JPS63181468A - Mis field-effect transistor - Google Patents

Mis field-effect transistor

Info

Publication number
JPS63181468A
JPS63181468A JP1443887A JP1443887A JPS63181468A JP S63181468 A JPS63181468 A JP S63181468A JP 1443887 A JP1443887 A JP 1443887A JP 1443887 A JP1443887 A JP 1443887A JP S63181468 A JPS63181468 A JP S63181468A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
substrate
sio2
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1443887A
Other languages
Japanese (ja)
Inventor
Ichiro Kato
一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1443887A priority Critical patent/JPS63181468A/en
Publication of JPS63181468A publication Critical patent/JPS63181468A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the change in the characteristics such as the reduction in a current drive force by a hot carrier phenomenon, the fluctuation in a threshold voltage, etc., and to obtain a highperformance and fine MISFET by a structure wherein a part of a gate insulating layer is constituted by an insulating layer composed of a different material. CONSTITUTION:On a p-Si substrate 1 where field SiO2 layers 2 have been formed, an SiN layer 3 150 Angstrom thick as a first insulating layer and then an SiO2 layer 4' 4000 Angstrom thick are grown in succession by a vapor growth method; these layers are patterned in such a way that the remaining length is shorter than the length of a gate. Then, an SiO2 layer 3' 150 Angstrom thick as a second insulating layer is formed on the substrate by thermal oxidation; a poly Si layer is grown on the whole surface of the substrate by a CVD method; a poly Si sidewall 5 is formed by an anisotropic etching method which is predominant in the vertical direction. Accordingly, a part near a drain is composed of SiO2 instead of SiN; the injection amount of hot carrier is reduced; it is possible to obtain a MISFET whose characteristics hardly fluctuate and whose current drive force is big.

Description

【発明の詳細な説明】 〔概要] HIS型電界効果トランジスタ(FET)において、高
速化、低電源電圧化のためにゲート絶縁層を非常に薄<
シた場合、Mis FETのチャネルで加速された荷電
粒子によって引き起こされるホットキャリア現象を抑制
するため、ゲート絶縁層の一部を材質の異なる絶縁層に
した構造を提起し、トランジスタの特性劣化を防止する
[Detailed Description of the Invention] [Summary] In an HIS field effect transistor (FET), the gate insulating layer is made extremely thin in order to increase the speed and reduce the power supply voltage.
In order to suppress the hot carrier phenomenon caused by charged particles accelerated in the MisFET channel, a structure is proposed in which part of the gate insulating layer is an insulating layer made of a different material to prevent deterioration of transistor characteristics. do.

〔産業上の利用分野〕[Industrial application field]

本発明はホットキャリア現象を抑制した構造の門Is 
FETに関する。
The present invention is a gate Is with a structure that suppresses the hot carrier phenomenon.
Regarding FET.

近年、半導体集積回路の高速化、高集積化が強く要望さ
れており、そのため個々のMiS FETはますます微
細化される必要がある。
In recent years, there has been a strong demand for higher speed and higher integration of semiconductor integrated circuits, and therefore individual MiS FETs need to be further miniaturized.

〔従来の技術〕[Conventional technology]

IS FETの微細化に際し、横方向寸法のみを微細化
すると、電流駆動力は増加するが、同時にしきい値電圧
の低下、キャリアの易動度の低下、ホットキャリアの発
生等、いわゆる短チヤネル効果を生ずる。
When miniaturizing IS FETs, if only the lateral dimension is miniaturized, the current driving force increases, but at the same time, so-called short channel effects such as a decrease in threshold voltage, a decrease in carrier mobility, and the generation of hot carriers occur. will occur.

この短チヤネル効果を防ぐためにはMis FETの縦
方向寸法、すなわらゲート絶縁層を薄くする必要がある
が、このようにするとホットキャリアの発生に起因する
特性劣化量はさらに増大する。
In order to prevent this short channel effect, it is necessary to reduce the vertical dimension of the MisFET, that is, the gate insulating layer, but this further increases the amount of characteristic deterioration due to the generation of hot carriers.

ホットキャリアによる特性劣化を抑制するために、ゲー
ト絶縁層のドレイン側の一部において、ホットキャリア
耐性が十分高いことが必要になってくる。
In order to suppress characteristic deterioration due to hot carriers, it is necessary that a portion of the gate insulating layer on the drain side has sufficiently high hot carrier resistance.

ホットキャリアを抑制のための従来技術として、LDD
(Lightly Doped Drain)構造があ
る。
LDD is a conventional technology for suppressing hot carriers.
(Lightly Doped Drain) structure.

第3図は従来例を説明するLDD構造のMIS FET
の断面図である。
Figure 3 shows a MIS FET with an LDD structure, explaining a conventional example.
FIG.

図において、■はp型珪素(p−St)基板、2はトラ
ンジスタ形成領域を画定する分離絶縁層でフィールド二
酸化珪素(SiOz)層、IA、IBはn゛型のソース
、ドレイン領域、IC1IDはそれぞれソース、ドレイ
ン領域に接続してゲート側に形成したn−型領域、33
はゲート絶縁層でSin、層、4はゲート電極で多結晶
珪素(ポリSi)層、35は絶縁層よりなる側壁、8は
絶縁層でSi02層、または燐珪酸ガラス(PSG) 
IJ、9.10はソース、ドレイン電極である。
In the figure, ■ is a p-type silicon (p-St) substrate, 2 is an isolation insulating layer that defines a transistor formation region and is a field silicon dioxide (SiOz) layer, IA and IB are n-type source and drain regions, and IC1ID is a field silicon dioxide (SiOz) layer. n-type regions 33 connected to the source and drain regions and formed on the gate side, respectively;
4 is a gate insulating layer made of a Si layer; 4 is a gate electrode made of a polycrystalline silicon (polySi) layer; 35 is a side wall made of an insulating layer; 8 is an insulating layer made of SiO2 layer or phosphosilicate glass (PSG).
IJ, 9.10 are source and drain electrodes.

このようなLDD構造は、n−型領域IC,10によリ
ドレイン近傍の電界を緩和してホットキャリアの生成を
抑制している。
Such an LDD structure suppresses the generation of hot carriers by relaxing the electric field near the drain by the n-type region IC, 10.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、LDD構造における実効チャネル長La
ffは従来構造のものに比較してn−型領域の分だけ短
くなり、またn−型領域の抵抗骨が寄生抵抗となってM
IS PETの電流駆動力を低下させている。
However, the effective channel length La in the LDD structure
ff is shorter than that of the conventional structure by the n-type region, and the resistance bone in the n-type region becomes a parasitic resistance, resulting in M
The current driving power of IS PET is reduced.

さらに、LDD構造のn〜型領領域諸元は特性上必要な
最適値にまだ定説はなく、製造プロセス条件も複雑とな
る。
Furthermore, there is still no established theory regarding the optimum values required for the characteristics of the n-type region specifications of the LDD structure, and the manufacturing process conditions are also complicated.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、半導体基板に設けられたソース領
域とドレイン領域と、両領域間の該半導体基板上に順次
形成されたゲート絶縁層とゲート電極を有し、該ゲート
絶縁層が、第1の絶縁層と、該第1の絶縁層の片側、ま
たは両側に隣接して形成された該第1の絶縁層より該半
導体基板に対する障壁高さの大きい第2の絶縁層よりな
るMIS型電界効果トランジスタにより達成される。
The solution to the above problem includes a source region and a drain region provided on a semiconductor substrate, and a gate insulating layer and a gate electrode sequentially formed on the semiconductor substrate between both regions, and the gate insulating layer is a second insulating layer formed adjacent to one side or both sides of the first insulating layer and having a larger barrier height to the semiconductor substrate than the first insulating layer; This is achieved by effect transistors.

〔作用〕[Effect]

ホットキャリアの発生は主にドレイン電極近傍で起こる
ことが知られており、実際の回路ではMis FETは
左右対称として取り扱われる。
It is known that hot carriers are generated mainly near the drain electrode, and in actual circuits, MisFETs are treated as symmetrical.

従って本発明はゲート電極下の第1の絶縁層よりなるゲ
ート絶縁層の両端から内側へ適当な長さの部分を基板に
対する障壁高さの大きい第2の絶縁層に置き変えてホッ
トキャリア耐性を増大するものである。
Therefore, the present invention improves hot carrier resistance by replacing an appropriate length inward from both ends of the gate insulating layer consisting of the first insulating layer under the gate electrode with a second insulating layer having a large barrier height with respect to the substrate. It is something that increases.

この構造において、ソース、ドレイン間の電界によって
ホットキャリアが発生しても第2の絶縁層へのホットキ
ャリアの注入量が、第1の絶縁層のみを用いた場合より
少なければ、電流駆動力の低下や、しきい値電圧変動と
いった現象は生じない。
In this structure, even if hot carriers are generated due to the electric field between the source and drain, if the amount of hot carriers injected into the second insulating layer is smaller than when only the first insulating layer is used, the current driving force can be reduced. Phenomena such as drop or threshold voltage fluctuation do not occur.

この場合、第1の絶縁層は大きな電流駆動力を得るため
に誘電率を大きく、さらに十分薄くずればよい。
In this case, the first insulating layer only needs to have a large dielectric constant and be sufficiently thin in order to obtain a large current driving force.

また、第2の絶縁層は半導体基板に対する障壁高さくバ
リアポテンシャル)の大きい、かつホットキャリアの注
入後も層内に残らないことが要求される。
Further, the second insulating layer is required to have a high barrier height and a large barrier potential with respect to the semiconductor substrate, and not to remain in the layer even after hot carrier injection.

その例として、第1の絶縁層に窒化珪素(SiN)層を
、第2の絶縁層にSiO□層を用いることができる。
As an example, a silicon nitride (SiN) layer can be used as the first insulating layer, and a SiO□ layer can be used as the second insulating layer.

禁制帯幅はSiO□が約9 eVで、SiNの約7 e
Vより大きく、従ってSt (禁制帯幅は1.1 eV
)に対する障壁高さもSiO□の方が大きくなる。
The forbidden band width is about 9 eV for SiO□ and about 7 eV for SiN.
V, therefore St (the forbidden band width is 1.1 eV
) is also larger for SiO□.

誘電率はSiNは〜7 、SiO□は3.8で、従って
電流駆動力はSiNの方が太き(、また、両側のSiO
□はSiNに比し、成膜上トラップ準位の生成が少なく
、ホントキャリアがここにトラップされてしきい値電圧
を変えてしまう現象も減少する。
The dielectric constant is ~7 for SiN and 3.8 for SiO□, so the current driving force is thicker for SiN (and
□ generates fewer trap levels during film formation than SiN, and reduces the phenomenon in which real carriers are trapped here and change the threshold voltage.

従って、ドレイン近傍の一部をSiNの代わりにSiO
□にすれば、ホットキャリアの注入量は少なくなり、特
性変動の少ない、電流駆動力の大きいMIS NETを
得ることができる。
Therefore, a part of the vicinity of the drain is made of SiO instead of SiN.
If it is set to □, the amount of hot carriers injected will be reduced, and a MIS NET with little characteristic fluctuation and large current driving power can be obtained.

C実施例〕 第1図は本発明を説明する旧S FETの断面図である
Embodiment C] FIG. 1 is a sectional view of an old SFET for explaining the present invention.

図において、1はp−3i基板、2はフィールドSiO
□層、LA、 IBはn1型のソース、ドレイン領域、
3ばゲート絶縁層の内第1の絶縁層でSiN層、3′は
ゲート絶縁層の内第2の絶縁層で5iOz層、4はゲー
ト電極でポリSi層、5はポリSiの側壁、8は絶縁層
でSiO□層、またはPSG層、9.10はソース、ド
レイン電極である。
In the figure, 1 is a p-3i substrate, 2 is a field SiO
□ layer, LA, IB are n1 type source and drain regions,
3 is the first insulating layer of the gate insulating layer, which is a SiN layer; 3' is the second insulating layer of the gate insulating layer, which is a 5iOz layer; 4 is the gate electrode, which is a poly-Si layer; 5 is the poly-Si sidewall; 9 is an insulating layer, which is a SiO□ layer or a PSG layer, and 9.10 is a source and drain electrode.

つぎに、本発明のMIS FETの製造工程の一例を説
明する。
Next, an example of the manufacturing process of the MIS FET of the present invention will be explained.

第2図(1)〜(8)は本発明の製造工程を工程順に説
明する断面図である。
FIGS. 2(1) to 2(8) are cross-sectional views illustrating the manufacturing process of the present invention in order of process.

第2図(11において、気相成長(CVD)法により、
フィールド5io2752を形成したp−Si基板1上
に、第1の客色縁層として厚さ150人のSiN層3を
、続いて厚さ4000人の5iOz* 4 ’を順次成
長し、これらの層をゲート長より短く残してバターニン
グする。
In Figure 2 (11), by the vapor phase growth (CVD) method,
On the p-Si substrate 1 on which the field 5io2752 was formed, a SiN layer 3 with a thickness of 150 μm as a first color edge layer, followed by a 5 iOz * 4′ with a thickness of 4000 μm were sequentially grown. Buttering is done by leaving it shorter than the gate length.

第2図(2)において、熱酸化により第2の絶縁層とし
て基板上に厚さ150人のSiO□層3′全3′する。
In FIG. 2(2), a 150-layer SiO□ layer 3' is deposited on the substrate as a second insulating layer by thermal oxidation.

第2図(3)において、CVD法により厚さ4000人
のポリSi層を基板全面に成長し、リアクティブイオン
エツチング(1’1lE)法による垂直方向に優勢な異
方性エツチングを用いてポリSiの側壁5を形成する。
In Fig. 2 (3), a poly-Si layer with a thickness of 4,000 wafers is grown on the entire surface of the substrate by the CVD method, and the poly-Si layer is etched using anisotropic etching with a predominance in the vertical direction by the reactive ion etching (1'11E) method. A side wall 5 of Si is formed.

つぎに、基板表面に露出した5i07.ffi 3 ’
をスルー酸化膜とし、SiO□層4′全4′5をマスク
にして砒素イオン(As”)を注入してn″′型のソー
ス、ドレイン領域IA、IBを形成する。
Next, 5i07. exposed on the substrate surface. ffi3'
is used as a through oxide film, and arsenic ions (As") are implanted using the entire SiO□ layer 4'4'5 as a mask to form n"' type source and drain regions IA and IB.

第2図(4)において、CVD法により厚さ4000人
のSun、層6を基板全面に成長し、さらに1/シスト
、またはSOG (スピンオングラス)7を厚く被着し
て基板を平坦化する。
In FIG. 2 (4), a layer 6 of 4000 nm thick is grown on the entire surface of the substrate by the CVD method, and then a thick layer of 1/cyst or SOG (spin-on glass) 7 is deposited to flatten the substrate. .

第2図(5)において、RIBによる平坦化エツチング
を行い、5iOz層4′の表面を露出する。
In FIG. 2(5), planarization etching is performed using RIB to expose the surface of the 5iOz layer 4'.

第2図(6)において、弗酸エツチングによりSiO□
層4′全4′し、CVD法により厚さ4000人のポリ
5iJ54を基板全面に成長する。
In Fig. 2 (6), SiO□ was formed by hydrofluoric acid etching.
The entire layer 4' is 4', and poly 5iJ54 with a thickness of 4,000 wafers is grown on the entire surface of the substrate by the CVD method.

第2図(7)において、RIHによる平坦化エツチング
を行い、SiO□層6の表面を露出する。
In FIG. 2(7), planarization etching is performed by RIH to expose the surface of the SiO□ layer 6.

第2図(8)において、5iOz層6を除去する。In FIG. 2(8), the 5iOz layer 6 is removed.

この後の工程は、第1図においてCVD法により5i0
2層8を基板全面に成長し、この層のソース、トレイン
領域IA、IB上を開口して、ソース、ドレイン電極9
.10を形成してウェハプロセスを終わる。
The subsequent steps are 5i0 by CVD method as shown in FIG.
A second layer 8 is grown over the entire surface of the substrate, and openings are formed over the source and train regions IA and IB of this layer to form source and drain electrodes 9.
.. 10 is formed to complete the wafer process.

実施例では第1の絶縁層のSiN層3と、第2の絶縁層
のSiO□[3’を同じ厚さとしたが、異なった厚さに
してもよい。
In the embodiment, the SiN layer 3 of the first insulating layer and the SiO□[3' of the second insulating layer are made to have the same thickness, but they may have different thicknesses.

また、実施例では個別デバイスとしての旧S FETに
ついて説明したが、これを集積した集積回路についても
本発明の要旨は変わらないことは勿論である。
Further, in the embodiments, the old S FET as an individual device has been described, but it goes without saying that the gist of the present invention does not change for an integrated circuit in which this is integrated.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、ホットキャ
リア現象による電流駆動力の低下、しきい値電圧の変動
等の特性変化を防止し、高性能で微細なMIS FET
が得られる。
As explained in detail above, according to the present invention, changes in characteristics such as a decrease in current driving power and fluctuations in threshold voltage due to hot carrier phenomena are prevented, and high performance and fine MIS FETs can be realized.
is obtained.

さらに、本発明のMIS PETを用いることにより、
高速、高集積の集積回路が得られる。
Furthermore, by using the MIS PET of the present invention,
A high-speed, highly integrated circuit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する旧S FETの断面図、第2
図(1)〜(8)は本発明の製造工程を工程順に説明す
る断面図、 第3図は従来例を説明するLDD構造の旧S FETの
断面図である。 図において、 1はp−5i基板、 LA、 IBはn3型のソース、ドレイン領域、2はフ
ィールド絶縁層でSiO□層、 3は第1の絶縁層でSiN層、 3′は第2の絶縁層でSiO□層、 4はゲート電極でポリSi層、 4′は5iOz層、 5はポリSiの側壁、 6はSi02層、 7はレジスト、またはSOG 。 8は絶縁層で5totJ!J、 9.10はソース、ドレイン電極 第j 図
Figure 1 is a cross-sectional view of the old S FET explaining the present invention, Figure 2
Figures (1) to (8) are cross-sectional views explaining the manufacturing process of the present invention step by step, and Figure 3 is a cross-sectional view of an old SFET with an LDD structure, explaining a conventional example. In the figure, 1 is a p-5i substrate, LA and IB are n3 type source and drain regions, 2 is a field insulating layer, which is an SiO□ layer, 3 is a first insulating layer, which is an SiN layer, and 3' is a second insulating layer. 4 is a gate electrode and is a poly-Si layer, 4' is a 5iOz layer, 5 is a side wall of poly-Si, 6 is a Si02 layer, and 7 is a resist or SOG. 8 is an insulating layer with 5totJ! J, 9.10 are source and drain electrodes Figure j

Claims (1)

【特許請求の範囲】  半導体基板に設けられたソース領域とドレイン領域と
、両領域間の該半導体基板上に順次形成されたゲート絶
縁層とゲート電極を有し、 該ゲート絶縁層が、第1の絶縁層と、該第1の絶縁層の
片側、または両側に隣接して形成された該第1の絶縁層
より該半導体基板に対する障壁高さの大きい第2の絶縁
層よりなることを特徴とするMIS型電界効果トランジ
スタ。
[Scope of Claims] A source region and a drain region provided on a semiconductor substrate, a gate insulating layer and a gate electrode sequentially formed on the semiconductor substrate between both regions, the gate insulating layer being a first an insulating layer, and a second insulating layer formed adjacent to one side or both sides of the first insulating layer and having a higher barrier height with respect to the semiconductor substrate than the first insulating layer. MIS type field effect transistor.
JP1443887A 1987-01-23 1987-01-23 Mis field-effect transistor Pending JPS63181468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1443887A JPS63181468A (en) 1987-01-23 1987-01-23 Mis field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1443887A JPS63181468A (en) 1987-01-23 1987-01-23 Mis field-effect transistor

Publications (1)

Publication Number Publication Date
JPS63181468A true JPS63181468A (en) 1988-07-26

Family

ID=11861024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1443887A Pending JPS63181468A (en) 1987-01-23 1987-01-23 Mis field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63181468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031008A (en) * 1989-03-10 1991-07-09 Kabushiki Kaisha Toshiba MOSFET transistor
US5134452A (en) * 1990-04-03 1992-07-28 Mitsubishi Denki Kabushiki Kaisha MIS type FET semiconductor device with gate insulating layer having a high dielectric breakdown strength

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884462A (en) * 1981-11-13 1983-05-20 Toshiba Corp Metal oxide semiconductor type semiconductor device and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884462A (en) * 1981-11-13 1983-05-20 Toshiba Corp Metal oxide semiconductor type semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5031008A (en) * 1989-03-10 1991-07-09 Kabushiki Kaisha Toshiba MOSFET transistor
US5134452A (en) * 1990-04-03 1992-07-28 Mitsubishi Denki Kabushiki Kaisha MIS type FET semiconductor device with gate insulating layer having a high dielectric breakdown strength

Similar Documents

Publication Publication Date Title
EP0749165B1 (en) Thin film transistor in insulated semiconductor substrate and manufacturing method thereof
US4935379A (en) Semiconductor device and method of manufacturing the same
US7224033B2 (en) Structure and method for manufacturing strained FINFET
US5286664A (en) Method for fabricating the LDD-MOSFET
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US5349225A (en) Field effect transistor with a lightly doped drain
US6624032B2 (en) Structure and process flow for fabrication of dual gate floating body integrated MOS transistors
US6391695B1 (en) Double-gate transistor formed in a thermal process
US5346839A (en) Sidewall doping technique for SOI transistors
US6833569B2 (en) Self-aligned planar double-gate process by amorphization
US20050093154A1 (en) Multiple gate semiconductor device and method for forming same
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
JPH0832040A (en) Semiconductor device
US11557659B2 (en) Gate all around transistor device and fabrication methods thereof
JPH06204469A (en) Field-effect transistor and manufacture thereof
CN1236999A (en) SOI semiconductor device and method for manufacturing the same
US6180502B1 (en) Self-aligned process for making asymmetric MOSFET using spacer gate technique
JPH06120490A (en) Semiconductor device and manufacture thereof
JPH08264789A (en) Insulated gate semiconductor device and manufacture
US20050062129A1 (en) Semiconductor device and method for manufacturing the same
JPH05102179A (en) Semiconductor device and its manufacture
US7087967B2 (en) LSI device having core and interface regions with SOI layers of different thickness
US20020175372A1 (en) Semiconductor device and method for manufacturing semiconductor device
US6559011B1 (en) Dual level gate process for hot carrier control in double diffused MOS transistors
JPS63181468A (en) Mis field-effect transistor