JPS6318169B2 - - Google Patents

Info

Publication number
JPS6318169B2
JPS6318169B2 JP6148378A JP6148378A JPS6318169B2 JP S6318169 B2 JPS6318169 B2 JP S6318169B2 JP 6148378 A JP6148378 A JP 6148378A JP 6148378 A JP6148378 A JP 6148378A JP S6318169 B2 JPS6318169 B2 JP S6318169B2
Authority
JP
Japan
Prior art keywords
scanning
light
light beam
focused
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6148378A
Other languages
Japanese (ja)
Other versions
JPS54153051A (en
Inventor
Keiichi Kubota
Shuji Matsuyama
Yoshinori Oota
Nobuo Nishida
Mitsuto Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6148378A priority Critical patent/JPS54153051A/en
Publication of JPS54153051A publication Critical patent/JPS54153051A/en
Publication of JPS6318169B2 publication Critical patent/JPS6318169B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はレーザ光を利用した文字、図形、写真
等の画像検出装置に関し、特にフアクシミリ装置
送信機に使用する光学系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting images of characters, figures, photographs, etc. using laser light, and particularly to an optical system used in a facsimile transmitter.

レーザ光を偏光器、集光レンズで物体上、紙面
上を走査して物体形状や画像を検出する方法は、
高速度でしかも高分解能が得られるという特徴が
あるので、POS(ポイント・オブ・スールス)や
フアクシミリ送信機等の光走査装置に用いられて
いる。一般に上記のレーザ光走査装置では、1回
に情報を得る1画素の大きさは走査面上に集束さ
れた光ビームの径によつて決定される。また、一
般に必要とされる分解能は光走査装置によつて異
なり、この異なつた分解能に対応して集束光ビー
ム径は任意に設定されなければならない。この要
求を満たすために通常行われる方法はビーム拡大
器等の光学系を使つて光走査光学系に入射する光
ビームの径を変換し、その結果集束ビームを変化
する方法である。一般にレーザ光源より出射する
光ビームの空間的エネルギー分布はガウス分布に
なつているので、1本の光ビームにより照射され
る1画素中の光エネルギー分布はビーム径にかゝ
わらず常にガウス分布となる。このことは反射光
から得られる情報には1画素中の中心部からの情
報が周辺部からの情報よりも強く反映しているこ
とになる。この効果はフアクシミリ装置において
顕著にあらわれ、光ビームの走査線間にある情報
の抜けが生じる。そのために光ビーム径を大きく
すると走査線方向に分解能を下げてしまうところ
に問題点があつた。
The method of detecting the shape and image of an object by scanning a laser beam over an object or paper using a polarizer and a condensing lens is as follows:
Because it has the characteristics of being able to obtain high speed and high resolution, it is used in optical scanning devices such as POS (point of sight) and facsimile transmitters. Generally, in the above laser beam scanning device, the size of one pixel from which information is obtained at one time is determined by the diameter of the light beam focused on the scanning surface. Further, generally required resolution differs depending on the optical scanning device, and the diameter of the focused light beam must be arbitrarily set in accordance with the different resolutions. A commonly used method to meet this requirement is to use an optical system such as a beam expander to convert the diameter of the light beam incident on the optical scanning optical system, thereby changing the focused beam. Generally, the spatial energy distribution of the light beam emitted from a laser light source is a Gaussian distribution, so the light energy distribution in one pixel irradiated by one light beam is always a Gaussian distribution regardless of the beam diameter. Become. This means that information obtained from reflected light reflects information from the center of one pixel more strongly than information from the periphery. This effect is noticeable in facsimile machines, where information is missing between scanning lines of the light beam. For this reason, there was a problem in that increasing the diameter of the light beam lowered the resolution in the scanning line direction.

本発明の目的は高分解能を維持するために主走
査方向には光ビームを絞り、副走査方向(主走査
方向と直交方向)には光ビームを拡げた走査光学
系を提供することにある。
An object of the present invention is to provide a scanning optical system that focuses a light beam in the main scanning direction and expands the light beam in the sub-scanning direction (a direction orthogonal to the main scanning direction) in order to maintain high resolution.

本発明の走査光学系は単色源源からの光ビーム
を走査する光走査手段を前記単色光源の出射側に
設け、前記走査手段からの光束により走査される
走査面上方に走査面からの反射信号光を検知する
光検出器を設け、さらに前記単色光源と光走査手
段の間に走査面上における光ビームを楕円状ビー
ムに変換する光ビーム変換器を設けた構造になつ
ている。
The scanning optical system of the present invention is provided with a light scanning means for scanning a light beam from a monochromatic light source on the emission side of the monochromatic light source, and a signal light reflected from the scanning surface is transmitted above the scanning surface scanned by the light beam from the scanning means. The structure is such that a photodetector for detecting is provided, and a light beam converter for converting the light beam on the scanning surface into an elliptical beam is provided between the monochromatic light source and the light scanning means.

次に図面を参照して本発明について詳細に説明
する。
Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明を説明するために示す従来のレ
ーザ走査光学系の一例である。
FIG. 1 is an example of a conventional laser scanning optical system shown for explaining the present invention.

レーザ光源1、レンズ3、レンズ4、走査鏡
6、fθレンズ7、走査面8がこの順に配置され、
レーザ光源1から出射されるレーザ光2に対して
レンズ3、レンズ4、fθレンズ7は光軸が一致す
るように置かれている。光検出器10は走査面8
からの反射光が有効に検出されるように走査面上
方に主走査線方向と平行に設置され、光検出器1
0の光電面は走査面8に対して45゜位の角度を成
している。レーザ光源1から出射されたレーザ光
2はレーザ光源1の出射側に設けたレンズ3、レ
ンズ4によつて拡大されたビーム径をもつコリメ
ートされた光ビーム5になり、レンズ4の出射側
に設けた走査鏡6で反射された後にf・θレンズ
7によつてxy平面上にある走査面8上に集束さ
れる。集束された集束ビーム9は走査鏡6をxz
面内で回転することによつてx方向に走査され、
x方向の走査が終る毎に走査面8がy方向に順次
移動する。走査面8からの反射光が光検出器10
に受けられて情報が読み出され二次元的な走査が
行われる。この場合、レーザ光の空間的エネルギ
ー分布は通常ガウス分布であるので集束ビーム8
のエネルギー分布もガウス分布である。一般にガ
ウス分布をしたレーザ光の径はエネルギーが1/
e2(eは自然対数の底)になる点の径で表わされ
る。光ビーム5の径を2ω0,f・θレンズ7の焦
点距離をfとすると集束ビーム9の径2ωはレー
ザ光の波長をλとすると下式で表わされる。
Laser light source 1, lens 3, lens 4, scanning mirror 6, fθ lens 7, and scanning surface 8 are arranged in this order,
Lens 3, lens 4, and fθ lens 7 are placed so that their optical axes coincide with laser light 2 emitted from laser light source 1. The photodetector 10 is in the scanning plane 8
The photodetector 1 is installed parallel to the main scanning line direction above the scanning surface so that the reflected light from the photodetector 1 can be effectively detected.
The photocathode 0 forms an angle of about 45° with respect to the scanning plane 8. A laser beam 2 emitted from a laser light source 1 becomes a collimated light beam 5 having an enlarged beam diameter by lenses 3 and 4 provided on the emission side of the laser light source 1. After being reflected by the provided scanning mirror 6, it is focused by the f/theta lens 7 onto the scanning plane 8 located on the xy plane. The focused beam 9 moves the scanning mirror 6 xz
scanned in the x direction by rotating in the plane;
Each time scanning in the x direction is completed, the scanning plane 8 sequentially moves in the y direction. The reflected light from the scanning surface 8 is detected by the photodetector 10.
The information is read out and two-dimensional scanning is performed. In this case, the spatial energy distribution of the laser beam is usually a Gaussian distribution, so the focused beam 8
The energy distribution of is also a Gaussian distribution. Generally, the diameter of a laser beam with a Gaussian distribution has an energy of 1/
It is expressed by the diameter of the point e 2 (e is the base of the natural logarithm). When the diameter of the light beam 5 is 2ω 0 and the focal length of the f·θ lens 7 is f, the diameter 2ω of the focused beam 9 is expressed by the following formula, where λ is the wavelength of the laser beam.

2ω=2fλ/πω0 よつて光ビーム5の径2ω0を小さくすれば集束
ビーム径2ωは大きくなり、光ビーム5の径2ω0
大きくすれば集束ビーム径2ωは小さくなる。光
ビーム5の径を変えるには通常レンズ3とレンズ
4の焦点距離の比を変えることによつて行われ
る。
2ω=2fλ/πω 0 Therefore, if the diameter 2ω 0 of the light beam 5 is decreased, the focused beam diameter 2ω will be increased, and if the diameter 2ω 0 of the light beam 5 is increased, the focused beam diameter 2ω will be decreased. The diameter of the light beam 5 is usually changed by changing the ratio of the focal lengths of the lenses 3 and 4.

ここでフアクシミリ装置送信機における走査を
考えてみる。フアクシミリ装置送信機においては
主走査方向(x方向)の分解能は電送系の帯域に
よつて制限され、副走査方向(y方向)の分解能
は走査面8を1走査毎に送る距離によつて決めら
れる。
Now consider scanning in a facsimile transmitter. In a facsimile transmitter, the resolution in the main scanning direction (x direction) is limited by the band of the transmission system, and the resolution in the sub scanning direction (y direction) is determined by the distance the scanning plane 8 is sent for each scan. It will be done.

通常、主走査方向の分解能の方が副走査方向の
分解能よりも良くなつている。
Usually, the resolution in the main scanning direction is better than the resolution in the sub-scanning direction.

第2図は走査面と走査面上の集束ビームの関係
を説明するための図である。第2図aは走査面上
の集束ビーム径の関係を示したもので、集束ビー
ム12が走査線11上を走査していくところの、
主走査方向の分解能点毎に集束ビーム12を描い
たものである。集束ビーム12が主走査方向に隣
接するような径をもつ場合には、副走査方向に重
ならないために走査できない領域が生じてしま
う。集束ビーム13が副走査方向に隣接するよう
な径をもつ場合では主走査方向にオーバーラツプ
してしまい分解能を下げることになる。したがつ
て、両方向に最適な集束ビームは楕円状の形状を
持つ集束ビーム14である。また、集束ビームの
光エネルギー分布は第2図bに示すようにガウシ
アン状強度分布であるために矩形状強度分布に比
べて周辺に光が広がつていることに注意しなけれ
ばならない。集束ビーム径2ωを光エネルギーが
1/e2になる点で定義するが、この径2ωより外
の情報も得ることになるので集束ビーム強度分布
をできるだけ矩形状強度分布に近くした方が良
い。
FIG. 2 is a diagram for explaining the relationship between a scanning plane and a focused beam on the scanning plane. FIG. 2a shows the relationship between the diameters of the focused beams on the scanning plane, where the focused beam 12 scans on the scanning line 11.
A focused beam 12 is drawn for each resolution point in the main scanning direction. If the focused beams 12 have diameters that are adjacent to each other in the main scanning direction, there will be areas that cannot be scanned because they do not overlap in the sub-scanning direction. If the focused beams 13 have diameters that are adjacent to each other in the sub-scanning direction, they will overlap in the main-scanning direction, resulting in lower resolution. Therefore, the optimal focused beam in both directions is a focused beam 14 with an elliptical shape. Furthermore, since the light energy distribution of the focused beam is a Gaussian intensity distribution as shown in FIG. 2b, it must be noted that the light is spread out to the periphery compared to a rectangular intensity distribution. The focused beam diameter 2ω is defined as the point where the optical energy becomes 1/e 2 , but since information outside this diameter 2ω will also be obtained, it is better to make the focused beam intensity distribution as close to a rectangular intensity distribution as possible.

第3図は本発明による走査光学系の一実施例を
示す図である。光源21とレンズ25の間に光ビ
ーム変換器23を設けた点が従来のものと異なる
ところである。レーザ光源21から出射されたレ
ーザ光22はレーザ光源21の出射側に設けたビ
ーム変換器23によつて楕円状の光ビーム24に
変換され、ビーム変換器23の出射側に設けたレ
ンズ25とレンズ26によつてさらに拡大された
光ビーム27となる。さらに光ビーム27は走査
鏡28により反射された後にf・θレンズ29に
よつてxy平面上にある走査面30上に集束され
た集束ビーム31になる。集束ビーム31は走査
鏡28をxz面内で回転することによつてx方向
に走査され、x方向の走査が終る毎に走査面30
がy方向に順次移動する。走査面30からの反射
光が光検出器32に受けられて情報が読み出され
て二次元的な走査が行われる。走査鏡28は反射
鏡を回転させて光ビーム27を偏向させるもの
で、ガルバノミラー、回転多面鏡を用いることが
できる。
FIG. 3 is a diagram showing an embodiment of the scanning optical system according to the present invention. The difference from the conventional one is that a light beam converter 23 is provided between the light source 21 and the lens 25. A laser beam 22 emitted from a laser light source 21 is converted into an elliptical light beam 24 by a beam converter 23 provided on the emission side of the laser light source 21, and is converted into an elliptical light beam 24 by a lens 25 provided on the emission side of the beam converter 23. A light beam 27 is further expanded by a lens 26. Further, the light beam 27 is reflected by a scanning mirror 28 and then becomes a focused beam 31 which is focused by an f/θ lens 29 onto a scanning plane 30 on the xy plane. The focused beam 31 is scanned in the x direction by rotating the scanning mirror 28 in the xz plane.
moves sequentially in the y direction. Reflected light from the scanning surface 30 is received by a photodetector 32, information is read out, and two-dimensional scanning is performed. The scanning mirror 28 rotates a reflecting mirror to deflect the light beam 27, and can be a galvanometer mirror or a rotating polygon mirror.

また、超音波偏向器を用いるのも可能である。 It is also possible to use an ultrasonic deflector.

第4図は光ビーム変換器23による光ビーム変
換作用を説明するための図である。第4図aに示
すの光ビーム変換器として従来の円筒レンズ又は
プリズムを用いた場合の光ビーム変換作用を示す
もので第3図におけるレーザ光22のビーム径は
y方向、z方向とも同じで光ビーム形状41をも
つているとする。光ビーム変換器23によつてz
方向には変換を受けずに光ビーム形状41で、y
方向にビーム径が小さい光ビーム形状42をもつ
光ビーム24に変換される。光ビーム24はこの
後にレンズ3枚を通過するので、走査面上30に
おける集束ビーム31の形状は光ビーム24のフ
ランホーフエル回折像(フーリエ変換像)にな
る。従つてビーム径が小さい方向が走査面30上
ではビーム径が大きくなる。光ビーム24におけ
るy,z方向は走査面30上においてはそれぞれ
y,x方向に対応するので、走査面30上におい
てはy方向に広がつた集束ビーム31が得られ
る。
FIG. 4 is a diagram for explaining the light beam conversion action by the light beam converter 23. Figure 4a shows the light beam conversion effect when a conventional cylindrical lens or prism is used as the light beam converter.The beam diameter of the laser beam 22 in Figure 3 is the same in both the y and z directions. It is assumed that the light beam has a shape 41. By the light beam converter 23
The light beam shape 41 is unchanged in the direction y
The light beam 24 is converted into a light beam 24 having a light beam shape 42 with a smaller beam diameter in the direction. Since the light beam 24 then passes through three lenses, the shape of the focused beam 31 on the scanning surface 30 becomes a Franhofel diffraction image (Fourier transform image) of the light beam 24. Therefore, the beam diameter becomes larger on the scanning surface 30 in the direction in which the beam diameter is smaller. Since the y and z directions of the light beam 24 correspond to the y and x directions, respectively, on the scanning plane 30, a focused beam 31 that spreads in the y direction on the scanning plane 30 is obtained.

第4図bに示すのは光ビーム変換器として本発
明による回折格子を用いた場合の光ビーム変換作
用を示すもので、光ビーム変換後の光ビーム24
の光エネルギー角度依存性を示している。光ビー
ム変換器23に入射するレーザ光22の角度依存
性はy,z両方向共にプロフアイル43であつた
とする。
FIG. 4b shows the light beam conversion effect when the diffraction grating according to the present invention is used as a light beam converter.
shows the angular dependence of light energy. It is assumed that the angular dependence of the laser beam 22 incident on the light beam converter 23 is a profile 43 in both the y and z directions.

光ビーム変換後の光ビーム24はz方向には同
じプロフアイル43をもつが、y方向にはプロフ
アイル44のように複数の山を持ち、広がつた角
度依存性をもつようになる。既に述べたように、
走査面30上における集束ビーム31の形状は光
ビーム24のフーリエ変換像になるために、広が
つた角度依存性をもつ方向に幅が大きくなる。従
つて走査面30上においてy方向に広がつた集束
ビーム31が得られる。
The light beam 24 after the light beam conversion has the same profile 43 in the z direction, but has a plurality of peaks like the profile 44 in the y direction, and has a wide angle dependence. As already mentioned,
Since the shape of the focused beam 31 on the scanning surface 30 is a Fourier transformed image of the light beam 24, the width increases in a direction with a widened angular dependence. Therefore, a focused beam 31 is obtained which spreads in the y direction on the scanning plane 30.

第5図は具体的に回折格子を用いた光ビーム変
換器の一例を示す。レーザ光62は正弦波回折格
子63に入射して0次光64の両側に回折光6
4′,64″が得られる。
FIG. 5 specifically shows an example of a light beam converter using a diffraction grating. The laser beam 62 enters a sine wave diffraction grating 63 and diffracted beams 6 are formed on both sides of the 0th order beam 64.
4',64'' is obtained.

このとき回折光64′,64″と0次光64との
光軸がなす角度θは回折格子のピツチをp、レー
ザ光の波長をλとすると下式のようになる。
At this time, the angle θ formed by the optical axes of the diffracted lights 64', 64'' and the zero-order light 64 is expressed by the following equation, where p is the pitch of the diffraction grating and λ is the wavelength of the laser beam.

sinθ=λ/p 入射光と0次光、回折光のビーム径は変化しな
いが、光量は回折格子の変調度による。0次光と
±1次光の強度が等しくなるのは位相差が
1.44radのときである。
sinθ=λ/p Although the beam diameters of the incident light, zero-order light, and diffracted light do not change, the amount of light depends on the degree of modulation of the diffraction grating. The reason why the intensity of the 0th order light and the ±1st order light are equal is because of the phase difference.
When it was 1.44rad.

第6図は走査面上における集束ビームの重なり
を示す図である。今、0次光64による集束ビー
ム65のビーム径を2ωとすると、回折光64′,
64″による集束ビーム65′と65″とが共に重
なり合つて集束ビーム66の形状を得るには、下
式の条件が満足されゝば良い。
FIG. 6 is a diagram showing the overlap of focused beams on the scanning plane. Now, if the beam diameter of the focused beam 65 by the zero-order light 64 is 2ω, then the diffracted light 64',
In order to obtain the shape of the focused beam 66 by overlapping the focused beams 65' and 65'' by 64'', the following condition should be satisfied.

ff1λ/f2p〜ω ここでfはf・θレンズの焦点距離、f1,f2
それぞれ第3図におけるレンズ25,26の焦点
距離である。
ff 1 λ/f 2 p~ω Here, f is the focal length of the f·θ lens, and f 1 and f 2 are the focal lengths of the lenses 25 and 26 in FIG. 3, respectively.

第7図は本発明に用いるホログラフイツクな回
折格子を得る製作方法を示す図である。単色光源
71より出射された単色光72はシヤツター73
を通つてハーフミラー74によつて2光束72′,
72″に分けられ、光束72′は反射鏡75、ハー
フミラー76に反射される。光束72″は反射鏡
75′に反射され、ハーフミラー76を通過し、
光束72′との干渉縞がフオトレジストを塗布し
た基盤77上に記録される。記録される正弦波干
渉縞のピツチpと2光束72′,72″のなす角θ
との関係は以下の式によつて決定される。
FIG. 7 is a diagram showing a manufacturing method for obtaining a holographic diffraction grating used in the present invention. The monochromatic light 72 emitted from the monochromatic light source 71 is sent to the shutter 73
through the half mirror 74 into two beams 72',
72'', and the beam 72' is reflected by a reflecting mirror 75 and a half mirror 76.The beam 72'' is reflected by a reflecting mirror 75', passes through the half mirror 76,
Interference fringes with the light beam 72' are recorded on a substrate 77 coated with photoresist. The angle θ between the pitch p of the recorded sinusoidal interference fringe and the two beams 72' and 72''
The relationship with is determined by the following formula.

1/p=2sin(θ/2)/λ こゝでλは単色光波長で、フオトレジストを感
光させるには、単色光源としてArレーザ、He−
Cdレーザ等の短波長レーザを用いる必要がある。
1/p=2sin(θ/2)/λ Here, λ is the wavelength of monochromatic light, and to expose the photoresist, Ar laser, He-
It is necessary to use a short wavelength laser such as a Cd laser.

第8図はフオトレジストに記録された干渉縞の
凹凸による光学的位相差を示したものである。露
光時間を一定とすると得られる回折格子の位相差
と現像時間とは線形な関係があり、回折格子の必
要とする位相差を現像時間を変えることによつて
制御できる。すでに述べたように±1次光の回折
光量と0次光量が等しくなる位相差は1.44radあ
たりが望ましい。
FIG. 8 shows the optical phase difference due to the unevenness of the interference fringes recorded on the photoresist. When the exposure time is constant, there is a linear relationship between the phase difference of the diffraction grating and the development time, and the required phase difference of the diffraction grating can be controlled by changing the development time. As already mentioned, the phase difference at which the amount of diffracted light of the ±1st-order light and the amount of 0th-order light become equal is preferably around 1.44 rad.

第9図におけるイ及至ホは回折格子として熱可
塑性物質に複製する製造工程を示したものであ
る。
I to E in FIG. 9 show the manufacturing process of replicating a diffraction grating onto a thermoplastic material.

イにおいてフオトレジスト基盤に作られた回折
格子80の表面に無電解メツキで金属膜81を形
成する。金属膜81はニツケルを用いるのが容易
である。
In (a), a metal film 81 is formed by electroless plating on the surface of the diffraction grating 80 made on the photoresist base. For the metal film 81, it is easy to use nickel.

次にロにおいて、電解メツキで金属膜81の厚
みを増し、少くとも1μm以上の厚みをもつた金
属膜82を形成する。
Next, in (b), the thickness of the metal film 81 is increased by electrolytic plating to form a metal film 82 having a thickness of at least 1 μm or more.

次にハにおいて、熱可塑性樹脂83、例えばア
クリル樹脂、塩化ビニール樹脂を熱と圧力をかけ
て金属膜82に押しつけ変形させる。
Next, in C, a thermoplastic resin 83, such as an acrylic resin or a vinyl chloride resin, is pressed against the metal film 82 by applying heat and pressure to deform it.

最後にニにおいて熱可塑性樹脂83を冷して剥
離させれば熱可塑性樹脂に刻まれた回折格子84
が得られる。フオトレジストと熱可塑性樹脂の屈
折率は少し異なるのでフオトレジスト基盤に作ら
れた回折格子80の位相差はこの違いを考慮して
作る必要がある。このように回折格子を用いるこ
とによつて安価で簡易な光ビーム変換器が得られ
る。
Finally, in step d, the thermoplastic resin 83 is cooled and peeled off to form a diffraction grating 84 engraved in the thermoplastic resin.
is obtained. Since the refractive index of the photoresist and the thermoplastic resin are slightly different, the phase difference of the diffraction grating 80 formed on the photoresist base must be created taking this difference into consideration. By using a diffraction grating in this way, an inexpensive and simple light beam converter can be obtained.

以上述べたように本発明によれば、主走査方向
に分解能を下げずに副走査方向に密に走査し得
る、楕円状光ビームで走査するレーザ走査光学系
が得られる。
As described above, according to the present invention, it is possible to obtain a laser scanning optical system that scans with an elliptical light beam and can perform dense scanning in the sub-scanning direction without lowering the resolution in the main-scanning direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ走査光学系の一例を説明
するための図、第2図a,bは走査面と走査面上
の集束ビームの関係を説明するための図、第3図
は本発明による走査光学系の一実施例を示す図、
第4図aは従来の光ビーム変換器による光ビーム
変換作用を説明するための図、第4図b、第5
図、第6図は本発明に用いる光ビーム変換器の例
を説明するための図、第7図、第8図、第9図イ
〜ニは本発明に用いる回折格子の製造行程を示す
図である。 図において、1,21,71はレーザ光源、
2,5,9,22,24,27,31.64,6
4′,64″,72,72′,72″はレーザ光、
3,4,7,25,26,29はレンズ、6,2
8は走査鏡、8,30は走査面、10,32は光
検出器、12,13,14は集束ビーム、11は
走査線、41,42,43,44,65,65′,
65″,66は光ビームプロフアイル、63,8
0,84は回折格子、73はシヤツター、74,
76はハーフミラー、75,75′は反射鏡、7
7はフオトレジスト基盤、81,82は金属膜、
83は熱可塑性樹脂である。
Figure 1 is a diagram for explaining an example of a conventional laser scanning optical system, Figures 2a and b are diagrams for explaining the relationship between a scanning plane and a focused beam on the scanning plane, and Figure 3 is a diagram of the present invention. A diagram showing an example of a scanning optical system according to
Figure 4a is a diagram for explaining the light beam conversion effect of a conventional light beam converter, Figures 4b and 5.
6 are diagrams for explaining an example of a light beam converter used in the present invention, and FIGS. 7, 8, and 9 A to D are diagrams showing the manufacturing process of a diffraction grating used in the present invention. It is. In the figure, 1, 21, 71 are laser light sources,
2, 5, 9, 22, 24, 27, 31. 64, 6
4′, 64″, 72, 72′, 72″ are laser beams,
3, 4, 7, 25, 26, 29 are lenses, 6, 2
8 is a scanning mirror, 8 and 30 are scanning surfaces, 10 and 32 are photodetectors, 12, 13 and 14 are focused beams, 11 is a scanning line, 41, 42, 43, 44, 65, 65',
65″, 66 are light beam profiles, 63, 8
0,84 is a diffraction grating, 73 is a shutter, 74,
76 is a half mirror, 75 and 75' are reflective mirrors, 7
7 is a photoresist base, 81 and 82 are metal films,
83 is a thermoplastic resin.

Claims (1)

【特許請求の範囲】[Claims] 1 単色光源からの光ビームを走査する光偏向器
と集光レンズとからなる光走査手段を前記単色光
源の出射側に設け、前記走査手段からの光束によ
り走査される走査面上方に走査面からの反射光を
検出し情報を読み取るための光検出器を設けた走
査光学系において、前記単色光源と光走査手段の
間に周期的格子形状をもつ光ビーム変換器を設
け、前記光ビーム変換器により、一次元方向に回
折光を発生し、前記回折光と非回折光を前記集光
レンズにより走査面上において重ならせ、走査面
上における光ビームを楕円状ビームに変換するこ
とを特徴とする走査光学系。
1. A light scanning means consisting of a light deflector and a condensing lens for scanning a light beam from a monochromatic light source is provided on the emission side of the monochromatic light source, and a light beam from the scanning surface is provided above the scanning surface scanned by the light beam from the scanning means. In a scanning optical system provided with a photodetector for detecting reflected light and reading information, a light beam converter having a periodic grating shape is provided between the monochromatic light source and the light scanning means, and the light beam converter generates diffracted light in a one-dimensional direction, and causes the diffracted light and undiffracted light to overlap on the scanning plane by the condensing lens, thereby converting the light beam on the scanning plane into an elliptical beam. scanning optical system.
JP6148378A 1978-05-22 1978-05-22 Scanning optical system Granted JPS54153051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6148378A JPS54153051A (en) 1978-05-22 1978-05-22 Scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6148378A JPS54153051A (en) 1978-05-22 1978-05-22 Scanning optical system

Publications (2)

Publication Number Publication Date
JPS54153051A JPS54153051A (en) 1979-12-01
JPS6318169B2 true JPS6318169B2 (en) 1988-04-18

Family

ID=13172360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6148378A Granted JPS54153051A (en) 1978-05-22 1978-05-22 Scanning optical system

Country Status (1)

Country Link
JP (1) JPS54153051A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134724A (en) * 1984-12-06 1986-06-21 Nippon Steel Corp Laser irradiating device
JPS63175822A (en) * 1987-01-14 1988-07-20 Fuji Photo Film Co Ltd Light beam scanning recorder
JP4501811B2 (en) * 2005-08-09 2010-07-14 セイコーエプソン株式会社 Optical scanning device and image display device
JP2007093947A (en) * 2005-09-28 2007-04-12 Fujifilm Corp Inner drum exposure device and exposure method
CN104062757B (en) * 2014-06-30 2016-04-13 太原理工大学 A kind of PHASE DISTRIBUTION method for designing for phased array multiple beam 3-D scanning
WO2023157475A1 (en) * 2022-02-18 2023-08-24 株式会社日立ハイテク Diffraction grating manufacturing method and diffraction grating

Also Published As

Publication number Publication date
JPS54153051A (en) 1979-12-01

Similar Documents

Publication Publication Date Title
US4139257A (en) Synchronizing signal generator
US9785114B2 (en) Method and device for the layered production of thin volume grid stacks, and beam combiner for a holographic display
US4289371A (en) Optical scanner using plane linear diffraction gratings on a rotating spinner
US4002829A (en) Autosynchronous optical scanning and recording laser system with fiber optic light detection
US4904034A (en) Scanning apparatus
EP0539226B1 (en) Laser beam optical scanner
JPS5845003B2 (en) laser beam
US4337994A (en) Linear beam scanning apparatus especially suitable for recording data on light sensitive film
JPS6318169B2 (en)
US3951509A (en) Apparatus for deflecting light and scanning line conversion system
JPS63244013A (en) Optical scanner
US4079421A (en) Image scanning system
US4626062A (en) Light beam scanning apparatus
US5381249A (en) Holographic display transmitting device
US3961836A (en) Focused-image hologram system providing increased optical readout efficiency
US4632499A (en) Light beam scanning apparatus
GB2154092A (en) Optical correlator
US5372900A (en) Method of reproducing reflecting type hologram and apparatus therefor
JPH05164988A (en) Bessel beam generating optical device
JPH0151802B2 (en)
JP2967885B2 (en) Hologram disk
JP2553662B2 (en) Hologram range finder
US20010055131A1 (en) Optical element and apparatus
JP3171013B2 (en) Method and apparatus for producing article comprising diffraction grating
JPH0154685B2 (en)