JPS63182290A - Device for production semiconductor crystal - Google Patents
Device for production semiconductor crystalInfo
- Publication number
- JPS63182290A JPS63182290A JP1455387A JP1455387A JPS63182290A JP S63182290 A JPS63182290 A JP S63182290A JP 1455387 A JP1455387 A JP 1455387A JP 1455387 A JP1455387 A JP 1455387A JP S63182290 A JPS63182290 A JP S63182290A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- soln
- reservoir
- semiconductor crystal
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 30
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000003860 storage Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は半導体結晶の製造装置に関するものでちる。[Detailed description of the invention] Industrial applications The present invention relates to an apparatus for manufacturing semiconductor crystals.
従来の技術
半導体結晶を成長する際には、成長に必要となる材料を
秤量して成長装置に仕込み所要の結晶を得るが、成長ご
とに毎回成長材料を秤量していたのでは手間がかかりす
ぎるため、従来第2図に示すような装置により多数の成
長用溶液を一活して作り、この溶液を用いて結晶成長を
行う方法がとられていた。Conventional technology When growing semiconductor crystals, the materials required for growth are weighed and charged into the growth equipment to obtain the required crystal, but weighing the growth materials each time it is grown is too time-consuming. Therefore, a conventional method has been adopted in which a large number of growth solutions are prepared at once using an apparatus as shown in FIG. 2, and the crystal growth is performed using these solutions.
第2図において溶液だめ23中に仕込まれた成長材料は
、溶液の飽和温度以上の高温で一定時間保たれることに
よって溶解混合されたのち、溶液だめ用スライド棒26
を介して溶液だめ23が溶液格納治具21上でスライド
され、溶液だめ中の溶液24が溶液格納凹部22中に分
配された後、溶液24を用いて結晶成長が行なわれた。In FIG. 2, the growth material charged into the solution reservoir 23 is maintained at a high temperature above the saturation temperature of the solution for a certain period of time to be dissolved and mixed, and then the solution reservoir slide rod 26
After the solution reservoir 23 was slid on the solution storage jig 21 through the solution reservoir and the solution 24 in the solution reservoir was distributed into the solution storage recess 22, crystal growth was performed using the solution 24.
発明が解決しようとする問題点
しかしながら上記のような構成では、溶液だめ中の溶液
24が溶液格納凹部22中に分配される前に溶液だめ2
3を数回スライドすることによって溶液だめ中の溶液2
4を攪拌し、そののち溶液格納凹部22中に分配される
試みもなされたが、溶液だめ中の溶液24内の組成を十
分均一にすることはできず、また溶液格納凹部22の数
及び溶液24の量を増すにつれて溶液だめ中の溶液24
内の組成の不均一性はさらに増大し、この結果溶液格納
凹部22中に分配された溶液間の組成の差の程度が増大
し、その溶液によって成長された半導体結晶間の質の差
の程度が増大するという問題を有していた。Problems to be Solved by the Invention However, in the above configuration, before the solution 24 in the solution reservoir is distributed into the solution storage recess 22, the solution reservoir 2
Solution 2 in the reservoir by sliding 3 several times
Attempts have been made to stir the solution 4 and then distribute it into the solution storage recesses 22, but the composition within the solution 24 in the solution reservoir could not be made sufficiently uniform, and the number of solution storage recesses 22 and the solution As the amount of solution 24 increases, the amount of solution 24 in the solution reservoir increases.
The compositional non-uniformity within the solution storage cavity 22 further increases, resulting in an increase in the degree of compositional difference between the solutions distributed in the solution storage recess 22 and a degree of quality difference between the semiconductor crystals grown by the solution. The problem was that the amount of
本発明は、従来の欠点を改良し、より均一な組成の半導
体結晶の成長に用いる溶液を多数製造し、質の差の程度
の少ない半導体結晶を多数製造できる半導体結晶の製造
装置を提供することを目的とする。An object of the present invention is to provide a semiconductor crystal manufacturing apparatus that can improve the conventional drawbacks, manufacture a large number of solutions used for growing semiconductor crystals with more uniform composition, and manufacture a large number of semiconductor crystals with little difference in quality. With the goal.
間厘点を解決するだめの手段
本発明は、溶液だめ内に磁場を印加する機構を有するこ
とにより上記目的を達成するものである。Means for Solving the Interference Point The present invention achieves the above object by having a mechanism for applying a magnetic field within the solution reservoir.
作用
本発明は前記した構成により、溶液だめ中で溶解混合し
た半導体結晶の成長に用いる材料よりなる溶液に、磁場
印加による強制的な対流を生じさせることかできるので
、前記溶液内の組成を均一にすることができ、その結果
よシ均一な組成の半導体結晶の成長に用いる溶液を多数
製造できる。Effect of the Invention With the above-described configuration, the present invention can cause forced convection by applying a magnetic field to a solution made of materials used for growing semiconductor crystals dissolved and mixed in a solution reservoir, so that the composition of the solution can be made uniform. As a result, a large number of solutions used for growing semiconductor crystals having a uniform composition can be produced.
実施例
第1図は本発明の一実施例における半導体結晶の製造装
置の断面図を示すものである。第1図において、半導体
結晶の成長に用いられる材料は溶液だめ13中に仕込ま
れ、飽和温度以上の高温に保たれて溶解混合される。こ
の際に、溶液だめ13の側壁内に埋め込まれた磁場印加
用コイル16にコイル端子17を通じて電流を印加する
ことにより、溶液だめ中の溶液14に磁場を印加すると
、溶液だめ中の溶液14は磁場により強制的な□対流を
生じ、均一な組成となる。Embodiment FIG. 1 shows a sectional view of a semiconductor crystal manufacturing apparatus in an embodiment of the present invention. In FIG. 1, materials used for growing semiconductor crystals are placed in a solution reservoir 13, maintained at a high temperature above the saturation temperature, and melted and mixed. At this time, when a magnetic field is applied to the solution 14 in the solution reservoir by applying a current to the magnetic field application coil 16 embedded in the side wall of the solution reservoir 13 through the coil terminal 17, the solution 14 in the solution reservoir The magnetic field causes forced convection, resulting in a uniform composition.
上記のような構成で均一な組成となった溶液だめ中の溶
液14は、溶液だめ用スライド棒16を介して溶液だめ
13を溶液格納治具11上でスライドすることにより、
溶液格納凹部12中に分配され、この溶液によって成長
された半導体結晶間の質の差は従来よりも大幅に少なか
った。The solution 14 in the solution reservoir, which has a uniform composition with the above-mentioned configuration, can be removed by sliding the solution reservoir 13 on the solution storage jig 11 via the solution reservoir slide rod 16.
The quality difference between the semiconductor crystals distributed in the solution containing recess 12 and grown by this solution was significantly smaller than in the past.
そして上述の実施例において、溶媒としてIn。And in the above examples, In was used as the solvent.
2質としてInP 、 InAs 、及びGaAs f
Inに対してM量比でそれぞれ0・34%、7.29
%及び11・2%として、従来よシも大幅に均一性の良
い多数の成長用の溶液を得ることができ、この溶液を用
いてInP基板上にInGaAsP層を形成することに
より、従来よりも大幅に組成変動の少ない多数のInq
I人sP結晶を得ることができた。InP, InAs, and GaAs f as two materials
The ratio of M to In is 0.34% and 7.29, respectively.
% and 11.2%, it is possible to obtain a large number of growth solutions with significantly better uniformity than before, and by using this solution to form an InGaAsP layer on an InP substrate, A large number of Inq with significantly less compositional variation
I was able to obtain sP crystals.
なお、本実施例において、磁場印加用コイル16は溶液
だめ13の側壁内に埋め込まれているが、溶液だめ13
内に磁場を印加できる範囲内において、磁場印加用コイ
ルをいかなる配置としてもよい。In this embodiment, the magnetic field applying coil 16 is embedded in the side wall of the solution reservoir 13;
The magnetic field applying coils may be arranged in any manner as long as the magnetic field can be applied within the range.
発明の効果
以上説明したように、本発明によれば、半導体結晶の成
長に用いられる溶液を多数、しかも大幅に均一性良く作
ることができ、その実用的効果は大きい。Effects of the Invention As explained above, according to the present invention, a large number of solutions used for growing semiconductor crystals can be prepared with great uniformity, and the practical effects thereof are great.
第1図は本発明の一実施例における半導体結晶の製造装
置の断面図、第2図は従来の半導体結晶の製造装置の断
面図である。
11・・・・・・溶液格納治具、12・・・・・・溶液
格納凹部、13・・・・・・溶液だめ、14・・・・・
・溶液だめ中の溶液、16・・・・・・溶液だめ用スラ
イド棒、16・・・・・・磁場印加用コイル、17・・
・・・・コイル端子。FIG. 1 is a cross-sectional view of a semiconductor crystal manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional semiconductor crystal manufacturing apparatus. 11...Solution storage jig, 12...Solution storage recess, 13...Solution reservoir, 14...
・Solution in solution reservoir, 16... Slide rod for solution reservoir, 16... Coil for applying magnetic field, 17...
...Coil terminal.
Claims (2)
の溶液格納治具上に位置する溶液だめと、この溶液だめ
内に磁場を印加する機構とを備え、上記溶液だめ中で半
導体結晶の成長に用いる材料を溶解混合したのち該材料
よりなる溶液を前記溶液格納凹部中に分配して複数の半
導体結晶の成長に用いる溶液を製造することを特徴とす
る半導体結晶の製造装置。(1) A solution storage jig having a plurality of solution storage recesses, a solution reservoir located on this solution storage jig, and a mechanism for applying a magnetic field within this solution reservoir, and a semiconductor crystal in the solution reservoir. 1. An apparatus for manufacturing a semiconductor crystal, characterized in that after dissolving and mixing materials used for the growth of a plurality of semiconductor crystals, a solution made of the materials is distributed into the solution storage recess to produce a solution used for the growth of a plurality of semiconductor crystals.
だめ中の溶液を対流させることを特徴とする半導体結晶
の製造装置。(2) A semiconductor crystal manufacturing apparatus characterized in that a mechanism for applying a magnetic field within the solution reservoir causes convection of a solution in the solution reservoir.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1455387A JPS63182290A (en) | 1987-01-23 | 1987-01-23 | Device for production semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1455387A JPS63182290A (en) | 1987-01-23 | 1987-01-23 | Device for production semiconductor crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63182290A true JPS63182290A (en) | 1988-07-27 |
Family
ID=11864339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1455387A Pending JPS63182290A (en) | 1987-01-23 | 1987-01-23 | Device for production semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63182290A (en) |
-
1987
- 1987-01-23 JP JP1455387A patent/JPS63182290A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1614867B1 (en) | METHOD OF MANUFACTURING AN INTEGRATED CIRCUIT CONSTRUCTION | |
Johnson et al. | The role of deep‐level centers and compensation in producing semi‐insulating GaAs | |
DE68925350T2 (en) | SUPER-CONDUCTING OXIDE MATERIAL AND METHOD FOR THE PRODUCTION | |
DE3781016T2 (en) | METHOD FOR GROWING A MULTI-COMPONENT CRYSTAL. | |
DE2616700A1 (en) | METHOD OF FORMING A THIN LAYER FROM A GROUP III-V CONDUCTOR MATERIAL FROM A SOLUTION ON A SUBSTRATE BY EPITAXIAL GROWTH FROM LIQUID PHASE | |
DE2207056A1 (en) | Process for selective epitaxial growth from the liquid phase | |
JPS63182290A (en) | Device for production semiconductor crystal | |
DE2012459A1 (en) | Process for the production of a doping st of f que He | |
JPH0322689B2 (en) | ||
Avetisov et al. | Non-equilibrium generation of optical activity in solid 1, 1′-binaphthyl | |
DE968581C (en) | Process for the production of crystals intended for rectifiers, directional conductors, transistors or the like | |
JPS5490086A (en) | Method of producing single crystal | |
JPH0251249B2 (en) | ||
JPS6064440A (en) | Liquid phase epitaxial growth method | |
JPS6311596A (en) | Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method | |
JPS60254611A (en) | Manufacture of semiconductor device | |
JPH03261134A (en) | Crystal growth method for compound semiconductor | |
JPH02167883A (en) | Production of single crystal of compound semiconductor and device therefor | |
DE1072408B (en) | Magnetic core matrix and process for its manufacture | |
JPS5223507A (en) | Method of forming programs for crystal growth | |
DE1614867C (en) | Method of manufacturing an integrated circuit assembly | |
JPS5915071Y2 (en) | Boat for making master alloy | |
DE19922784A1 (en) | Magnetic garnet single crystal film especially for a magnetostatic wave device e.g. a limiter or noise filter in microwave equipment | |
JPS6389498A (en) | Production of silicon-added gallium arsenide single crystal | |
JPS63244733A (en) | Manufacture of lump for melt |