JP2010266306A - Method for generating three-dimensional road center line data and apparatus of the same - Google Patents

Method for generating three-dimensional road center line data and apparatus of the same Download PDF

Info

Publication number
JP2010266306A
JP2010266306A JP2009117257A JP2009117257A JP2010266306A JP 2010266306 A JP2010266306 A JP 2010266306A JP 2009117257 A JP2009117257 A JP 2009117257A JP 2009117257 A JP2009117257 A JP 2009117257A JP 2010266306 A JP2010266306 A JP 2010266306A
Authority
JP
Japan
Prior art keywords
point
control point
arc
straight line
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009117257A
Other languages
Japanese (ja)
Other versions
JP5184436B2 (en
Inventor
Takanori Hayashi
隆伯 林
Takayuki Kawakami
隆行 川上
Toru Yano
徹 矢野
Koji Fujimoto
浩二 藤本
Masatake Miyazaki
正剛 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP2009117257A priority Critical patent/JP5184436B2/en
Publication of JP2010266306A publication Critical patent/JP2010266306A/en
Application granted granted Critical
Publication of JP5184436B2 publication Critical patent/JP5184436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automatically generate three-dimensional road center line data based on a three-dimensional traveling track. <P>SOLUTION: A control point detecting means detects a control point from a planar traveling track. The planar traveling track as a planar line shape is generated from a traveling track of a position sensor obtained when it travels on a road. A circular arc detecting means detects a circular arc associated with a control point when the planar line shape is generated. A parabola detecting means detects a circular arc approximated to a parabola when a longitudinal line shape is generated. A relaxation curve detecting means detects a relaxation curve connected to the circular arc when the planar line shape is generated. Since a line detecting means detects a line from the detected control point, the circular arc and the relaxation curve, a line for connecting the control point, the circular arc, the relaxation curve and the line can smoothly be generated as a center line of the planar line shape and the longitudinal line shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コンピュータを用いて三次元都市モデルに用いる三次元道路データにおける三次元道路中心線データの作成方法及びその装置に関するものである。   The present invention relates to a method and apparatus for creating three-dimensional road centerline data in three-dimensional road data used for a three-dimensional city model using a computer.

三次元都市モデルは、建物や地形などを表した三次元座標値を持つポリゴン、そのポリゴンに貼り付けるテクスチャ、道路中心線や信号の制御情報など都市機能を形成する様々な情報、の3つの要素からなりたつデータを意味する。この三次元都市モデルは、仮想都市または実在都市を模擬したものであるから、ドライビングシミュレータや洪水シミュレータなどシミュレーション分野で利用するために作成される。
三次元都市モデルでは、三次元道路データを構成の一部として、これを生成する。そのため、道路中心線データを生成して、それに沿って道路を生成する。
A three-dimensional city model has three elements: a polygon with a three-dimensional coordinate value that represents a building, topography, etc., a texture to be pasted on the polygon, and various information that forms a city function, such as road centerline and signal control information. This means data consisting of Since this three-dimensional city model simulates a virtual city or a real city, it is created for use in a simulation field such as a driving simulator or a flood simulator.
In the three-dimensional city model, three-dimensional road data is generated as a part of the configuration. Therefore, road centerline data is generated, and a road is generated along the road centerline data.

従来は、人間が道路設計図や地図などの図面をもとにして、道路中心を設定し、道路中心線の制御点を入力する必要があった。この制御点は、三次元道路中心線の基本形状を定めるものであり、その制御点位置を変えることで、三次元道路中心線がもつ諸パラメータも変化する。   Conventionally, it has been necessary for a human to set a road center based on a road design drawing or a map, and to input a control point of the road center line. This control point determines the basic shape of the three-dimensional road center line, and various parameters of the three-dimensional road center line change by changing the position of the control point.

従来はこの制御点及びパラメータを手作業で入力する手間がかかっていた。また、図面の間違いにより出来上がった道路中心線が実在のものと異なる可能性があった。   Conventionally, it takes time and effort to manually input the control points and parameters. In addition, the road center line that was created due to a mistake in the drawing could be different from the actual one.

本発明は、三次元走行軌跡をもとに三次元道路中心線データを自動生成することを課題とする。   An object of the present invention is to automatically generate three-dimensional road centerline data based on a three-dimensional traveling locus.

上記課題を解決するため請求項1に係る三次元道路中心線データの生成方法は、道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を、平面線形とし走行方向を走行軌跡の定義方向として平面線形用の軌跡データ生成手段により生成された平面走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出過程と、前記平面走行軌跡から前記制御点として検出された付近が形成する曲線部分の円弧を検出する円弧検出過程と、前記制御点検出過程で検出した制御点を順次結んだ1つの制御点を端とする2つの直線と当該制御点付近に前記円弧検出過程により検出し直線と接触していない円弧とを滑らかに繋がる緩和曲線を検出する緩和曲線検出過程と、定義方向に走行軌跡の点群を順次調べて、(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点又は緩和曲線の起点とを結ぶ直線を検出し、(b)前記円弧の終点又は前記緩和曲線の終点と次方向にある円弧の起点又は緩和曲線の起点又は制御点を結ぶ直線を検出し、(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出過程とを有することを特徴とするものである。   In order to solve the above-mentioned problem, a method for generating three-dimensional road centerline data according to claim 1 is such that a point group of a traveling locus represented by three-dimensional locus data acquired by a position sensor that has moved on a road is a plane alignment and a traveling direction. A control point detection process for detecting, as a control point, a point where two straight line portions located in the middle of a curved portion intersect from a plane traveling locus generated by the locus data generating means for plane alignment with the defining direction of the traveling locus; An arc detection process for detecting an arc of a curved portion formed by the vicinity detected as the control point from the plane traveling locus, and one control point sequentially connecting the control points detected in the control point detection process as an end A relaxation curve detection process for detecting a relaxation curve that smoothly connects two straight lines and a circular arc that is detected by the circular arc detection process in the vicinity of the control point and is not in contact with the straight line; (A) a straight line connecting the control point at the start of the travel locus and the starting point of the arc or relaxation curve in the defining direction is detected, and (b) the end point of the arc or the A straight line connecting the end point of the relaxation curve and the starting point of the arc in the next direction or the starting point of the relaxation curve or the control point is detected. (C) If the detected straight line is not connected to the control point, a straight line detection process in which a) to (b) are repeated.

上記課題を解決するため請求項2に係る三次元道路中心線データの生成方法は、道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を、縦断線形とし走行方向を走行軌跡の定義方向として縦断線形用の軌跡データ生成手段により生成された縦断走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出過程と、前記縦断走行軌跡から前記制御点として検出された付近が形成する曲線部分の放物線を円弧で近似して検出する放物線検出過程と、定義方向に走行軌跡の点群を順次調べて、(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点とを結ぶ直線を検出し、(b)前記円弧の終点と次方向にある円弧の起点又は制御点を結ぶ直線を検出し、(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出過程とを有することを特徴とするものである。   In order to solve the above-mentioned problem, the method for generating the 3D road centerline data according to claim 2 is characterized in that the traveling locus point group represented by the 3D locus data acquired by the position sensor moved on the road has a longitudinal linear shape. A control point detection process for detecting, as a control point, a point at which two straight line portions located in the middle of a curved portion intersect from a vertical travel locus generated by the trajectory data generation means for vertical alignment with the defining direction of the travel locus; A parabola detection process in which a parabola of a curved portion formed by the vicinity detected as the control point from the longitudinal traveling locus is detected by approximating with a circular arc, and a point group of the traveling locus is sequentially examined in a defined direction, and (a) traveling Detecting a straight line connecting the control point at the start of the trajectory and the starting point of the arc in the defining direction; and (b) detecting a straight line connecting the end point of the arc and the starting point or control point of the arc in the next direction; ) Until said detected straight line connecting the control points if not connected to the control point, it is characterized in that it has a line detection step of repeating said (a) from (b).

上記課題を解決するため請求項3に係る三次元道路中心線データの生成装置は、道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を平面線形とし走行方向を走行軌跡の定義方向として平面走行軌跡を生成する平面線形用の軌跡データ生成手段と、平面線形用の軌跡データ生成手段からの平面走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出手段と、平面線形用の軌跡データ生成手段からの平面走行軌跡から、前記制御点として検出された付近が形成する曲線部分の円弧を検出する円弧検出手段と、前記制御点検出手段で検出した制御点を順次結んだ1つの制御点を端とする2つの直線と当該制御点付近に前記円弧検出過程により検出し直線と接触していない円弧とを滑らかに繋がる緩和曲線を検出する緩和曲線検出手段と、定義方向に走行軌跡の点群を順次調べて、(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点又は緩和曲線の起点とを結ぶ直線を検出し、(b)前記円弧の終点又は前記緩和曲線の終点と次方向にある円弧の起点又は緩和曲線の起点又は制御点を結ぶ直線を検出し、(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出手段とを有することを特徴とするものである。   In order to solve the above-described problem, a 3D road centerline data generating apparatus according to claim 3 is configured such that a point group of a travel locus represented by 3D locus data acquired by a position sensor moved on a road is planar and a travel direction is determined. From the plane linear trajectory data generation means for generating a plane travel trajectory as the definition direction of the travel trajectory, and the plane travel trajectory from the plane linear trajectory data generation means, two straight line portions located in the middle of the curved portion intersect. Control point detecting means for detecting a point as a control point, and arc detecting means for detecting an arc of a curved portion formed by the vicinity detected as the control point from a plane running locus from a locus data generating means for plane alignment The control points detected by the control point detection means are connected to the two straight lines with one control point as an end, and the vicinity of the control point is detected by the arc detection process and is not in contact with the straight line. A relaxation curve detection means for detecting a relaxation curve that smoothly connects the arc and a point group of the travel locus in order in the defined direction, and (a) a control point at the start of the travel locus and a starting point of the arc in the defined direction Alternatively, a straight line connecting the starting point of the relaxation curve is detected, and (b) a straight line connecting the end point of the arc or the end point of the relaxation curve and the starting point of the arc in the next direction or the starting point of the relaxation curve or the control point is detected. c) It has a straight line detecting means for repeating (a) to (b) until the detected straight line is not connected to the control point.

上記課題を解決するため請求項4に係る三次元道路中心線データの生成装置は、道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を縦断線形とし走行方向を走行軌跡の定義方向として縦断走行軌跡を生成する縦断線形用の軌跡データ生成手段と、縦断線形用の軌跡データ生成手段からの縦断走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出手段と、前記縦断走行軌跡から前記制御点として検出された付近が形成する曲線部分の放物線を円弧で近似して検出する放物線検出手段と、定義方向に走行軌跡の点群を順次調べて、(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点とを結ぶ直線を検出し、(b)前記円弧の終点と次方向にある円弧の起点又は制御点を結ぶ直線を検出し、(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出手段とを有することを特徴とするものである。   In order to solve the above-described problem, a three-dimensional road centerline data generating device according to a fourth aspect of the present invention is configured such that the point of the traveling locus represented by the three-dimensional locus data acquired by the position sensor moved on the road is vertically linear and the traveling direction is determined. From the longitudinal linear trajectory data generating means for generating a vertical traveling trajectory as the defining direction of the travel trajectory, and the vertical traveling trajectory from the longitudinal linear trajectory data generating means, two straight line portions located at the middle of the curved portion intersect. A control point detecting means for detecting a point as a control point, a parabola detecting means for approximating a parabola of a curved portion formed by the vicinity detected as the control point from the longitudinal traveling locus by an arc, and traveling in a defined direction The trajectory point group is examined sequentially, (a) a straight line connecting the control point at the start of the travel trajectory and the starting point of the arc in the defined direction is detected, and (b) the end point of the arc and the next direction are detected. A straight line detecting means for detecting a straight line connecting the starting point of the arc or the control point, and (c) a straight line detecting means for repeating (a) to (b) until the detected straight line is not connected to the control point. It is characterized by this.

請求項1の三次元道路中心線データの生成方法によると、道路走行時に取得した位置センサの走行軌跡を、平面線形として生成された平面走行軌跡から、制御点を検出し、制御点に関連して円弧を検出し、円弧につながる緩和曲線を検出し、前記検出した制御点、円弧、緩和曲線から直線を検出するから、これらの制御点、円弧、緩和曲線、直線をつないだ線を中心線として滑らかに生成することができる。   According to the three-dimensional road centerline data generation method of claim 1, a control point is detected from a plane travel locus generated as a plane alignment by using a travel locus of a position sensor acquired during road travel, and related to the control point. The arc is detected, the relaxation curve connected to the arc is detected, and the straight line is detected from the detected control point, arc, and relaxation curve. The control line, arc, relaxation curve, and the line connecting the straight lines are the center line. Can be generated smoothly.

請求項2の三次元道路中心線データの生成方法によると、道路走行時に取得した位置センサの走行軌跡を、縦断線形として生成された縦断走行軌跡から、制御点を検出し、制御点に関連して円弧で近似した放物線を検出し、検出した制御点、円弧から直線を検出するから、これらの制御点、円弧、直線をつないだ線を中心線として滑らかに生成することができる。   According to the method for generating the three-dimensional road centerline data according to claim 2, a control point is detected from a longitudinal trajectory generated as a vertical alignment from the trajectory of the position sensor acquired during road travel, and Since a parabola approximated by an arc is detected and a straight line is detected from the detected control point and arc, a line connecting these control point, arc and straight line can be smoothly generated as a center line.

請求項3の三次元道路中心線データの生成装置によると、平面線形用の軌跡データ生成手段が道路走行時に取得した位置センサの走行軌跡を、平面線形として平面走行軌跡を生成し、制御点検出手段が平面走行軌跡から、制御点を検出し、円弧検出手段が制御点に関連して円弧を検出し、緩和曲線検出手段が円弧につながる緩和曲線を検出し、直線検出手段が前記制御点、円弧、緩和曲線から直線を検出する。これらの制御点、円弧、緩和曲線、直線をつないだ線を中心線として滑らかに生成することができる。   According to the three-dimensional road centerline data generating device of claim 3, the plane linear trajectory data generating means generates a plane driving trajectory by using the traveling trajectory of the position sensor acquired during road driving as a plane alignment, and detects a control point. The means detects a control point from the plane travel locus, the arc detection means detects the arc in relation to the control point, the relaxation curve detection means detects the relaxation curve connected to the arc, and the straight line detection means detects the control point, Detect straight lines from arcs and relaxation curves. A line connecting these control points, arcs, relaxation curves, and straight lines can be smoothly generated as a center line.

請求項4の三次元道路中心線データの生成装置によると、縦断線形用の軌跡データ生成手段が道路走行時に取得した位置センサの走行軌跡を、縦断線形として縦断走行軌跡を生成し、制御点検出手段が縦断走行軌跡から、制御点を検出し、放物線検出手段が制御点に関連して円弧で近似した放物線を検出し、直線検出手段が前記制御点、円弧から直線を検出する。これらの制御点、円弧、直線をつないだ線を中心線として滑らかに生成することができる。   According to the three-dimensional road centerline data generating device of claim 4, the longitudinal linear trajectory is generated by using the linear trajectory data generating means as the vertical trajectory of the position sensor acquired by the trajectory data generating means for vertical alignment. The means detects a control point from the longitudinal traveling locus, the parabola detection means detects a parabola approximated by an arc in relation to the control point, and the straight line detection means detects a straight line from the control point and the arc. A line connecting these control points, arcs, and straight lines can be smoothly generated as a center line.

図1は、本発明装置の1実施例の機能ブロック図である。FIG. 1 is a functional block diagram of an embodiment of the apparatus of the present invention. 図2aは、平面線形の生成方法を説明するフロー図である。FIG. 2a is a flowchart illustrating a method for generating a planar alignment. 図2bは、縦断線形の生成方法を説明するフロー図である。FIG. 2B is a flowchart illustrating a method for generating a vertical alignment. 図3は、平面線形及び縦断線形用の軌跡データの生成を説明する図である。FIG. 3 is a diagram for explaining generation of trajectory data for plane alignment and longitudinal alignment. 図4は、平面線形及び縦断線形の生成を説明する図である。FIG. 4 is a diagram for explaining generation of planar alignment and longitudinal alignment. 図5は、制御点の検出を説明する図である。FIG. 5 is a diagram for explaining detection of control points. 図6は、円弧の検出を説明する図である。FIG. 6 is a diagram for explaining detection of an arc. 図7は、緩和曲線の検出を説明する図である。FIG. 7 is a diagram for explaining the detection of the relaxation curve. 図8は、緩和曲線の作成を説明する図である。FIG. 8 is a diagram illustrating creation of a relaxation curve. 図9aは、平面線形における直線の検出を説明する図である。FIG. 9A is a diagram for explaining detection of a straight line in the plane alignment. 図9bは、縦断線形における直線の検出を説明する図である。FIG. 9B is a diagram for explaining detection of a straight line in a longitudinal alignment. 図10は、放物線の検出を説明する図である。FIG. 10 is a diagram for explaining detection of a parabola.

図1は、本発明装置の1実施例の機能ブロック図であって、101は三次元走行軌跡データ格納部、102は平面線形の生成部、103は平面線形用軌跡データ生成手段、104は制御点検出手段、105は円弧検出手段、106は緩和曲線検出手段、107は直線検出手段、108は縦断線形の生成部、109は縦断線形用軌跡データ生成手段、110は制御点検出手段、111は放物線検出手段、112は直線検出手段、113は三次元道路中心線データ記憶部、114は画像生成部、115はモニタである。
図2a、図2bは、本発明の方法を実施するフロー図である。
FIG. 1 is a functional block diagram of an embodiment of the apparatus of the present invention, in which 101 is a three-dimensional running locus data storage unit, 102 is a plane linear generation unit, 103 is plane linear locus data generation means, and 104 is a control. Point detection means, 105 is an arc detection means, 106 is a relaxation curve detection means, 107 is a straight line detection means, 108 is a longitudinal linear generation unit, 109 is a longitudinal linear trajectory data generation means, 110 is a control point detection means, and 111 is Parabola detection means, 112 is a straight line detection means, 113 is a three-dimensional road centerline data storage unit, 114 is an image generation unit, and 115 is a monitor.
2a and 2b are flow diagrams for implementing the method of the present invention.

三次元走行軌跡データ格納部101には、三次元走行軌跡データが格納される。このデータは、図示しない自動車などにGPS等の三次元の位置センサを搭載し、予め実在の道路を走行させ、所定の間隔で走行軌跡をサンプリングし、その三次元の走行軌跡を取得したものであり、鉛直方向をZ軸に設定した直交座標上を走行したものとしている。
平面線形の生成部102では、三次元軌跡データから平面線形のデータを生成する。縦断線形の生成部108では、三次元軌跡データから縦断線形のデータを生成する。
まず、操作者は三次元走行軌跡データを三次元走行軌跡データ格納部101から読み出し、平面線形用軌跡データ生成手段103と縦断線形用軌跡データ生成手段109に転送し、平面線形及び縦断線形用の軌跡データを生成する(図3)。この生成状況は、モニタ115に表示され、操作者はこの画面を見ることができる。
The three-dimensional traveling locus data storage unit 101 stores three-dimensional traveling locus data. This data is obtained by mounting a three-dimensional position sensor such as a GPS on a car (not shown), running on a real road in advance, sampling a travel locus at a predetermined interval, and acquiring the three-dimensional travel locus. Yes, it is assumed that the vehicle traveled on orthogonal coordinates with the vertical direction set to the Z axis.
The plane linear generation unit 102 generates plane linear data from the three-dimensional trajectory data. The longitudinal linear generation unit 108 generates longitudinal linear data from the three-dimensional trajectory data.
First, the operator reads out the three-dimensional traveling locus data from the three-dimensional traveling locus data storage unit 101 and transfers the three-dimensional traveling locus data to the plane linear locus data generating means 103 and the longitudinal linear locus data generating means 109 to obtain the plane alignment and longitudinal alignment data. Trajectory data is generated (FIG. 3). This generation status is displayed on the monitor 115, and the operator can see this screen.

<平面線形の生成>
平面線形の生成部102における平面線形の生成について説明する(図4(a))。
平面線形用軌跡データ生成手段103は三次元軌跡データからその軌跡がXY平面における軌跡に変換して平面線形用軌跡データを生成する(図2aのP201a)。このとき、三次元軌跡データを得る際の位置センサの走行方向を走行軌跡の定義方向としている(図4)。
制御点検出手段104は制御点検出過程を実行し、平面線形用軌跡データ生成手段103が生成した平面線形用軌跡データからその制御点を検出して、その位置を得る(図2aのP202a)。
<制御点の検出>
この制御点検出過程P202aは制御点検出手段104により、例えば以下のように行われる。
1.平面線形用軌跡データ中から選択した各曲線部における走行軌跡点群からランダムに選んだある2点からなる直線の式を求める。曲線部の範囲は操作者が指定する。(図5(a))
2.該当する曲線部の全ての点群に対して、求めた直線との最小距離を求める。(図5(b))
3.求めた距離が、あらかじめ設定された閾値d以下となった点群の個数nを求める。(図5(c))
4.前記1〜3を適当な値N回繰り返し、nが最大値(nmax)となったときの直線を検出された直線とする。(図5(d))
5.前記1において処理するために選択した曲線部の点群から前記4で検出した直線に含まれる点群を除いた点群を用いて、さらに1〜4を繰り返す。(図5(e))
6.前記1〜5までを行うことにより、各曲線部において計2つの直線を得ることができる。そしてこの2直線が交わる点を制御点とし、各曲線部には1つの制御点が存在するものとする。なお全ての走行軌跡点群のうち両端に位置する2点は、無条件に制御点とみなす。
なお、dとNは操作者が、処理時間と検出精度から判断して決定・調整する。
制御点の検出において、曲線部毎に1〜6の処理をし、全部の曲線部について制御点を検出するまで繰り返すか、1〜6の各処理を順次全曲線部について行うようにしてもよい。
平面線形用の制御点は三次元道路中心線データ記録部113に記録される。
<Generation of planar alignment>
The generation of the plane alignment in the plane alignment generation unit 102 will be described (FIG. 4A).
The plane linear trajectory data generation means 103 converts the trajectory from the three-dimensional trajectory data into a trajectory on the XY plane to generate plane linear trajectory data (P201a in FIG. 2a). At this time, the traveling direction of the position sensor when obtaining the three-dimensional trajectory data is set as the defining direction of the traveling trajectory (FIG. 4).
The control point detection unit 104 executes a control point detection process, detects the control point from the plane linear locus data generated by the plane linear locus data generation unit 103, and obtains the position (P202a in FIG. 2a).
<Detection of control points>
This control point detection process P202a is performed by the control point detection means 104 as follows, for example.
1. An equation of a straight line composed of two points randomly selected from the traveling locus point group in each curved portion selected from the locus data for plane alignment is obtained. The operator specifies the range of the curved portion. (Fig. 5 (a))
2. The minimum distance from the obtained straight line is obtained for all the point groups of the corresponding curved portion. (Fig. 5 (b))
3. The number n of point groups in which the obtained distance is equal to or less than a preset threshold value d is obtained. (Fig. 5 (c))
4). Steps 1 to 3 are repeated N times at an appropriate value, and the straight line when n reaches the maximum value (n max ) is defined as the detected straight line. (Fig. 5 (d))
5). Steps 1 to 4 are further repeated using a point group obtained by excluding the point group included in the straight line detected in 4 from the point group of the curve portion selected for processing in 1 above. (Fig. 5 (e))
6). By performing steps 1 to 5, a total of two straight lines can be obtained at each curve portion. A point where the two straight lines intersect is defined as a control point, and there is one control point in each curve portion. In addition, two points located at both ends of all the traveling locus point groups are regarded as control points unconditionally.
Note that d and N are determined and adjusted by the operator based on the processing time and detection accuracy.
In the detection of the control points, the processing of 1 to 6 may be performed for each curved portion and repeated until the control points are detected for all the curved portions, or each processing of 1 to 6 may be sequentially performed on all the curved portions. .
The control points for plane alignment are recorded in the three-dimensional road centerline data recording unit 113.

<円弧の検出>
次に、円弧検出手段105は円弧検出過程を実行し、円弧パラメータを検出する(図2aのP203a)。
この円弧検出過程P203aは円弧検出手段105により例えば以下のように行われる。
1.操作者は平面線形用軌跡データに基づいて画像生成部114で生成され、モニタ115に表示されている画面上で、各曲線部における走行軌跡点群のうち、前記制御点検出手段104による<制御点の検出>過程P202aにおける“6”で得た2つの直線を構成する点群を除いた走行軌跡点群からランダムに3点を選ぶ。円弧検出手段105は円の式を求める。(図6(a))
この3点を選ぶことは、プログラムにより自動的に選ぶようにしてもよい。
2.円弧検出手段105は、全ての点群に対して、求めた円との最小距離を求める。(図6(b))
3.円弧検出手段105は、求めた距離が、あらかじめ設定された閾値d以下となった点群の個数nを求める。(図6(c))
4.円弧検出手段105は、前記1〜3をN回繰り返し、nが最大値(nmax)となったときの円を求め、このときの円半径を円弧の半径R、円中心をMとする。(図6(d))
5.円弧検出手段105は、前記4で検出した円に使われたnmax個の点群の最初の点を円弧の起点BPとする。また、円中心と最初の点とを結んだ線と、円中心と最後の点を結んだ線がなす角度を円中心角θとする。(図6(d))
6.円弧検出手段105は、前記1〜5において決定された、半径R、円中心M、円中心角θ、起点BPによって定義される円弧を最終的に検出された円弧とし、制御点検出手段104による<制御点の検出>過程P202aにおいて検出された制御点とこの円弧が1対1の関係を持つ。
なお、dとNは操作者が、処理時間と検出精度から判断して決定・調整する。
円弧の検出において、曲線部毎に1〜6の処理をし、全部の曲線部について円弧を検出するまで繰り返すか、1〜6の各処理を順次全曲線部について行うようにしてもよい。
平面線形用の半径R、円中心M、円中心角θ、起点BPは、これを円弧パラメータとして、前記1対1の関係を持つ制御点に関連させて三次元道路中心線データ記録部113に記録される。
<Arc detection>
Next, the arc detecting means 105 executes an arc detecting process to detect arc parameters (P203a in FIG. 2a).
This arc detection process P203a is performed by the arc detecting means 105 as follows, for example.
1. The operator generates the image data by the image generation unit 114 based on the trajectory data for plane alignment and displays <control by the control point detection unit 104 in the traveling trajectory point group in each curve portion on the screen 115. Point Detection> Three points are randomly selected from the traveling locus point group excluding the point group constituting the two straight lines obtained in “6” in the process P202a. The arc detecting means 105 obtains a circle formula. (Fig. 6 (a))
The selection of these three points may be made automatically by a program.
2. The arc detecting means 105 obtains the minimum distance from the obtained circle for all point groups. (Fig. 6 (b))
3. The arc detecting means 105 obtains the number n of point groups whose obtained distance is equal to or less than a preset threshold value d. (Fig. 6 (c))
4). The arc detecting means 105 repeats steps 1 to 3 N times to obtain a circle when n reaches the maximum value (n max ). The circle radius at this time is taken as the radius R of the arc and the circle center as M. (Fig. 6 (d))
5). The arc detecting means 105 sets the first point of the n max point groups used for the circle detected in 4 as the starting point BP of the arc. An angle formed by a line connecting the circle center and the first point and a line connecting the circle center and the last point is defined as a circle center angle θ. (Fig. 6 (d))
6). The arc detection means 105 determines the arc defined by the radius R, the circle center M, the circle center angle θ, and the starting point BP determined in the above 1 to 5 as the finally detected arc, and the control point detection means 104 <Control Point Detection> The control point detected in the process P202a and this arc have a one-to-one relationship.
Note that d and N are determined and adjusted by the operator based on the processing time and detection accuracy.
In the detection of the arc, the processes 1 to 6 may be performed for each curved part and repeated until the arcs are detected for all the curved parts, or the processes 1 to 6 may be sequentially performed for all the curved parts.
The radius R, the circle center M, the circle center angle θ, and the starting point BP for plane alignment are stored in the three-dimensional road centerline data recording unit 113 in association with the control points having the one-to-one relationship with the arc parameters. To be recorded.

<緩和曲線の検出>
次に、緩和曲線検出手段106は緩和曲線検出過程を実行し、緩和曲線パラメータを検出する(図2aのP203a)。
この緩和曲線検出過程P203aは緩和曲線検出手段106により例えば以下のように行われる。
1.操作者は、モニタ115に表示されているXY平面の全走行軌跡点群において、
前記制御点検出手段104による<制御点の検出>過程P202aで検出された各制御点を結び、直線群を作る。(図7(a))
この直線群を作ることは、緩和曲線検出手段106がプログラムにより自動的に選ぶようにしてもよい。
2.操作者又は緩和曲線検出手段106は、上記1における各制御点と直線群のうち、ある制御点IPとその制御点を端とする2つの直線、および制御点と1対1の関係にある円弧Cについて選択する。なお、2つの直線は、走行軌跡点群の定義方向順にLa,Lbとする。緩和曲線検出手段106により選択する場合は、例えば走行軌跡点群の定義方向順に行う。(図7(b))
3.緩和曲線検出手段106は円弧Cの起点における接線とLaの交点がなす角をτa、円弧Cの終点における接線とLbの交点がなす角τbを求める。(図7(c))
4.τaと円弧Cの半径Rで定義される緩和曲線をKa、またτbと円弧Cの半径Rで定義される緩和曲線をKbとし、これらを各制御点における2つの緩和曲線とする。なお、τaまたはτbがほぼゼロとみなせる場合には、該当する緩和曲線は存在しないものとする。(図7(d))。緩和曲線検出手段106は緩和曲線ka,KbがLa,Lbに接する曲率半径を∞、円弧Cに繋がる曲率半径をRとなるように、徐々に変化させる(図8)。緩和曲線の作成は、予め設定したプログラムにより実行させる。
緩和曲線の検出において、制御点毎に1〜4の処理をし、全部の制御点について緩和曲線を検出又は存在しないことを確認するまで繰り返すか、1〜4の各処理を順次全制御点について行うようにしてもよい。
平面線形用の角度τa、τb、円弧Cの半径R、緩和曲線Ka、Kbは、これを緩和曲線パラメータとして、前記1対1の関係を持つ制御点に関連させて三次元道路中心線データ記録部113に記録される。
<Detection of relaxation curve>
Next, the relaxation curve detection means 106 executes a relaxation curve detection process to detect a relaxation curve parameter (P203a in FIG. 2a).
This relaxation curve detection process P203a is performed by the relaxation curve detection means 106 as follows, for example.
1. In the entire traveling locus point group on the XY plane displayed on the monitor 115, the operator
<Control Point Detection> by Control Point Detection Unit 104 The control points detected in the process P202a are connected to form a straight line group. (Fig. 7 (a))
The straight line group may be created by the relaxation curve detecting means 106 automatically by a program.
2. The operator or the relaxation curve detection means 106 includes a control point IP and two straight lines that end at the control point among the control points and the straight line group in 1 and an arc that has a one-to-one relationship with the control point. Select for C. In addition, let two straight lines be La and Lb in order of the definition direction of a run locus point group. When the selection is made by the relaxation curve detection means 106, for example, it is performed in the order in which the traveling locus point group is defined. (Fig. 7 (b))
3. The relaxation curve detection means 106 obtains the angle τa formed by the intersection of the tangent at the starting point of the arc C and La, and the angle τb formed by the intersection of the tangent at the end of the arc C and Lb. (Fig. 7 (c))
4). The relaxation curve defined by τa and the radius R of the arc C is Ka, and the relaxation curve defined by τb and the radius R of the arc C is Kb. These are the two relaxation curves at each control point. When τa or τb can be regarded as almost zero, it is assumed that there is no corresponding relaxation curve. (FIG. 7D). The relaxation curve detecting means 106 gradually changes the relaxation curves ka and Kb so that the curvature radii of contact with La and Lb are ∞ and the curvature radius connected to the arc C is R (FIG. 8). The relaxation curve is created by a preset program.
In the detection of the relaxation curve, the processing of 1 to 4 is performed for each control point, and it is repeated until it is confirmed that the relaxation curve is not detected or does not exist for all the control points, or each processing of 1 to 4 is sequentially performed for all the control points. You may make it perform.
The angles τa and τb for plane alignment, the radius R of the circular arc C, and the relaxation curves Ka and Kb are recorded as three-dimensional road centerline data in association with the control points having the one-to-one relationship using the relaxation curve parameters. Recorded in the unit 113.

<平面線形での直線の検出>
次に、直線検出手段107は直線検出過程を実行し、直線パラメータを検出する(図2aのP205a)。
この直線検出過程P205aは直線検出手段107により例えば以下のように行われる。(図9a)
1.操作者は、前記制御点検出過程P202a、円弧検出過程P203a及び緩和曲線検出過程204aにおいて、走行軌跡の点群に沿ってそれぞれ検出された制御点、円弧及び緩和曲線がパラメータに従ってモニタ115に表示されている走行軌跡の点群を定義方向に順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点又は緩和曲線の起点とを結ぶ直線を検出する。
2.(b)前記円弧の終点又は前記緩和曲線の終点と次方向にある円弧の起点又は緩和曲線の起点又は制御点を結ぶ直線を検出する。
3.(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す。
検出された平面線形用の直線は、制御点、円弧、緩和曲線に順次連続して結ばれるようにこれらのパラメータと関連づけて、三次元道路中心線データ記録部113に記録される。
<Detection of straight lines in planar alignment>
Next, the straight line detection means 107 executes a straight line detection process to detect a straight line parameter (P205a in FIG. 2a).
This straight line detection process P205a is performed by the straight line detection means 107 as follows, for example. (Fig. 9a)
1. In the control point detection process P202a, the arc detection process P203a, and the relaxation curve detection process 204a, the operator displays the control points, arcs, and relaxation curves detected along the traveling locus point group on the monitor 115 according to the parameters. Check the running trajectory point cloud sequentially in the defined direction,
(A) A straight line connecting the control point at the start of the travel locus and the starting point of the arc or relaxation curve in the defining direction is detected.
2. (B) A straight line connecting the end point of the arc or the end point of the relaxation curve and the starting point of the arc or the relaxation curve in the next direction is detected.
3. (C) If the detected straight line is not connected to the control point, the above steps (a) to (b) are repeated until the detected straight line is connected to the control point.
The detected straight line for plane alignment is recorded in the three-dimensional road centerline data recording unit 113 in association with these parameters so as to be successively connected to control points, arcs, and relaxation curves.

<縦断線形の生成>
次に、縦断線形の生成部108における縦断線形の生成について説明する(図4(b))。
縦断線形用軌跡データ生成手段109は三次元軌跡データからその軌跡がZY平面における軌跡に変換して縦断線形用軌跡データを生成する(図2bのP201b)。このとき、三次元軌跡データを得る際の位置センサの走行方向を走行軌跡の定義方向としている(図4)。
<制御点の検出>
制御点検出手段110は制御点検出過程を実行し、縦断線形用軌跡データ生成手段109が生成した縦断線形用軌跡データからその制御点を検出して、その位置を得る(図2bのP202b)。
この制御点検出過程P202bは制御点検出手段110により、例えば以下のように行われる。この制御点検出過程P202bの手法は、<平面線形の生成>の制御点検出過程P202aと同様である。
1.縦断線形用軌跡データ中から選択した各曲線部における走行軌跡点群からランダムに選んだある2点からなる直線の式を求める。曲線部の範囲は操作者が指定する。(図5(a))
2.該当する曲線部の全ての点群に対して、求めた直線との最小距離を求める。(図5(b))
3.求めた距離が、あらかじめ設定された閾値d以下となった点群の個数nを求める。(図5(c))
4.前記1〜3を適当な値N回繰り返し、nが最大値(nmax)となったときの直線を検出された直線とする。(図5(d))
5.前記1において処理するために選択した曲線部の点群から前記4で検出した直線に含まれる点群を除いた点群を用いて、さらに1〜4を繰り返す。(図5(e))
6.前記1〜5までを行うことにより、各曲線部において計2つの直線を得ることができる。そしてこの2直線が交わる点を制御点とし、各曲線部には1つの制御点が存在するものとする。なお全ての走行軌跡点群のうち両端に位置する2点は、無条件に制御点とみなす。
なお、dとNは操作者が、処理時間と検出精度から判断して決定・調整する。
制御点の検出において、曲線部毎に1〜6の処理をし、全部の曲線部について制御点を検出するまで繰り返すか、1〜6の各処理を順次全曲線部について行うようにしてもよい。
縦断線形用の制御点は三次元道路中心線データ記録部113に記録される。
<Generation of vertical alignment>
Next, generation of vertical alignment in the vertical alignment generation unit 108 will be described (FIG. 4B).
The longitudinal linear trajectory data generation means 109 converts the trajectory from the three-dimensional trajectory data into a trajectory on the ZY plane to generate longitudinal linear trajectory data (P201b in FIG. 2b). At this time, the traveling direction of the position sensor when obtaining the three-dimensional trajectory data is set as the defining direction of the traveling trajectory (FIG. 4).
<Detection of control points>
The control point detection unit 110 executes a control point detection process, detects the control point from the longitudinal linear locus data generated by the longitudinal linear locus data generation unit 109, and obtains the position (P202b in FIG. 2b).
This control point detection process P202b is performed by the control point detection means 110 as follows, for example. The method of the control point detection process P202b is the same as the control point detection process P202a of <Generation of planar alignment>.
1. An equation of a straight line composed of two points randomly selected from the running locus point group in each curve portion selected from the longitudinal linear locus data is obtained. The range of the curved part is specified by the operator. (Fig. 5 (a))
2. The minimum distance from the obtained straight line is obtained for all the point groups of the corresponding curved portion. (Fig. 5 (b))
3. The number n of point groups in which the obtained distance is equal to or less than a preset threshold value d is obtained. (Fig. 5 (c))
4). Steps 1 to 3 are repeated N times at an appropriate value, and the straight line when n reaches the maximum value (n max ) is defined as the detected straight line. (Fig. 5 (d))
5). Steps 1 to 4 are further repeated using a point group obtained by excluding the point group included in the straight line detected in 4 from the point group of the curve portion selected for processing in 1 above. (Fig. 5 (e))
6). By performing steps 1 to 5, a total of two straight lines can be obtained at each curve portion. A point where the two straight lines intersect is defined as a control point, and there is one control point in each curve portion. In addition, two points located at both ends of all the traveling locus point groups are regarded as control points unconditionally.
Note that d and N are determined and adjusted by the operator based on the processing time and detection accuracy.
In the detection of the control points, the processing of 1 to 6 may be performed for each curved portion and repeated until the control points are detected for all the curved portions, or each processing of 1 to 6 may be sequentially performed on all the curved portions. .
The longitudinal alignment control points are recorded in the three-dimensional road centerline data recording unit 113.

<放物線の検出>
次に、放物線検出手段111は放物線検出過程を実行するのであるが、前記制御点として検出された付近が形成する曲線部分の放物線を円弧で近似して、円弧パラメータを検出する(図2bのP204b)。
縦断線形での放物線は円弧で近似できるものとするから、ZY平面における各曲線部の走行軌跡点群について、平面線形における<円弧の検出>過程P203aの1〜4を実行する。従って、検出された円弧の半径Rと同じ半径を持つ放物線を、各曲線部での放物線とする。(図10)
この放物線検出過程P204bは放物線検出手段111により例えば以下のように行われる。
1.操作者は縦断線形用軌跡データに基づいて画像生成部114で生成され、モニタ115に表示されている画面上で、各曲線部における走行軌跡点群のうち、前記制御点検出手段110による<制御点の検出>過程P202bにおける“6”で得た2つの直線を構成する点群を除いた走行軌跡点群からランダムに3点を選ぶ。放物線検出手段111は円の式を求める。(図6(a))
この3点を選ぶことは、プログラムにより自動的に選ぶようにしてもよい。
2.放物線検出手段111は、全ての点群に対して、求めた円との最小距離を求める。(図6(b))
3.放物線検出手段111は、求めた距離が、あらかじめ設定された閾値d以下となった点群の個数nを求める。(図6(c))
4.放物線検出手段111は、前記1〜3をN回繰り返し、nが最大値(nmax)となったときの円を求め、このときの円半径を円弧の半径R、円中心をMとする。(図6(d))
5.放物線検出手段111は、前記4で検出した円に使われたnmax個の点群の最初の点を円弧の起点BPとする。また、円中心と最初の点とを結んだ線と、円中心と最後の点を結んだ線がなす角度を円中心角θとする。(図6(d))
6.放物線検出手段111は、前記1〜5において決定された、半径R、円中心M、円中心角θ、起点BPによって定義される円弧を最終的に検出された円弧とし、制御点検出手段110による<制御点の検出>過程P202bにおいて検出された制御点とこの円弧が1対1の関係を持つ。
なお、dとNは操作者が、処理時間と検出精度から判断して決定・調整する。
円弧の検出において、曲線部毎に1〜6の処理をし、全部の曲線部について円弧を検出するまで繰り返すか、1〜6の各処理を順次全曲線部について行うようにしてもよい。
縦断線形用の半径R、円中心M、円中心角θ、起点BPは、これを円弧パラメータとして、前記1対1の関係を持つ制御点に関連させて三次元道路中心線データ記録部113に記録される。
<Detection of parabola>
Next, the parabola detection means 111 executes a parabola detection process, and detects the arc parameter by approximating the parabola of the curved portion formed by the vicinity detected as the control point with an arc (P204b in FIG. 2b). ).
Since the parabola in the vertical alignment can be approximated by an arc, steps 1 to 4 of the <arc detection> process P203a in the plane alignment are executed for the traveling locus point group of each curved portion in the ZY plane. Accordingly, a parabola having the same radius as the detected radius R of the arc is taken as a parabola at each curved portion. (Fig. 10)
This parabola detection process P204b is performed by the parabola detection means 111 as follows, for example.
1. The operator generates the image data by the image generation unit 114 based on the trajectory data for vertical alignment, and on the screen displayed on the monitor 115, the control point detection unit 110 controls the control point detection unit 110 out of the travel trajectory point group in each curve portion. Point Detection> Three points are randomly selected from the traveling locus point group excluding the point group constituting the two straight lines obtained in “6” in the process P202b. The parabola detecting means 111 calculates a circle formula. (Fig. 6 (a))
The selection of these three points may be made automatically by a program.
2. The parabola detecting means 111 obtains the minimum distance from the obtained circle for all point groups. (Fig. 6 (b))
3. The parabola detecting unit 111 obtains the number n of point groups in which the obtained distance is equal to or less than a preset threshold value d. (Fig. 6 (c))
4). The parabola detecting means 111 repeats steps 1 to 3 N times to obtain a circle when n reaches the maximum value (n max ), and the circle radius at this time is taken as the radius R of the arc and M as the circle center. (Fig. 6 (d))
5). The parabola detecting means 111 sets the first point of the n max point groups used for the circle detected in 4 as the starting point BP of the arc. An angle formed by a line connecting the circle center and the first point and a line connecting the circle center and the last point is defined as a circle center angle θ. (Fig. 6 (d))
6). The parabola detection unit 111 sets the arc defined by the radius R, the circle center M, the circle center angle θ, and the starting point BP determined in the above 1 to 5 as a finally detected arc, and is performed by the control point detection unit 110. <Detection of Control Point> The control point detected in the process P202b and this arc have a one-to-one relationship.
Note that d and N are determined and adjusted by the operator based on the processing time and detection accuracy.
In the detection of the arc, the processes 1 to 6 may be performed for each curved part and repeated until the arcs are detected for all the curved parts, or the processes 1 to 6 may be sequentially performed for all the curved parts.
The longitudinal linear radius R, the circle center M, the circle center angle θ, and the starting point BP are stored in the three-dimensional road centerline data recording unit 113 in association with the control points having the one-to-one relationship with the arc parameters. To be recorded.

<縦断線形での直線の検出>
次に、直線検出手段112は直線検出過程を実行し、直線パラメータを検出する(図2bのP205b)。
この直線検出過程P205bは直線検出手段112により例えば以下のように行われる。(図9b)
1.操作者は、前記制御点検出過程P202b及び放物線検出過程P204bにおいて、走行軌跡の点群に沿ってそれぞれ検出された制御点及び円弧がパラメータに従ってモニタ115に表示されている走行軌跡の点群を定義方向に順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点とを結ぶ直線を検出する。
2.(b)前記円弧の終点と次方向にある円弧の起点又は制御点を結ぶ直線を検出する。
3.(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す。
検出された縦断線形用の直線は、制御点、円弧に順次連続して結ばれるようにこれらのパラメータと関連づけて、三次元道路中心線データ記録部113に記録される。
<Detection of straight lines in longitudinal alignment>
Next, the straight line detection means 112 executes a straight line detection process to detect a straight line parameter (P205b in FIG. 2b).
This straight line detection process P205b is performed by the straight line detection means 112 as follows, for example. (Fig. 9b)
1. In the control point detection process P202b and the parabola detection process P204b, the operator defines the point group of the traveling locus in which the control points and the arc detected along the traveling locus point group are displayed on the monitor 115 according to the parameters. Check the direction sequentially,
(A) A straight line connecting the control point at the start end of the travel locus and the starting point of the arc in the definition direction is detected.
2. (B) A straight line connecting the end point of the arc and the starting point or control point of the arc in the next direction is detected.
3. (C) If the detected straight line is not connected to the control point, the above steps (a) to (b) are repeated until the detected straight line is connected to the control point.
The detected vertical straight line is recorded in the three-dimensional road centerline data recording unit 113 in association with these parameters so as to be successively connected to the control points and the arc.

101…三次元走行軌跡データ格納部、
102…平面線形の生成部、
103…平面線形用軌跡データ生成手段、
107…直線検出手段、
104…制御点検出手段、
105…円弧検出手段、
106…緩和曲線検出手段、
108…縦断線形の生成部、
109…縦断線形用軌跡データ生成手段、
112…直線検出手段、
110…制御点検出手段、
111…放物線検出手段、
113…三次元道路中心線データ記憶部、
114…画像生成部、
115…モニタ。
101 ... three-dimensional traveling locus data storage unit,
102 ... a plane linear generator,
103 ... plane linear locus data generating means,
107: Straight line detecting means,
104: Control point detection means,
105... Arc detection means,
106: relaxation curve detection means,
108: Longitudinal linear generator,
109 ... Longitudinal linear trajectory data generation means,
112 ... Straight line detection means,
110 ... Control point detection means,
111 ... Parabolic detection means,
113 ... 3D road centerline data storage unit,
114... The image generation unit,
115: Monitor.

Claims (4)

道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を、平面線形とし走行方向を走行軌跡の定義方向として平面線形用の軌跡データ生成手段により生成された平面走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出過程と、
前記平面走行軌跡から前記制御点として検出された付近が形成する曲線部分の円弧を検出する円弧検出過程と、
前記制御点検出過程で検出した制御点を順次結んだ1つの制御点を端とする2つの直線と当該制御点付近に前記円弧検出過程により検出し直線と接触していない円弧とを滑らかに繋がる緩和曲線を検出する緩和曲線検出過程と、
定義方向に走行軌跡の点群を順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点又は緩和曲線の起点とを結ぶ直線を検出し、
(b)前記円弧の終点又は前記緩和曲線の終点と次方向にある円弧の起点又は緩和曲線の起点又は制御点を結ぶ直線を検出し、
(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出過程と
を有することを特徴とする三次元道路中心線データの生成方法。
A plane running trajectory generated by the trajectory data generation means for plane alignment with the point group of the running trajectory represented by the three-dimensional trajectory data acquired by the position sensor moved on the road as the plane alignment and the running direction as the definition direction of the running trajectory From the control point detection process of detecting, as a control point, a point where two straight line portions located in the middle of the curved portion intersect,
An arc detection process for detecting an arc of a curved portion formed by the vicinity detected as the control point from the plane traveling locus;
Smoothly connect two straight lines having one control point connected sequentially to the control points detected in the control point detection process and an arc not detected in contact with the straight line in the vicinity of the control point. A relaxation curve detection process for detecting a relaxation curve;
Sequentially examine the point cloud of the running locus in the defined direction,
(A) detecting a straight line connecting the control point at the start of the travel locus and the starting point of the arc or relaxation curve in the defining direction;
(B) detecting a straight line connecting the end point of the arc or the end point of the relaxation curve and the starting point of the arc in the next direction or the starting point or control point of the relaxation curve;
(C) If the detected straight line is not connected to a control point, a straight line detection process is repeated to repeat (a) to (b) until the control point is connected. Method.
道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を、縦断線形とし走行方向を走行軌跡の定義方向として縦断線形用の軌跡データ生成手段により生成された縦断走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出過程と、
前記縦断走行軌跡から前記制御点として検出された付近が形成する曲線部分の放物線を円弧で近似して検出する放物線検出過程と、
定義方向に走行軌跡の点群を順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点とを結ぶ直線を検出し、
(b)前記円弧の終点と次方向にある円弧の起点又は制御点を結ぶ直線を検出し、
(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出過程と
を有することを特徴とする三次元道路中心線データの生成方法。
Longitudinal travel trajectory generated by trajectory data generation means for longitudinal alignment with the trajectory point group represented by the three-dimensional trajectory data acquired by the position sensor moved on the road as the longitudinal alignment and the travel direction as the defining direction of the travel trajectory From the control point detection process of detecting, as a control point, a point where two straight line portions located in the middle of the curved portion intersect,
A parabola detection process for detecting a parabola of a curved portion formed by the vicinity detected as the control point from the longitudinal traveling locus by approximating with a circular arc,
Sequentially examine the point cloud of the running locus in the defined direction,
(A) detecting a straight line connecting the control point at the start of the travel locus and the starting point of the arc in the defined direction;
(B) detecting a straight line connecting the end point of the arc and the starting point or control point of the arc in the next direction;
(C) If the detected straight line is not connected to a control point, a straight line detection process is repeated to repeat (a) to (b) until the control point is connected. Method.
道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を平面線形とし走行方向を走行軌跡の定義方向として平面走行軌跡を生成する平面線形用の軌跡データ生成手段と、
平面線形用の軌跡データ生成手段からの平面走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出手段と、
平面線形用の軌跡データ生成手段からの平面走行軌跡から、前記制御点として検出された付近が形成する曲線部分の円弧を検出する円弧検出手段と、
前記制御点検出手段で検出した制御点を順次結んだ1つの制御点を端とする2つの直線と当該制御点付近に前記円弧検出過程により検出し直線と接触していない円弧とを滑らかに繋がる緩和曲線を検出する緩和曲線検出手段と、
定義方向に走行軌跡の点群を順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点又は緩和曲線の起点とを結ぶ直線を検出し、
(b)前記円弧の終点又は前記緩和曲線の終点と次方向にある円弧の起点又は緩和曲線の起点又は制御点を結ぶ直線を検出し、
(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出手段と
を有することを特徴とする三次元道路中心線データの生成装置。
Trajectory data generation means for plane alignment that generates a plane travel locus with the plane direction of the travel locus point cloud represented by the three-dimensional locus data acquired by the position sensor moved on the road as the plane alignment,
Control point detecting means for detecting, as a control point, a point where two straight line portions located in the middle of the curved line portion intersect from the plane running locus from the locus data generating means for plane alignment;
Arc detecting means for detecting an arc of a curved portion formed by the vicinity detected as the control point from a plane running locus from the locus data generating means for plane alignment;
Smoothly connect two straight lines having one control point as an end sequentially connecting the control points detected by the control point detecting means and an arc not detected in contact with the straight line in the vicinity of the control point. A relaxation curve detecting means for detecting a relaxation curve;
Sequentially examine the point cloud of the running locus in the defined direction,
(A) detecting a straight line connecting the control point at the start of the travel locus and the starting point of the arc or relaxation curve in the defining direction;
(B) detecting a straight line connecting the end point of the arc or the end point of the relaxation curve and the starting point of the arc in the next direction or the starting point or control point of the relaxation curve;
(C) If the detected straight line is not connected to a control point, straight line detection means that repeats (a) to (b) until the control point is connected is generated. apparatus.
道路上を移動した位置センサで取得した三次元軌跡データが表す走行軌跡の点群を縦断線形とし走行方向を走行軌跡の定義方向として縦断走行軌跡を生成する縦断線形用の軌跡データ生成手段と、
縦断線形用の軌跡データ生成手段からの縦断走行軌跡から、曲線部分を中間に位置する2つの直線部分が交わる点を制御点として検出する制御点検出手段と、
前記縦断走行軌跡から前記制御点として検出された付近が形成する曲線部分の放物線を円弧で近似して検出する放物線検出手段と、
定義方向に走行軌跡の点群を順次調べて、
(a)走行軌跡の始端にある制御点とそれから定義方向にある円弧の起点とを結ぶ直線を検出し、
(b)前記円弧の終点と次方向にある円弧の起点又は制御点を結ぶ直線を検出し、
(c)前記検出した直線が制御点に結ばない場合は制御点に結ぶまで、前記(a)から(b)を繰り返す直線検出手段と
を有することを特徴とする三次元道路中心線データの生成装置。
Trajectory linear trajectory data generation means for generating a vertical travel trajectory with the travel trajectory point cloud represented by the three-dimensional trajectory data acquired by the position sensor moved on the road as the vertical trajectory and the travel direction as the travel trajectory definition direction;
A control point detecting means for detecting, as a control point, a point where two straight line portions located in the middle of the curved portion intersect from the longitudinal traveling locus from the trajectory data generating means for vertical alignment;
A parabola detecting means for detecting a parabola of a curved portion formed by the vicinity detected as the control point from the longitudinal traveling locus by approximating with a circular arc;
Sequentially examine the point cloud of the running locus in the defined direction,
(A) detecting a straight line connecting the control point at the start of the travel locus and the starting point of the arc in the defined direction;
(B) detecting a straight line connecting the end point of the arc and the starting point or control point of the arc in the next direction;
(C) If the detected straight line is not connected to a control point, straight line detection means that repeats (a) to (b) until the control point is connected is generated. apparatus.
JP2009117257A 2009-05-14 2009-05-14 Method and apparatus for generating 3D road centerline data Expired - Fee Related JP5184436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117257A JP5184436B2 (en) 2009-05-14 2009-05-14 Method and apparatus for generating 3D road centerline data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117257A JP5184436B2 (en) 2009-05-14 2009-05-14 Method and apparatus for generating 3D road centerline data

Publications (2)

Publication Number Publication Date
JP2010266306A true JP2010266306A (en) 2010-11-25
JP5184436B2 JP5184436B2 (en) 2013-04-17

Family

ID=43363411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117257A Expired - Fee Related JP5184436B2 (en) 2009-05-14 2009-05-14 Method and apparatus for generating 3D road centerline data

Country Status (1)

Country Link
JP (1) JP5184436B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175433A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Map data generation system and method for generating map data
CN109891461A (en) * 2016-10-25 2019-06-14 三菱电机株式会社 Map datum generating means, terminal installation and map datum generation method
JP2020080146A (en) * 2015-10-19 2020-05-28 田中 成典 Road feature determination device
JP2021043988A (en) * 2020-10-29 2021-03-18 田中 成典 Road characteristics determination device
CN112950740A (en) * 2019-12-10 2021-06-11 中交宇科(北京)空间信息技术有限公司 Method, device and equipment for generating high-precision map road center line and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620189A (en) * 1992-06-29 1994-01-28 Nissan Motor Co Ltd Road shape measuring instrument
JP2001101597A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Method and device for recognizing road shape and recording medium
JP2006047291A (en) * 2004-07-01 2006-02-16 Sanei Giken:Kk Device for marking digital lane
JP2006349611A (en) * 2005-06-20 2006-12-28 Jr Higashi Nippon Consultants Kk Rail track central line surveying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620189A (en) * 1992-06-29 1994-01-28 Nissan Motor Co Ltd Road shape measuring instrument
JP2001101597A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Method and device for recognizing road shape and recording medium
JP2006047291A (en) * 2004-07-01 2006-02-16 Sanei Giken:Kk Device for marking digital lane
JP2006349611A (en) * 2005-06-20 2006-12-28 Jr Higashi Nippon Consultants Kk Rail track central line surveying method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080146A (en) * 2015-10-19 2020-05-28 田中 成典 Road feature determination device
CN109074756B (en) * 2016-04-06 2020-08-04 三菱电机株式会社 Map data generation system and map data generation method
DE112017001917T5 (en) 2016-04-06 2018-12-13 Mitsubishi Electric Corporation Map data generation system and method for generating map data
CN109074756A (en) * 2016-04-06 2018-12-21 三菱电机株式会社 Map datum generates system and map datum generation method
JP6250240B1 (en) * 2016-04-06 2017-12-20 三菱電機株式会社 Map data generation system and map data generation method
WO2017175433A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Map data generation system and method for generating map data
US11002552B2 (en) 2016-04-06 2021-05-11 Mitsubishi Electric Corporation Map data generation system and method for generating map data
CN109891461A (en) * 2016-10-25 2019-06-14 三菱电机株式会社 Map datum generating means, terminal installation and map datum generation method
US11181385B2 (en) 2016-10-25 2021-11-23 Mitsubishi Electric Corporation Map data generating apparatus, terminal apparatus, and map data generating method
CN109891461B (en) * 2016-10-25 2023-02-03 三菱电机株式会社 Map data generation device, terminal device, and map data generation method
CN112950740A (en) * 2019-12-10 2021-06-11 中交宇科(北京)空间信息技术有限公司 Method, device and equipment for generating high-precision map road center line and storage medium
JP2021043988A (en) * 2020-10-29 2021-03-18 田中 成典 Road characteristics determination device
JP7090136B2 (en) 2020-10-29 2022-06-23 成典 田中 Road characterization device

Also Published As

Publication number Publication date
JP5184436B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP7440490B2 (en) Procedural world generation
CN106323308B (en) It pre-processes the method for road data, drive road vehicle and its control method certainly
JP5184436B2 (en) Method and apparatus for generating 3D road centerline data
ES2790674T3 (en) Import and analyze external data using a virtual reality welding system
CN109285220A (en) A kind of generation method, device, equipment and the storage medium of three-dimensional scenic map
JP6811335B2 (en) Map generation method for autonomous driving simulator and autonomous driving simulator
JP2020035441A (en) Method for generating simulated point cloud data, apparatus, device and storage medium
JP2009291540A (en) Mobile robot system
KR20150139526A (en) Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
CN105373689B (en) Method and device for determining road curvature in electronic map
JP6465421B1 (en) Structural deformation detector
JP5902275B1 (en) Autonomous mobile device
CN114255252B (en) Obstacle contour acquisition method, device, equipment and computer-readable storage medium
KR100632915B1 (en) Method of 3 dimension image display and system of 3 dimension image display
CN110793548A (en) Navigation simulation test system based on virtual-real combination of GNSS receiver hardware in loop
CN110111425A (en) Oblique angle generation method, medium, equipment and the device of 3D font
JP2011100306A (en) Simulation system
CN107688431B (en) Man-machine interaction method based on radar positioning
JP2009205584A (en) Method and apparatus for creating three dimensional road data
KR101475210B1 (en) Appraratus for simulation of vitural robot
CN112530022A (en) Method for computer-implemented simulation of LIDAR sensors in a virtual environment
JP4438767B2 (en) Design support apparatus, design support method, and program
CN111367194A (en) Visual algorithm verification method and device
JP6481596B2 (en) Evaluation support device for vehicle head-up display
WO2022123850A1 (en) Control device, control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees