGa alloy with controllable inverse end point and shape memory effect
JPH02234032A (en) Measuring sensor for detecting fluid state and measuring method by use of sensor
JPS63183154A (en) Temperature detecting element using ferrous shape memory alloy
JP2007211350A (en) Ferromagnetic shape-memory alloy used for magnetic field-sensitive actuator or sensor utilizing magnetism
Adams et al. Construction and properties of the manganin resistance pressure gauge
US3182507A (en) Thermal history gage
US3972740A (en) Thermocouple with improved EMF stability
JP3964360B2 (en) Ferromagnetic shape memory alloys for magnetic field responsive actuators or magnetic sensors
Abo-Elkhier et al. Superplastic characteristics of fine-grained 7475 aluminum alloy
Dewar et al. On the electrical resistivity of pure mercury at the temperature of liquid air
Mangum Stability of small industrial platinum resistance thermometers
JPH08184404A (en) Displacement sensor, acceleration sensor and clinometer
RU50658U1 (en) TEMPERATURE SENSOR
US3678757A (en) Bimetallic elements
JPH01172552A (en) Manufacture of ni-ti shape memory alloy
SU853406A1 (en) Inductive level gauge pickup for electroconductive media
Baum et al. Specific Heat of Chromium-Rich Chromium-Nickel and Chromium-Iron-Molybdenum Alloys Between 1.3 and 4.2 K
US3679491A (en) Platinum-rhodium vs. platinum thermocouple having base metal compensating leads
US1589765A (en) Circuit controller
JPS62211339A (en) Ni-ti-cr shape memory alloy