JPS63182036A - Preparation of catalyst for removing nitrogen oxide in exhaust gas - Google Patents
Preparation of catalyst for removing nitrogen oxide in exhaust gasInfo
- Publication number
- JPS63182036A JPS63182036A JP62012985A JP1298587A JPS63182036A JP S63182036 A JPS63182036 A JP S63182036A JP 62012985 A JP62012985 A JP 62012985A JP 1298587 A JP1298587 A JP 1298587A JP S63182036 A JPS63182036 A JP S63182036A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- zeolite
- added
- exhaust gas
- titania
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 56
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000007789 gas Substances 0.000 title claims abstract description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 21
- 239000010457 zeolite Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 239000012784 inorganic fiber Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 18
- 239000000835 fiber Substances 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 4
- 239000011230 binding agent Substances 0.000 abstract description 3
- 231100000614 poison Toxicity 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 239000002574 poison Substances 0.000 abstract description 2
- 239000010936 titanium Substances 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 abstract 1
- 229910052785 arsenic Inorganic materials 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 229910052680 mordenite Inorganic materials 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- LZYIDMKXGSDQMT-UHFFFAOYSA-N arsenic dioxide Inorganic materials [O][As]=O LZYIDMKXGSDQMT-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、排ガス中の窒素酸化物をアンモニアで接触還
元除去するための触媒の製造法に係り、特に排ガス中に
含まれる触媒毒物質によって劣化し難く、かつ成形性と
機械的強度に優れた触媒の製造法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a catalyst for removing nitrogen oxides in exhaust gas by catalytic reduction with ammonia, and particularly relates to a method for producing a catalyst for removing nitrogen oxides in exhaust gas by catalytic reduction, and in particular, This invention relates to a method for producing a catalyst that is resistant to deterioration and has excellent formability and mechanical strength.
(従来の技術)
各種燃焼炉排ガス中に含まれる窒素酸化物は、それ自身
人体に対して有害であるだけでなく、光化学スモッグな
どの大気汚染の原因となる物質である。この窒素酸化物
を除去(税調)するには、現在アンモニアによる接触還
元法(選択的還元)が広く用いられる。このための触媒
として、現在実用に供されているのは、特開昭50−5
1966号、特開昭52−122293号に代表される
、チタニア(T t O□)を主成分として、これにバ
ナジウム(V)、モリブデン(Mo)、タングステン(
W)などを添加した触媒である。これらの触媒は、活性
が高く排ガス中の硫黄酸化物に対する劣化が少なく、寿
命の点でも優れたものであったが、排ガス中に砒素(A
s)、セレン(Se)、テルル(Te)などの揮発性物
質が存在すると、被毒され、活性劣化を引き起こすこと
がわがってきた。(Prior Art) Nitrogen oxides contained in various combustion furnace exhaust gases are not only harmful to the human body, but also cause air pollution such as photochemical smog. In order to remove (tax control) these nitrogen oxides, a catalytic reduction method (selective reduction) using ammonia is currently widely used. The catalyst currently in practical use for this purpose is JP-A-50-5
1966 and JP-A-52-122293, titania (T t O□) is the main component, and vanadium (V), molybdenum (Mo), and tungsten (
This is a catalyst to which W) and the like are added. These catalysts had high activity, little deterioration due to sulfur oxides in the exhaust gas, and were excellent in terms of service life.
It has been found that the presence of volatile substances such as S), selenium (Se), and tellurium (Te) causes poisoning and causes deterioration of activity.
本発明者らは、ゼオライトを主成分とする触媒がこれら
揮発性触媒毒に対して優れた耐毒性を有し、特に銅を担
持したゼオライト触媒は活性も高く、長期間にわたって
高活性を維持することを見出し、特願昭61−1574
48号として出願した。The present inventors have demonstrated that catalysts mainly composed of zeolite have excellent toxicity resistance against these volatile catalyst poisons, and that zeolite catalysts supporting copper in particular have high activity and maintain high activity for a long period of time. Found this and filed a patent application in 1986-1574.
The application was filed as No. 48.
(発明が解決しようとする問題点)
しかし、上記ゼオライト系触媒は、成形性および機械的
強度の面で不充分であり、充分な強度を持った触媒成形
体を得ることが望まれていた。(Problems to be Solved by the Invention) However, the above-mentioned zeolite catalysts are insufficient in terms of moldability and mechanical strength, and it has been desired to obtain catalyst molded bodies with sufficient strength.
く問題点を解決するための手段)
本発明は、上記問題点を解決するためになされたもので
、排ガス中の窒素酸化物をアンモニアにより接触還元除
去する触媒の製造方法において、活性金属成分としての
銅を担持したゼオライトにチタニアを10〜90重量%
添加し、これに水を加えて混練し、この混線物の水分量
を23〜43重量%としたのち、無機繊維を触媒総量の
5〜30重量%添加混合し、成形後乾燥、焼成すること
を特徴とする排ガス中の窒素酸化物除去用触媒の製造方
法を提供するものである。The present invention has been made to solve the above problems, and includes a method for producing a catalyst for removing nitrogen oxides in exhaust gas by catalytic reduction using ammonia. 10 to 90% by weight of titania on zeolite supporting copper
After adding water to this and kneading to make the moisture content of this mixed wire 23 to 43% by weight, inorganic fibers are added and mixed in an amount of 5 to 30% by weight based on the total amount of catalyst, and after molding, drying and baking. The present invention provides a method for producing a catalyst for removing nitrogen oxides from exhaust gas, which is characterized by the following.
(作用)
本発明によれば、触媒組成物に無機繊維を混入すること
により、個々の触媒粒子は相互に架橋され、機械的強度
を高めることができる。ここで、無機繊維の効果を十分
に発揮させるためには、繊維を適度に切断することが重
要であり、この切断度合いは繊維添加混入時の触媒混練
物の軟らかさに大きく支配される。混練物が硬い場合に
は、繊維は過剰に切断されるので、その効果を十分期待
することができなくなる。逆に軟らかすぎる場合には、
繊維はほとんど切断されず、混練物の流動性を低下させ
るので、成形性が損なわれる。本発明で限定した含水量
で規定される軟らかさを有する混線物中に繊維を添加混
入させれば、成形性を損なわずに実用上十分な機械的強
度を得ることが可能なばかりか、混線物の粒度分布を改
善し、さらに成形性を向上させる効果がある。(Function) According to the present invention, by mixing inorganic fibers into the catalyst composition, individual catalyst particles are crosslinked with each other, and mechanical strength can be increased. Here, in order to fully exhibit the effects of the inorganic fibers, it is important to cut the fibers appropriately, and the degree of cutting is largely controlled by the softness of the catalyst mixture when the fibers are added and mixed. If the kneaded material is hard, the fibers will be cut excessively, making it impossible to expect the desired effect. On the other hand, if it is too soft,
The fibers are hardly cut, which reduces the fluidity of the kneaded material, impairing the moldability. If fibers are added and mixed into the mixed material having the softness specified by the water content limited in the present invention, it is possible not only to obtain practically sufficient mechanical strength without impairing the moldability, but also to It has the effect of improving the particle size distribution of objects and further improving moldability.
(実施例)
本発明になる触媒の製造法において、ゼオライトとして
は、モルデナイト、フェリエライト、モービルオイル社
製ペンタシル型ゼオライトZSM−5などいずれも採用
し得るが、Si○2/Al2O3比が10以上、平均細
孔径が10Å以下のものであることが好ましい。活性金
属成分の担持方法としては、各種金属塩水溶液を用いて
の置換、混練、含浸などの方法を採用し得る。その担持
量は、0.Olないし20重量%の範囲を採用し得るが
、ゼオライトの陽イオン交換容量以下に抑えるのが好ま
しい。また、チタニアとしては、メタチタン酸、塩素法
チタニアなどいずれを用いてもかまわないが、比表面積
が20rrf/g以下、平均粒径が2μm以下の微粒で
あることが好ましい。(Example) In the method for producing the catalyst of the present invention, as the zeolite, mordenite, ferrierite, pentasil type zeolite ZSM-5 manufactured by Mobil Oil Co., etc. can be used, but the Si○2/Al2O3 ratio is 10 or more. , the average pore diameter is preferably 10 Å or less. As a method for supporting the active metal component, methods such as substitution using various metal salt aqueous solutions, kneading, and impregnation may be employed. The supported amount is 0. Although a range of O1 to 20% by weight can be adopted, it is preferable to keep it below the cation exchange capacity of the zeolite. Further, as the titania, any of metatitanic acid, chlorine-processed titania, etc. may be used, but fine particles having a specific surface area of 20 rrf/g or less and an average particle size of 2 μm or less are preferable.
ゼオライトとチタニアとの混合比は、ゼオライト/チタ
ニア重量比で1/9ないし9/1を採用し得る。この比
が小さすぎる場合には、ゼオライトの触媒性能が生かさ
れず、比が大きすぎればチタニアの強度賦与効果および
粒度改善効果が顕著でなくなるので、ゼオライト/チタ
ニア重量比は、3/7ないし8/2がより好ましい。The mixing ratio of zeolite and titania may be 1/9 to 9/1 in terms of zeolite/titania weight ratio. If this ratio is too small, the catalytic performance of the zeolite will not be utilized, and if the ratio is too large, the strength-imparting effect and particle size improving effect of titania will not be significant. Therefore, the zeolite/titania weight ratio should be 3/7 to 8/ 2 is more preferred.
無機繊維の添加量は、多すぎると触媒活性、寿命、成形
性を低下させ、少なすぎると強度向上効果が現れないの
で、触媒総量の5ないし30重量%が適当である。The amount of inorganic fiber added is suitably 5 to 30% by weight based on the total amount of the catalyst, since too much will reduce the catalyst activity, life and moldability, and too little will not improve the strength.
本製造法により得られた触媒ペーストは、円筒、円柱、
ハニカム状に押出成形する方法、さらには金属、セラミ
ックス製織布などの上に塗布成形する方法などにより触
媒成形体とすることができる。The catalyst paste obtained by this production method is cylindrical, cylindrical,
A catalyst molded body can be obtained by extrusion molding into a honeycomb shape, or by coating and molding on metal, ceramic woven fabric, or the like.
ゼオライトは、顕著なグイラタンシーを有するとともに
粒子の機械的強度は極めて低い。グイラタンシーは、比
較的粒子径がそろった場合に発現する。チタニアのよう
な強固で微粒な粒子を加えると、粒度分布を広くでき、
グイラタンシーを解消し得て成形性を改善し得ると同時
にチタニアがマトリックスとしても働いて機械的強度の
向上が期待される。しかし、ゼオライト−チタニア、異
種あるいは同種粒子間の結合力は強くないので、結合材
などが必要となる。無機繊維はこのために用いられるが
、触媒製造段階での導入方法によっては、この作用が十
分に発揮されないばかりではなく、逆に悪影響を及ぼす
ことがある。Zeolite has significant glatancy and the mechanical strength of the particles is extremely low. Giratancy occurs when the particle sizes are relatively uniform. Adding strong, fine particles like titania can widen the particle size distribution,
It is expected that titania can eliminate giratancy and improve moldability, and at the same time, titania acts as a matrix and improves mechanical strength. However, since the binding force between zeolite and titania, different types of particles, or particles of the same type is not strong, a binder or the like is required. Inorganic fibers are used for this purpose, but depending on the method of introduction during the catalyst production stage, this effect may not be fully exerted or may even have an adverse effect.
本発明においては、前記ゼオライトとチタニアの混練物
の水分量を23〜43重量%に調整した後、無機繊維が
混合される。水分量がこの範囲外では、前述のように混
練物が適当な軟らかさにならず、無ta繊維の切断度合
が不充分になり、成形性および機械的強度の優れた触媒
を得ることができない。In the present invention, after adjusting the moisture content of the kneaded product of zeolite and titania to 23 to 43% by weight, inorganic fibers are mixed. If the water content is outside this range, the kneaded material will not have appropriate softness as described above, the degree of cutting of the ta-free fibers will be insufficient, and a catalyst with excellent moldability and mechanical strength will not be obtained. .
湿式混練中に無機繊維を添加した場合、過剰に繊維を切
断すると、繊維による粒子間の架橋機能が低下し、強度
向上効果は期待できない。逆に繊維をあまり切断しない
と、触媒混練物の塑性を低下させ、成形性が犠牲となる
。特に、触媒混練物を金網状の全屈ラス板上にローラで
加圧塗布成形する際には、ラス板の網目にうまくペース
トが入り込まず、板状触媒とすることができなくなる。When inorganic fibers are added during wet kneading, if the fibers are cut excessively, the crosslinking function between particles by the fibers will be reduced, and no strength improvement effect can be expected. On the other hand, if the fibers are not cut too much, the plasticity of the catalyst kneaded product will be reduced and the moldability will be sacrificed. In particular, when the catalyst mixture is pressure-coated and molded onto a wire-mesh-like fully curved lath plate using a roller, the paste does not penetrate well into the mesh of the lath plate, making it impossible to form a plate-shaped catalyst.
本発明者らは、無機繊維の切断度合いが、繊維添加混入
時の触媒混練物の軟らかさに大きく支配されることを見
出した。The present inventors have discovered that the degree of cutting of inorganic fibers is largely controlled by the softness of the catalyst kneaded material when the fibers are added and mixed.
本発明になる触媒の製造法によれば、予めゼオライトと
チタニアとを十分混合、混練した後に、適度な軟らかさ
の混練物中に無機繊維を添加混入させるので、繊維が適
度に切断され、成形性、機械的強度に優れた触媒を得る
ことが可能となる。According to the method for producing a catalyst according to the present invention, after zeolite and titania are thoroughly mixed and kneaded in advance, inorganic fibers are added and mixed into the kneaded material of appropriate softness, so that the fibers are appropriately cut and molded. This makes it possible to obtain a catalyst with excellent properties and mechanical strength.
ゼオライトと無機繊維とを混合、混練し、次いでチタニ
アを添加混入させたり、ゼオライトとチタニアおよび無
機繊維を同時に混合、混練したのでは、繊維の切断度を
うまく制御することはむずかしい。If zeolite and inorganic fibers are mixed and kneaded and then titania is added and mixed in, or if zeolite, titania, and inorganic fibers are mixed and kneaded simultaneously, it is difficult to control the degree of cutting of the fibers.
以下、本発明を実施例を用いてさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail using Examples.
実施例I
S i Oz / Aβ20コ比が23、平均細孔径が
7人である水素型合成モルデナイト粉末1.2瞳に、酢
酸銅(Cu (CH3Coo)z )の水溶液1.71
(Cu濃度2.1g/j)を加えて攪拌し、置換法に
よって銅をモルデナイトに担持させた後、180℃で乾
燥し、次いで500℃で2時間焼成した。得られた銅担
持モルデナイトの粉末500gをニーグーにより水を加
え湿式で30分混練した。Example I Aqueous solution of copper acetate (Cu(CH3Coo)z) was added to 1.2 pupil of hydrogen-type synthetic mordenite powder with SiOz/Aβ20 ratio of 23 and average pore diameter of 7.
(Cu concentration 2.1 g/j) was added and stirred, copper was supported on mordenite by a substitution method, and then dried at 180°C and then fired at 500°C for 2 hours. 500 g of the obtained powder of copper-supported mordenite was wet-kneaded for 30 minutes by adding water using a Neegu.
続いて石屋産業製の顔料用チタニアであるCR−50(
比表面積10.7rrr/g)を500g添加して1時
間混練した。水を適当に添加して混練物の水分量を33
.4%とした後、無機繊維としてカオウールを150g
添加し、40分間混練した9次いでメトローズを10g
添加し30分間混練した後、触媒ペーストを得た。この
ペーストを、アルミナを酸素雰囲気で溶射したステンレ
ス鋼5US304製の金網状ラス板上に、ローラによっ
て加注塗布することにより板状に成形し、室温で約8時
間風乾した後、500℃で2時間焼成して板状触媒を得
た。Next was CR-50, which is titania for pigments manufactured by Ishiya Sangyo.
A specific surface area of 10.7 rrr/g) was added and kneaded for 1 hour. Add water appropriately to reduce the moisture content of the kneaded product to 33.
.. After making it 4%, add 150g of Kao wool as inorganic fiber.
Then 10g of Metrose was added and kneaded for 40 minutes.
After addition and kneading for 30 minutes, a catalyst paste was obtained. This paste was formed into a plate by applying it with a roller onto a wire-mesh lath plate made of stainless steel 5US304 that had been thermally sprayed with alumina in an oxygen atmosphere, air-dried at room temperature for about 8 hours, and then heated at 500℃ for 2 hours. A plate-shaped catalyst was obtained by firing for a period of time.
実施例2.3
実施例1において、無機繊維添加時の触媒混線物の水分
量がそれぞれ38.6%、25.1%として他の条件は
同一として板状触媒を得た。Example 2.3 In Example 1, a plate-shaped catalyst was obtained under the same conditions as in Example 1, except that the moisture content of the catalyst mixed material when inorganic fibers were added was 38.6% and 25.1%, respectively.
比較例1.2
実施例1において、無機繊維添加時の触媒混線物の水分
量がそれぞれ22.5%、40.8%として他の条件は
同一にして板状触媒を調整した。Comparative Example 1.2 In Example 1, plate-shaped catalysts were prepared with the moisture content of the catalyst mixed material at the time of addition of inorganic fibers being 22.5% and 40.8%, respectively, and the other conditions being the same.
比較例3.4
実施例1において、無機繊維の添加量がそれぞれ触媒総
量の1重1%、33重量%とし、他の条件は同一にして
触媒を調整した。Comparative Example 3.4 In Example 1, the catalyst was prepared by setting the amount of inorganic fibers added to 1% and 33% by weight of the total amount of catalyst, and keeping the other conditions the same.
実験例1
実施例1〜3、比較例1〜4の触媒について、恒温恒湿
の条件下で、グリッド(農相工業WMGH−70)8k
gを高さ500寵より角度45°に傾けた1100X1
00の触媒(板状)テストピースに落下させて、その摩
耗量を測定した。Experimental Example 1 The catalysts of Examples 1 to 3 and Comparative Examples 1 to 4 were tested on a grid (Noso Kogyo WMGH-70) 8k under constant temperature and humidity conditions.
1100X1 with g tilted at an angle of 45° from a height of 500cm
The sample was dropped onto a No. 00 catalyst (plate-shaped) test piece, and the amount of wear was measured.
第1表に上記各触媒の摩耗量を示した。無機繊維添加時
の触媒ペースト含水量が23重量%付近でペーストは急
激に硬くなるので、繊維の切断が著しくなり、強度向上
効果が低下するので、摩耗量は急増する。ペースト水分
量が23〜40では、ペーストが適度の軟らかさを保つ
ので、摩耗量は小さく抑えられる。ペースト水分量が4
0%を超えると、ペーストは著しく軟化して、無機繊維
をほとんど切断できなくなり、長い状態の繊維が残って
しまい、板状触媒化が不可能となってしまう。Table 1 shows the wear amount of each of the above catalysts. When the water content of the catalyst paste is around 23% by weight when inorganic fibers are added, the paste becomes hard rapidly, so the fibers become severed, the strength improvement effect decreases, and the amount of wear increases rapidly. When the paste water content is 23 to 40, the paste maintains appropriate softness, so the amount of wear can be suppressed to a small level. Paste moisture content is 4
If it exceeds 0%, the paste becomes extremely softened and almost no inorganic fibers can be cut, and long fibers remain, making it impossible to convert them into plate-like catalysts.
また、比較例3では無機繊維添加量が少なすぎて強度向
上効果が少なく摩耗量が大きい。比較例4では無機繊維
添加量が多すぎて板状触媒を形成させることが困難であ
った。Further, in Comparative Example 3, the amount of inorganic fiber added was too small, resulting in little strength improvement effect and large amount of wear. In Comparative Example 4, the amount of inorganic fiber added was too large, making it difficult to form a plate-shaped catalyst.
第 1 表
(発明の効果)
本発明によれば、排ガス中に含まれる砒素や亜硫酸ガス
などの触媒毒物質に対する劣化が少ない触媒が得られる
とともに、触媒製造に際して結合材である無機繊維の効
果を十分に発揮させることができるとともに、成形性が
よく機械的強度に優れたゼオライト−チタン系触媒を得
ることができる。Table 1 (Effects of the Invention) According to the present invention, it is possible to obtain a catalyst that is less susceptible to catalyst poisonous substances such as arsenic and sulfur dioxide contained in exhaust gas, and to improve the effect of inorganic fibers as a binder during catalyst production. It is possible to obtain a zeolite-titanium-based catalyst that can exhibit sufficient performance, has good moldability, and has excellent mechanical strength.
Claims (1)
する触媒の製造方法において、活性金属成分としての銅
を担持したゼオライトにチタニアを10〜90重量%添
加し、これに水を加えて混練し、この混練物の水分量を
23〜43重量%としたのち、無機繊維を触媒総量の5
〜30重量%添加混合し、成形後乾燥、焼成することを
特徴とする排ガス中の窒素酸化物除去用触媒の製造方法
。In a method for producing a catalyst that removes nitrogen oxides in exhaust gas by catalytic reduction with ammonia, 10 to 90% by weight of titania is added to zeolite supporting copper as an active metal component, water is added to this, and the mixture is kneaded. After adjusting the water content of the kneaded product to 23 to 43% by weight, inorganic fibers were added to 5% of the total amount of catalyst.
A method for producing a catalyst for removing nitrogen oxides from exhaust gas, which comprises adding and mixing up to 30% by weight, molding, drying, and firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62012985A JP2506357B2 (en) | 1987-01-22 | 1987-01-22 | Method for producing catalyst for removing nitrogen oxides in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62012985A JP2506357B2 (en) | 1987-01-22 | 1987-01-22 | Method for producing catalyst for removing nitrogen oxides in exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63182036A true JPS63182036A (en) | 1988-07-27 |
JP2506357B2 JP2506357B2 (en) | 1996-06-12 |
Family
ID=11820497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62012985A Expired - Fee Related JP2506357B2 (en) | 1987-01-22 | 1987-01-22 | Method for producing catalyst for removing nitrogen oxides in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2506357B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308813A (en) * | 1993-02-01 | 1994-05-03 | Exxon Research & Engineering Company | Selective demetallation of zeolites and related materials |
-
1987
- 1987-01-22 JP JP62012985A patent/JP2506357B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308813A (en) * | 1993-02-01 | 1994-05-03 | Exxon Research & Engineering Company | Selective demetallation of zeolites and related materials |
Also Published As
Publication number | Publication date |
---|---|
JP2506357B2 (en) | 1996-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02194819A (en) | Reducing method of nitrogen oxide present in waste gas containing oxygen | |
JP2008540096A (en) | Catalyst for exhaust gas treatment and method for producing the same | |
US5212130A (en) | High surface area washcoated substrate and method for producing same | |
CN101291735B (en) | Base for catalyst, catalyst and methods for producing those | |
CN113289678A (en) | Honeycomb type denitration catalyst suitable for high-temperature flue gas and preparation method thereof | |
JPH1099684A (en) | Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen | |
CN114377683B (en) | Arsenic poisoning-resistant denitration catalyst and preparation method thereof | |
CN112973766B (en) | Preparation method of ammonium bisulfate-resistant flat-plate denitration catalyst and catalyst obtained by preparation method | |
US5141912A (en) | Chrome/platinum/palladium catalyst for hydrocarbon emission control | |
JPS63182036A (en) | Preparation of catalyst for removing nitrogen oxide in exhaust gas | |
CS273192B2 (en) | Method of catalyst production for nitrogen oxide removal from waste gases,resistant to arsenic deactivation | |
JP3786522B2 (en) | Exhaust gas purification catalyst | |
CN108927142A (en) | A kind of monoblock type SCR catalyst and its preparation method and application | |
JP2002361092A (en) | Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them | |
JP3498753B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH07114964B2 (en) | Nitrogen oxide reduction catalyst and method for producing the same | |
JP2506346B2 (en) | Catalyst for removing nitrogen oxides in exhaust gas | |
JPS6372342A (en) | Catalyst for removing nitrogen oxide | |
JP4303799B2 (en) | Method for producing lean NOx purification catalyst | |
DE19710264A1 (en) | Process for the production of coated ceramics with increased microporosity, coated ceramics with increased microporosity and article made therefrom | |
JP4511920B2 (en) | Method for producing denitration catalyst | |
RU2825302C1 (en) | Method of preparing block catalyst | |
JPS6372341A (en) | Catalyst for removing nitrogen oxide | |
JP3508180B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2000271443A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |