JPS6318236A - Air flow measuring instrument for vehicle - Google Patents
Air flow measuring instrument for vehicleInfo
- Publication number
- JPS6318236A JPS6318236A JP61162737A JP16273786A JPS6318236A JP S6318236 A JPS6318236 A JP S6318236A JP 61162737 A JP61162737 A JP 61162737A JP 16273786 A JP16273786 A JP 16273786A JP S6318236 A JPS6318236 A JP S6318236A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- pressure
- probes
- measuring means
- pressure measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- WYROLENTHWJFLR-ACLDMZEESA-N queuine Chemical compound C1=2C(=O)NC(N)=NC=2NC=C1CN[C@H]1C=C[C@H](O)[C@@H]1O WYROLENTHWJFLR-ACLDMZEESA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両の空気流測定装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a vehicle airflow measuring device.
(従来技術)
従来より、車両、特に自動車の車体表面の空気流れの測
定は、例えば特開昭58−48830号公報に示されて
いるように、測定対象となる車両(供試束)をンヤシダ
イナモメータを備えた風洞試験室内に設置し、車体フロ
ント部の何方側からファンダクトにより冷却風を吹き付
けることによって行なわれ、この場合、当該冷却風の流
れを可視化するための方法として例えば実開昭60−4
2939号公報に示されているように煙が使用されてい
る。(Prior Art) Conventionally, the measurement of air flow on the surface of a vehicle, particularly an automobile, has been carried out by scanning a vehicle (sample bundle) to be measured, as shown in Japanese Patent Application Laid-Open No. 58-48830, for example. This is done by installing a palm dynamometer in a wind tunnel test room and blowing cooling air through a fan duct from either side of the front of the vehicle. 1986-4
Smoke is used as shown in Publication No. 2939.
(発明が解決しようとする問題点)
ところが、上記従来技術による場合、当該空気流が成層
状態で流れる車体表面部の空気流の測定には効果的であ
るが、例えば車体後方部のように通常の車体形状から見
て走行時に負圧か生じ易く、下方から上方への空気流の
巻き上げが生じるような部分では当該煙によって示され
る空気流線が流れ方向の複雑な変化によって3次元方向
に乱されてしまうので実質的に正確な空気流の測定がで
きなくなる問題がある。(Problem to be Solved by the Invention) However, although the above-mentioned conventional technology is effective in measuring the airflow on the surface of the car body where the airflow flows in a stratified state, Judging from the shape of the car body, negative pressure tends to occur when driving, and in areas where the airflow is rolled up from below to above, the air streamlines shown by the smoke are disturbed in three dimensions due to complex changes in the flow direction. Therefore, there is a problem that it becomes impossible to measure the air flow substantially accurately.
特に、該部分での空気流の変化の正確な測定は上記事情
から見て3次元方向の気流方向の測定が不可欠であるに
も拘わらず上記従来技術では3次元的な観察方法自体を
取ることができないのでこれに対応し得ない。In particular, in view of the above circumstances, measurement of the airflow direction in a three-dimensional direction is indispensable for accurate measurement of changes in airflow in the area, but the above-mentioned conventional technology does not adopt a three-dimensional observation method itself. I can't deal with this because I can't.
(問題点を解決するための手段)
本発明は、上記の問題を解決することを目的としてなさ
れたもので、車両走行時において当該車両の後方部に生
じる空気流を圧力測定手段により測定する車両の空気流
測定装置において、上記圧力測定手段が、複数の圧力セ
ンサを3次元方向に設置した球状プローブよりなり、所
定の移動装装置により任意の方向に移動可能に構成され
てなるものである。(Means for Solving the Problems) The present invention has been made for the purpose of solving the above problems. In the air flow measuring device, the pressure measuring means is composed of a spherical probe having a plurality of pressure sensors installed in three-dimensional directions, and is configured to be movable in any direction by a predetermined moving device.
(作 用)
上記の手段によると、車両の空気流を測定する圧力測定
手段が、複数の圧力センサを3次元方向に設置した球状
プローブによって構成され、かつ移動手段によって任意
に移動可能となっているために車両後方部各位置の3次
元方向の空気流の流れを任意かつ正確に測定することが
できる。(Function) According to the above means, the pressure measuring means for measuring the air flow of the vehicle is constituted by a spherical probe in which a plurality of pressure sensors are installed in three-dimensional directions, and is movable arbitrarily by the moving means. Therefore, it is possible to arbitrarily and accurately measure the airflow in three-dimensional directions at each position at the rear of the vehicle.
(実施例)
第1図〜第3図は、本発明の実施例に係る車両の空気流
測定装置を示している。(Embodiment) FIGS. 1 to 3 show a vehicle airflow measuring device according to an embodiment of the present invention.
先ず第1図において、符号Iは風洞試験室A内に納入設
置された例えばハツチバックタイプの車両(自動車)で
あり、上記風洞試験室Aの当該車両lの前方には送風用
のファンダクト2が設置されている。このファンダクト
2からは、所定争の空気流が任意の流速で上記車両1に
対して吹き付けられる。First, in FIG. 1, reference numeral I is a hatchback type vehicle (automobile), for example, which has been delivered and installed in the wind tunnel test room A, and in front of the vehicle I in the wind tunnel test room A is a fan duct 2 for blowing air. is installed. From this fan duct 2, a predetermined air flow is blown toward the vehicle 1 at an arbitrary flow velocity.
一方、符号5は上記風洞試験室A内の車両1後方部に位
置して当該車両lの前後方向および左右方向に移動可能
に設けられた圧力測定手段である。On the other hand, the reference numeral 5 denotes a pressure measuring means located at the rear of the vehicle 1 in the wind tunnel test room A and movable in the longitudinal and lateral directions of the vehicle 1.
該圧力測定手段5は、上下方向に車両1の車高よりも長
い所定の支持部材6に複数の球状プローブ7.7・・を
上下並列に軸支してなり、当該球状プローブ7.7・・
には第2図に示すようにその球面部全体に当該球面体の
中心より放射方向で、かつ当該球面の経線と緯線との交
叉点に位置して例えばピトー管よりなる複数の圧力セン
サ9,9・・が埋設されている。そして、上記各圧力セ
ンサ9,9・・の出力管10.10・・は上記球状プロ
ーブ7.7・・の軸支部から支持部材6を抜けてスキャ
ニングバルブ11に連通せしめられ、該スキャニングバ
ルブ11を介して例えばマノメータ等の圧力計測器13
によりその圧力値を順次多点測定してその測定データを
所定のメモリブース12に多点記録する。このメモリブ
ース12は、当該データの記録機能の他に後述するトラ
バース装置20の駆動制御機能並びに上記スキャニング
バルブ11のスキャニング制御機能をも同時に備えてい
る。上記測定データの記録には例えばフロッピーディス
クが使用され、上記測定データを基にした当該流れ場の
(a)流速ベクトルの分布図、(b)等総圧線図、(c
)等静圧線図等が形成記録される。The pressure measuring means 5 includes a plurality of spherical probes 7.7 supported vertically in parallel on a predetermined support member 6 which is longer than the vehicle height of the vehicle 1 in the vertical direction.・
As shown in FIG. 2, a plurality of pressure sensors 9 made of, for example, Pitot tubes are installed over the entire spherical part in a radial direction from the center of the spherical body and located at the intersection of the meridian and latitude of the spherical surface. 9... is buried. The output pipes 10, 10, . . . of the pressure sensors 9, 9, . A pressure measuring device 13 such as a manometer, etc.
The pressure values are sequentially measured at multiple points and the measured data are recorded in a predetermined memory booth 12 at multiple points. In addition to the data recording function, the memory booth 12 also has a drive control function for a traverse device 20, which will be described later, and a scanning control function for the scanning valve 11. For example, a floppy disk is used to record the measurement data, and the flow field based on the measurement data includes (a) distribution diagram of flow velocity vectors, (b) isototal pressure diagram, (c)
) Isostatic pressure diagrams etc. are formed and recorded.
これらの記録データは、最終的にグラフィックディスプ
レイ機能を備えたパーソナルコンピュータ16に入力さ
れて実際の車両走行形態をシミュレーションした画像表
示(アニメーション表示)により空気流状聾(気流巻き
上げ、負圧分布等)が3次元的に分析検討される。These recorded data are finally input to a personal computer 16 equipped with a graphic display function, and the image display (animation display) that simulates the actual vehicle driving mode is used to display airflow conditions (airflow winding up, negative pressure distribution, etc.). will be analyzed and considered three-dimensionally.
上記圧力測定手段5は、移動装置としてのトラバース装
置20により車両前後又は左右方向に任意に移動するこ
とが可能となって、おり、上記車両後方部の全領域に亘
る空気流の3次元方向の空気流の測定が可能となってい
る。該トラバース装置20は、上記車両lの前後方向お
よび左右方向の各々の移動方向に対応して設けられた2
組のラック17.17およびピニオン18.18によっ
て上記圧力測定手段5の支持部材6を当該各ラック方向
に移動自在に支持することによって構成されており、そ
れらの各ピニオン+ 8.18を各々パルスモータ(図
示省略)によって任意に回転駆動することによって上記
圧力測定手段5を当該車両1の曲後方向又は左右方向に
任意に移動制御する。上記パルスモータの駆動は、上述
のように上記メモリブース12からの測定プログラムに
応じた制御指令によってなされる。The pressure measuring means 5 can be moved arbitrarily in the longitudinal or lateral direction of the vehicle by a traverse device 20 as a moving device, and is capable of measuring the three-dimensional direction of the air flow over the entire area at the rear of the vehicle. It is possible to measure airflow. The traverse device 20 includes two traverse devices provided corresponding to the longitudinal and lateral directions of movement of the vehicle l.
The support member 6 of the pressure measuring means 5 is supported movably in the direction of each rack by a set of racks 17.17 and pinions 18.18. By arbitrarily driving the pressure measuring means 5 to rotate by a motor (not shown), the pressure measuring means 5 is controlled to move in the backward direction or in the left-right direction of the vehicle 1. The pulse motor is driven by a control command from the memory booth 12 according to the measurement program as described above.
次に、上記空気流測定装置を使用した車両の空気流測定
方法について第3図のフローチャートを参照して説明す
る。Next, a method for measuring airflow in a vehicle using the above airflow measuring device will be explained with reference to the flowchart shown in FIG.
先ず、上記球状プローブ7.7・・表面圧のビ−りの大
きSとピークの立置θ○、ψ0を推定するため、表面圧
計ぶ11値の最大値imaxを与える圧力センサ9.9
・・付近の表面圧分布をθとψの多項式で近似する(ス
テップS、)。圧力分布は、プローブ7.7・・の形状
が球状であることから、上記ピーク位置θ0.ψ0に関
して、軸対称分布となると考えられる。そこで、該圧力
分布を表わす関数式を次のようにおく。tお、θ、ψは
、第4図のプローブ基Q座標で表される空気流に対する
一般玉環角である。First, the above-mentioned spherical probe 7.7...In order to estimate the magnitude S of the surface pressure bead and the vertical position θ○, ψ0 of the peak, the pressure sensor 9.9 which gives the maximum value imax of the 11 values of the surface pressure meter is used.
...The surface pressure distribution in the vicinity is approximated by a polynomial of θ and ψ (step S). Since the shape of the probes 7.7... is spherical, the pressure distribution is determined at the peak position θ0. It is considered that the distribution is axially symmetric with respect to ψ0. Therefore, a functional expression representing the pressure distribution is set as follows. t, θ, and ψ are the general bead angles for the airflow represented by the probe base Q coordinates in FIG.
Cp= Cpt −a((θ−θ0)2÷(ψ−ψo)
2)= Cr)* C+’F3 ’θ+C++p’ψ工
C2(02+ψ2)・・・・・・・(+)
7こ71シ、Cpは、圧力係数、Cptは、総圧(動正
−静工)係数(圧力係数cpのピーク値) 、a、Co
。Cp= Cpt -a((θ-θ0)2÷(ψ-ψo)
2)=Cr)*C+'F3'θ+C++p'ψC2(02+ψ2)・・・・・・・・・(+) 7, Cp is the pressure coefficient, Cpt is the total pressure (dynamic - static) ) coefficient (peak value of pressure coefficient cp), a, Co
.
C、e、 Cut、 C2;よ、球状プローブ7.7”
の位置によって決まる定数、θ0.ψ0はピークを与え
るθ、ψの値であり、次のような関係がある。C, e, Cut, C2; Yo, spherical probe 7.7”
A constant determined by the position of θ0. ψ0 is the value of θ and ψ that give a peak, and has the following relationship.
したがって、上記圧力分布を上記式(+)のように近似
して当該計測値の最大値を与える圧カセノサ付近の圧力
検出データを用いて、上記定¥lCo。Therefore, by approximating the pressure distribution as in the above equation (+) and using the pressure detection data near the pressure casenosa that gives the maximum value of the measured value, the above constant \lCo is determined.
CIe、 C+w、 Ctを決めれば、式(2)より表
面圧のピーク、すなわち総圧と、ピークを与える位置、
すなわち、流れの方向(θO1ψO)を推定することが
できる(ステップS、)。Once CIe, C+w, and Ct are determined, the peak of the surface pressure, that is, the total pressure, and the position giving the peak, from equation (2),
That is, the flow direction (θO1ψO) can be estimated (step S).
次に、上記のようにして決定されrこ圧力のピーク位置
(θ0.ψ0)を原点とする座標系(プローブ基準座標
)に上記圧力のピーク値imaxとその縦横両隣りの点
(ピーク点を含む5点)を座標変換して局所流基準座標
で表わす(ステップS、)。これは、当該ピーク点への
局所流に対して3次元方向の流速ベクトルを求めるため
になされる。Next, in the coordinate system (probe reference coordinates) whose origin is the peak position (θ0.ψ0) of the pressure determined as described above, the peak value imax of the pressure and the points adjacent to it both vertically and horizontally (the peak point) are added. 5 points) are coordinate transformed and expressed in local flow reference coordinates (step S). This is done in order to obtain a three-dimensional flow velocity vector for the local flow to the peak point.
すなわち、今例えば第4図に示すように先ず上記球状プ
ローブ7.7・・の基準座標の各軸Xp。That is, for example, as shown in FIG. 4, first, each axis Xp of the reference coordinates of the spherical probes 7.7.
Yp、Zpが定義されているものとする。It is assumed that Yp and Zp are defined.
一方、X、Y、Zは車両に対して与えられfこ空気流の
軍体後方部流れ場における球状プロニブ7゜7・・位置
の空間座標を示しており、上記球状プローブ7.7・・
の位置は、この座標系に対して定義される。そして、上
記のごと<Xp、Yp、Zpはそれぞれプローブ基準座
標であり、該zp軸は上記X軸と、またyp軸はZ軸と
、zp軸はY軸とそれぞれ平行であり、方向が逆である
。上記θ。On the other hand, X, Y, and Z indicate the spatial coordinates of the position of the spherical probe 7.7 in the rear flow field of the airflow given to the vehicle.
The position of is defined relative to this coordinate system. As above, <Xp, Yp, and Zp are probe reference coordinates, and the zp axis is parallel to the It is. The above θ.
ψは、X p、 Y p、 Z p座標軸を基準にして
定義される。またZe中軸は、局所流基準座標である。ψ is defined based on the X p, Y p, and Z p coordinate axes. The center axis of Ze is the local flow reference coordinate.
球状プローブ7.7・・周りの局所流は、上記Zey軸
に関して軸対称となることが期待されるので、圧力分布
もZ〜軸に対称となることが予想される。Since the local flow around the spherical probes 7.7 is expected to be axially symmetrical about the Zey axis, it is expected that the pressure distribution will also be symmetrical about the Z~ axis.
すなわち、球状プローブ7.7・・の表面圧力分布は、
球状プローブ7.7・・表面の淀み点Pを原点とする座
標系で考えれば、ある点Qの圧力分布:よ、Ze、袖と
線分0Q(Oは球状プローブの中心)となす角φのみの
関数として表わすことができろ。In other words, the surface pressure distribution of the spherical probe 7.7...
Spherical probe 7.7... Considering the coordinate system with the stagnation point P on the surface as the origin, the pressure distribution at a certain point Q is: Yo, Ze, the angle φ between the sleeve and the line segment 0Q (O is the center of the spherical probe) It can be expressed as a function of only.
そこで、上記X p、 Y p、 Z p軸を回転させ
て、Ze1.軸とzp軸が重なるようr;座標系をつく
り、Xp。Therefore, by rotating the X p, Y p, and Z p axes, Ze1. Create an r; coordinate system so that the axis and the zp axis overlap, and set it to Xp.
Yp、ZpM系で定められているプローブ表面圧力セン
サの座標系を新しい座標系で表現し、各圧力センサの座
標がZe、袖となす角φを求める。このときの回転によ
る座標変換は、zp軸まわりに00回転させる変換行列
(Ae)と、(Ae)による回転によってyp軸が移さ
れてできろ軸Yp′ 軸まわりに当該zp軸がZeψ軸
と重なるようにψ、==π/2−ψ0だけ回転させる変
換行夕]目A9)によって行なわれる。The coordinate system of the probe surface pressure sensor defined by the Yp, ZpM system is expressed in a new coordinate system, and the angle φ between the coordinates of each pressure sensor and the sleeve is determined. The coordinate transformation by rotation at this time is the transformation matrix (Ae) that rotates by 00 around the zp axis, and the rotation by (Ae) that moves the yp axis to create an axis Yp'. This is performed by A9), a conversion process that rotates the images by ψ, ==π/2 - ψ0 so that they overlap.
すなわち、
1こだし、(X pi、 Y pi、 Z pi)は、
i番目の圧力センサの座標である。このときφは、次の
ようにして得られる。That is, 1 kodashi (X pi, Y pi, Z pi) is
These are the coordinates of the i-th pressure sensor. At this time, φ can be obtained as follows.
φ 1=cos−’Ze+i
・ ・ ・ ・ (4)このような座標変換に
よって、ピーク値付近の圧力センサのφを求める。二の
φに関する圧力分布は、あらかじめ行なっておいた予備
実験により、例えば次のような実験式で表p什ることが
セ1つているものとする。φ 1=cos−'Ze+i
・ ・ ・ ・ (4) By such coordinate transformation, φ of the pressure sensor near the peak value is determined. Assume that the pressure distribution with respect to the second φ is determined by the following experimental formula, for example, from a preliminary experiment conducted in advance.
Cp(φ)= Cpj −K (sin’φ+に1φ2
+に2φ4’に3φ6士・ ・ ・ ・) ・ ・・
・(5)ここで、kl、に2.に3.・・・は、予(,
4実験より決められている定数である。φ=φiのとき
、Cp=Cpiとして、1番目の圧力センサの圧力係数
とφとが式(5)を満たすようにKを求める。あるいは
、式(2)より求められる圧力係数cptを無視して、
式(4)より、KとCptを同時に求めることら可能で
ある(ステップS4)。Cp(φ) = Cpj −K (1φ2 to sin'φ+
+ to 2φ4' to 3φ6shi... ・ ・ ・) ・ ・
・(5) Here, kl, 2. 3. ...ha, yo(,
This is a constant determined from four experiments. When φ=φi, K is determined by setting Cp=Cpi so that the pressure coefficient of the first pressure sensor and φ satisfy equation (5). Alternatively, ignoring the pressure coefficient cpt obtained from equation (2),
It is possible to obtain K and Cpt simultaneously from equation (4) (step S4).
このようにして、Cp=Cp(φ)の式が完全に求まっ
たなら、次に静圧を与える角度φ=φSを式(4)に代
入して、静圧Cps=Cp(φS)を求める。但しφS
は予備実験によって求められているものとする(ステッ
プS5)。Once the equation Cp=Cp(φ) has been completely determined in this way, the angle φ=φS that gives static pressure is substituted into equation (4) to find the static pressure Cps=Cp(φS). . However, φS
It is assumed that has been determined through preliminary experiments (step S5).
そして、次に静圧Cpsが求まると、結局その時の局所
動圧比は(Cpt−Cps)で表わせるから、局所流の
流速Vは
V−(V/V工)′=A5[雲コi ・・・(6)とし
て計算することができる(ステップS6)。なお、■o
は無次元化された局所流の主流速度を示その結果、上記
式(2)と式(6)とにより、’13所流の方向と、大
きさか求まったことになる。従−て、これを上記流れ場
の空間座標系のX、Y、Z成分に分解して書き直せば上
記局所流を中心とする3次元方向の速度ベクトルには、
次のようになる(ステップS、)。Then, when the static pressure Cps is found, the local dynamic pressure ratio at that time can be expressed as (Cpt - Cps), so the local flow velocity V is V - (V / V engineering)' = A5 [cloud i ・...(6) can be calculated (step S6). In addition, ■o
represents the mainstream velocity of the non-dimensional local flow.As a result, the direction and magnitude of the '13 flow can be found using equations (2) and (6) above. Therefore, if we decompose this into the X, Y, and Z components of the spatial coordinate system of the flow field and rewrite it, the velocity vector in the three-dimensional direction centered on the local flow will be:
The result is as follows (step S).
また、これは上記主流速度V。に対して次のように表わ
すことができる。Moreover, this is the above-mentioned mainstream speed V. can be expressed as follows.
従って、本実施例の場合には以上の演算過程から明らか
なように、上記複数の球状プローブ7.7・・の各々の
圧力ピーク位置を中心として該流れ場の局所流の総圧、
静圧、流れ方向、流速ベクトル(速さ)のそれぞれを比
較的容易に3次元方向のデータとして測定することがで
きる。その結果、これらの各データを基に上記グラフィ
ックディスプレイ機能を有するパーソナルコンピュータ
16で3次元方向の各角度から実走状態をシミュレーシ
ョンすると、車両後方部の複雑な気流状態をもきわめて
容易に分析することができるようになる。Therefore, in the case of this embodiment, as is clear from the above calculation process, the total pressure of the local flow in the flow field centered on the pressure peak position of each of the plurality of spherical probes 7,7,...
Static pressure, flow direction, and flow velocity vector (velocity) can each be relatively easily measured as data in three-dimensional directions. As a result, by simulating the actual running conditions from various three-dimensional angles using the personal computer 16 having the graphic display function described above based on each of these data, it is possible to analyze the complicated airflow conditions at the rear of the vehicle very easily. You will be able to do this.
(発明の効果)
本発明は、以上に説明したように、車両走行時において
当該車両の後方部に生じる空気流を圧力測定手段により
測定する車両の空気流測定装置において、上記圧力測定
手段が、複数の圧力センサを3次元方向に設置した球状
プローブよりなり所定のt3動装置により任怠の方向に
移動可能に構成されていることを特徴とするものである
。(Effects of the Invention) As explained above, the present invention provides a vehicle airflow measuring device that uses a pressure measuring means to measure the airflow generated at the rear of the vehicle when the vehicle is running, wherein the pressure measuring means comprises: It is characterized by being composed of a spherical probe in which a plurality of pressure sensors are installed in three-dimensional directions, and is configured to be movable in any direction by a predetermined t3 motion device.
従って、本発明によると、車両の空気流を測定する圧力
測定手段が、複数の圧力センサを3次元方向に設(こし
f電球状プローブによって構成され、かっ移動手段によ
って仔含に移動可能となっているために車両後方部各位
置の3次元方向の空気流の流れを任はかつ正確に測定す
る二とができる。Therefore, according to the present invention, the pressure measuring means for measuring the airflow of a vehicle is constituted by a bulb-shaped probe having a plurality of pressure sensors arranged in a three-dimensional direction, and is movable by means of a moving means. Therefore, it is possible to easily and accurately measure the air flow in three dimensions at each position at the rear of the vehicle.
第1図は、本発明の実施例に係る車両の空気流a++定
装置の側面図、第2図は、同装置における圧力測定手段
の要部の拡大斜視図、第3図は、同装置を使用した車両
の空気流測定方法の概要を示すフローチャート、第4図
は、同測定方法説明するための空気流の流れ場の空間座
標図である。
I・・・・・車両
2・・・・・ファンダクト
5・・・・・圧力測定手段
6・・・・・支持部材
7・・・・・球状プローブ
9・・・・・圧力センサ
II・・・・スキャニングバルブ
I2・・・・メモリブース
13・・・・圧力計測器
16・・・・パーソナルコンピュータ
20・・・・トラバース装置FIG. 1 is a side view of a vehicle air flow a++ constant device according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view of the main part of the pressure measuring means in the device, and FIG. FIG. 4 is a flowchart showing an outline of the method for measuring the airflow of the vehicle used, and is a spatial coordinate diagram of the airflow field for explaining the measurement method. I... Vehicle 2... Fan duct 5... Pressure measuring means 6... Support member 7... Spherical probe 9... Pressure sensor II. ... Scanning valve I2 ... Memory booth 13 ... Pressure measuring instrument 16 ... Personal computer 20 ... Traverse device
Claims (1)
流を圧力測定手段により測定する車両の空気流測定装置
であって、上記圧力測定手段が、複数の圧力センサを3
次元方向に設置した球状プローブよりなり所定の移動装
置により任意の方向に移動可能に構成されていることを
特徴とする車両の空気流測定装置。1. A vehicle air flow measuring device that measures the air flow generated in the rear part of a vehicle when the vehicle is running, using a pressure measuring means, the pressure measuring means comprising a plurality of pressure sensors.
1. An air flow measuring device for a vehicle, comprising a spherical probe installed in a dimensional direction and configured to be movable in any direction by a predetermined moving device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162737A JPH0658303B2 (en) | 1986-07-09 | 1986-07-09 | Vehicle air flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61162737A JPH0658303B2 (en) | 1986-07-09 | 1986-07-09 | Vehicle air flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6318236A true JPS6318236A (en) | 1988-01-26 |
JPH0658303B2 JPH0658303B2 (en) | 1994-08-03 |
Family
ID=15760303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61162737A Expired - Lifetime JPH0658303B2 (en) | 1986-07-09 | 1986-07-09 | Vehicle air flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0658303B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099132A (en) * | 2013-11-20 | 2015-05-28 | トヨタ自動車株式会社 | Chassis dynamo test device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2912220B1 (en) * | 2007-02-01 | 2009-04-24 | Airbus France Sas | DEVICE AND METHOD FOR MEASURING SPEED AND DIRECTION OF FLOW OF GASEOUS FLUID |
-
1986
- 1986-07-09 JP JP61162737A patent/JPH0658303B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015099132A (en) * | 2013-11-20 | 2015-05-28 | トヨタ自動車株式会社 | Chassis dynamo test device |
Also Published As
Publication number | Publication date |
---|---|
JPH0658303B2 (en) | 1994-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022078289A1 (en) | Simulation test system and method for autonomous driving | |
EP1435280B1 (en) | A method and a system for programming an industrial robot | |
JP2000131186A (en) | Wind tunnel simulation device and method for designing airframe using the same | |
US20050149231A1 (en) | Method and a system for programming an industrial robot | |
JP2578241B2 (en) | Automatic program creation device | |
CN106918434A (en) | A kind of six degree of freedom captive trajectory testing method of online avoidance | |
JP5184436B2 (en) | Method and apparatus for generating 3D road centerline data | |
JPS6318236A (en) | Air flow measuring instrument for vehicle | |
CN117598783A (en) | Method and device for detecting collision of mechanical arm, electronic equipment and storage medium | |
JP2003114121A (en) | Method for collating measurement data and collating apparatus and program thereof | |
JP3173303B2 (en) | Paint film thickness distribution calculator | |
JPH0736519A (en) | Nearmiss checking method for robot | |
Willick et al. | Experimental evaluation of motion constraint equations | |
JPS5952304A (en) | Preparation of teaching data for welding robot | |
JP3938661B2 (en) | Coating method for automobile body coating | |
JP3928213B2 (en) | Three-dimensional measurement method and apparatus | |
JP2007066045A (en) | Simulation device | |
CN113834500A (en) | Method and system for calibrating track sensor by using multi-degree-of-freedom equipment | |
JPH0545347A (en) | Automatic ultrasonic flaw detecting method | |
JP2000039911A (en) | Robot controller | |
JPH08110380A (en) | Flight track three dimensional display system | |
JP2668148B2 (en) | Simulator | |
JP3764857B2 (en) | Method for detecting local deformation of measured surface | |
JP2585992B2 (en) | Probe angle control device for electric probe | |
CN113334383B (en) | Robot tail end tool offset calibration method based on line laser measuring instrument |