JPS63181385A - Cooler for cryogenic computer - Google Patents

Cooler for cryogenic computer

Info

Publication number
JPS63181385A
JPS63181385A JP62012376A JP1237687A JPS63181385A JP S63181385 A JPS63181385 A JP S63181385A JP 62012376 A JP62012376 A JP 62012376A JP 1237687 A JP1237687 A JP 1237687A JP S63181385 A JPS63181385 A JP S63181385A
Authority
JP
Japan
Prior art keywords
gas
cooling plate
low
cryostat
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012376A
Other languages
Japanese (ja)
Inventor
Norimoto Matsuda
松田 紀元
Susumu Harada
進 原田
Masaaki Aoki
正明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62012376A priority Critical patent/JPS63181385A/en
Publication of JPS63181385A publication Critical patent/JPS63181385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To simplify the structure of a cryostat and to dispense with the handling of liquefied gas by a method wherein a cooling plate having gas flow paths is arranged in the midst of a piping between before and behind an expander, and at the same time, a substrate with a semiconductor element buried therein is installed on the cooling plate in an adhered state. CONSTITUTION:Operating gas discharged from a compressor 6 is fed in a heat exchanger 7 via a high-pressure line 12, is heat-exchanged for return gas to be cooled and is fed to an expansion turbine 8. The gas is adiabatically expanded by the turbine 8 to be turned into low-pressure and low temperature gas, is fed to a header 10 of a cooling plate 9, is made to pass through flow paths 16, is gathered in a header 11 on the exit side and is returned to the compressor 6 via the heat exchanger 7 and a low-pressure line 13. By causing the low-temperature operating gas to flow through the flow paths 16, the cooling plate 9 is brought into low temperature, a CPU 1 and a substrate 14 of a memory 2, which are installed on the cooling plate 9 in an adhered state, are cooled and moreover, a semiconductor element 15 is cooled. Thereby, there is no need to provide a liquefied gas tank in the interior of a cryostat, the structure of the cryostat is simplified and furthermore, the complexity for handling liquefied gas is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンビ、−夕の冷却装置に係り、特に冷却源と
して極低温冷凍機を使用して好適な極低温コンピュータ
の冷却装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combination cooling system, and more particularly to a cooling system for a cryogenic computer that uses a cryogenic refrigerator as a cooling source. be.

〔従来の技術〕[Conventional technology]

半導体素子を実装したCPUおよびメモリを極低温に冷
却して動作させるコンビ、−夕の公知例としてはエヌ、
ビー、ニス、スペシャルパブリケーシ璽ン607(19
81年)第93頁から第102頁(NBS、 8pec
ial Pub目canon  607(1981)P
93〜102)にをいて超電導コンピュータの冷却シス
テムが論じられている。
A combination that operates by cooling a CPU and memory mounted with semiconductor elements to an extremely low temperature.
Bee, Varnish, Special Publication Code 607 (19
1981) pages 93 to 102 (NBS, 8pec)
ial Pub canon 607 (1981) P
93-102), cooling systems for superconducting computers are discussed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は超電動現象を応用したコンピュータに関
する冷却システムの概念を示したものであるが、CPU
およびメモリを液化ガスの中に直接浸漬する方式である
ため、クライオスタットの構造が複雑になるうえ、液化
ガスの取扱いが煩雑になるという問題があった。
The above-mentioned conventional technology shows the concept of a cooling system for a computer that applies the superelectric phenomenon.
Moreover, since the memory is directly immersed in the liquefied gas, the structure of the cryostat is complicated, and the handling of the liquefied gas is complicated.

本発明の目的は、構造が簡単で、液化ガスの取扱いを必
要としない極低温コンピュータの冷却装置を提供するこ
とにある。
An object of the present invention is to provide a cooling device for a cryogenic computer that has a simple structure and does not require the handling of liquefied gas.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、断熱膨張によって低温になった動作ガス
を流すガス流路を内蔵し、ガスを流すことによつて自身
も低温になる冷却板と、CPUおよびメ、モリとして機
能する半導体素子を埋設した基板を熱交換可能のように
密着状態に装着することによって達成される。
The above purpose is to have a built-in gas flow path through which operating gas that has become cold due to adiabatic expansion, a cooling plate that also becomes cold when the gas flows through it, and a semiconductor element that functions as a CPU, memory, and memory. This is achieved by mounting the buried substrate in close contact to enable heat exchange.

〔作  用〕[For production]

圧縮機、熱交換器、膨張タービンを使って発生した墜冷
によって冷却された冷却板とCPUおよびメモリを実装
した基板含熱的に接触させることによってCPUおよび
メモリの冷却が可能になるので液化ガスを使月する必要
がなく、クライオスタットの構造が簡単になろうえ、液
化ガスの取扱い作業が不要になる。
The CPU and memory can be cooled by bringing them into thermal contact with the cooling plate that has been cooled by down cooling generated using a compressor, heat exchanger, and expansion turbine. The structure of the cryostat becomes simpler, and the work of handling liquefied gas becomes unnecessary.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図、第2図によって説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

1は0M08等の半導体素子を実装したCPU。1 is a CPU mounted with a semiconductor element such as 0M08.

2は同様のメモリ、3は入出力インターフ、イス、4は
CPU1およびメモリ2と入出力インターフェイス3の
間を連絡するリード線、5は低温部品を収納するクライ
オスタット、6は動作ガス(例えばヘリウム)を圧縮す
る圧縮機、7は熱交換器、8は膨張タービン、9は冷却
板、10.11はヘッダー、認は高圧ライン%z3は低
圧ライン%14は基板、郷は半導体素子、!6は冷却板
9の中に設けられた動作ガスの流路、17は冷却板9と
CPUI(又はメモリ2)の基板14を密着接触させる
ための結合用金具(ボルト、ナツト等)である。
2 is a similar memory, 3 is an input/output interface, a chair, 4 is a lead wire connecting between the CPU 1 and memory 2, and the input/output interface 3, 5 is a cryostat that houses low temperature parts, and 6 is an operating gas (for example, helium). , 7 is a heat exchanger, 8 is an expansion turbine, 9 is a cooling plate, 10.11 is a header, % is a high pressure line %z3 is a low pressure line % 14 is a substrate, Go is a semiconductor element, ! Reference numeral 6 denotes a working gas flow path provided in the cooling plate 9, and 17 denotes coupling fittings (bolts, nuts, etc.) for bringing the cooling plate 9 into close contact with the substrate 14 of the CPUI (or memory 2).

次に本実施例の作用について説明すると、圧縮機6を吐
出された高圧の動作ガスは高圧ライン鵞を経て熱交換器
7に入る。熱交換器7を通る過程で低圧、低温の戻りガ
スと熱交換して冷却され、高圧、低温のガスとなり、膨
張タービン8に供給される。膨張タービン8に入っよ高
圧、低温の動作ガスは、ここで断熱膨張して低圧で、さ
らに低温のガスとなって冷却板9のヘッダー10に送ら
れる。ヘッダー10に送り込まれた動作ガスは冷却板9
の中の流路16 (一般には複数)を通り、出口側のヘ
ッダー11に集められ、熱交換器7の低圧側、低圧ライ
ン13を経て圧縮機6にもどる。低温の動作ガスが流路
16を流れることによって、冷却板9が低温になり、冷
却板9に密着して装着されたCPUI(およびメモリ2
)の基板14が冷却され、さらに半導体素子市が冷却さ
れる。
Next, the operation of this embodiment will be explained. The high pressure working gas discharged from the compressor 6 enters the heat exchanger 7 through the high pressure line. In the process of passing through the heat exchanger 7, the gas is cooled by exchanging heat with the low-pressure, low-temperature return gas, and becomes a high-pressure, low-temperature gas, which is then supplied to the expansion turbine 8. The high-pressure, low-temperature working gas that enters the expansion turbine 8 undergoes adiabatic expansion here, becomes a low-pressure, even lower-temperature gas, and is sent to the header 10 of the cooling plate 9. The operating gas fed into the header 10 is transferred to the cooling plate 9.
It passes through channels 16 (generally more than one) in the header 11 on the outlet side and returns to the compressor 6 via the low pressure side of the heat exchanger 7 and the low pressure line 13. As the low-temperature operating gas flows through the flow path 16, the cooling plate 9 becomes low temperature, and the CPU (and memory 2) mounted in close contact with the cooling plate 9
) is cooled, and the semiconductor element is further cooled.

こ二で冷却板9の材質としては熱伝導率のよい銅、アル
ミニウム等がよく、基板14の材質としては電気絶縁性
にすく0れ、熱伝導率のよいセラミック等が適している
The material for the cooling plate 9 is preferably copper, aluminum, etc., which have good thermal conductivity, and the material for the substrate 14 is preferably ceramic, which has good electrical insulation properties and good thermal conductivity.

本実施例によれば、CPUIおよびメモリ2を液化ガス
に浸漬することなく冷却することができるので、クライ
オスタット5の内部に液化ガス槽を設けなくてすみ、ク
ライオスタット5の構造が簡単になるうえ、液化ガスを
取扱う煩雑さがなくなるという効果がある。
According to this embodiment, since the CPUI and memory 2 can be cooled without being immersed in liquefied gas, there is no need to provide a liquefied gas tank inside the cryostat 5, and the structure of the cryostat 5 is simplified. This has the effect of eliminating the complexity of handling liquefied gas.

第3図、第4図は本発明の他の実施例を示すもので、第
1図の実施例との相違点は動作ガスが冷却板9を通った
後に膨張タービン8に入るようになっており、冷却板9
の流路16の中を流れるガスが高圧だという点である。
3 and 4 show other embodiments of the present invention, and the difference from the embodiment of FIG. 1 is that the working gas enters the expansion turbine 8 after passing through the cooling plate 9. cage, cooling plate 9
The gas flowing through the flow path 16 is at high pressure.

したがって、冷却板9の流路16を流れるガスの密度が
大きくなり、流路16の断面積およびガス流量が同じで
みればガス流通が低くなる。ガス流速が低下すると伝達
特性も低下し、基板14さらにはCPU lおよびメモ
リ2の冷却性能も低下する。
Therefore, the density of the gas flowing through the channel 16 of the cooling plate 9 increases, and if the cross-sectional area of the channel 16 and the gas flow rate are the same, the gas flow becomes low. As the gas flow rate decreases, the transfer characteristics also decrease, and the cooling performance of the substrate 14 as well as the CPU 1 and the memory 2 also decreases.

それを防止するための手段として流路16の断面積を小
さくしてガス流速を増すとともに、冷却板9と基板14
の密着度をよくするために、結合金具17の数を増すべ
く1周辺のみでな曵流路16の間にも結合金具18を追
加した構造としている。
As a means to prevent this, the cross-sectional area of the flow path 16 is reduced to increase the gas flow velocity, and the cooling plate 9 and the substrate 14 are
In order to improve the degree of adhesion, the number of coupling fittings 17 is increased by adding coupling fittings 18 not only around one periphery but also between the channels 16.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CPUおよびメモリを液化ガスに浸漬
することな畷冷却する二とができるのでクライオスタッ
トの内部に液化ガス槽を設けなくてすみクライオスタッ
トの構造が簡単になるうえ。
According to the present invention, since the CPU and memory can be cooled without immersing them in liquefied gas, there is no need to provide a liquefied gas tank inside the cryostat, and the structure of the cryostat is simplified.

液化ガスを取扱う煩雑さがなくなるという効果がある。This has the effect of eliminating the complexity of handling liquefied gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるシステム系統図、第2
図は第1図の1−1断面図、第3図は本発明の他の実施
例を示すシステム系統図、第4図は第3図のn−n断面
因である。 1・・・・・・CPU、2・・・・・・メモリ、3・・
・・・・インターフェイス、5・・・・・・保冷槽、6
・・・・・・圧縮機、8・・・・・・膨張タービン、9
・・・・・・冷却板 41図 −’212図
Figure 1 is a system system diagram that is an embodiment of the present invention;
The figures are a cross-sectional view taken along line 1-1 in FIG. 1, FIG. 3 is a system system diagram showing another embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line nn in FIG. 1...CPU, 2...Memory, 3...
...Interface, 5...Cold tank, 6
...Compressor, 8...Expansion turbine, 9
・・・・・・Cooling plate 41 figure-'212 figure

Claims (1)

【特許請求の範囲】[Claims] 1、CPUおよびメモリに半導体素子を使用し、極低温
下で動作させるコンピュータの冷却装置において、圧縮
機、熱交換器、膨張機およびこれらの各機器を連結する
配管からなり、膨張機前後の配管途中にガスの流路を有
する冷却板を配置するとともに該冷却板に前記半導体素
子を埋設した基板を密着状態に装着したことを特徴とす
る極低温コンピュータの冷却装置。
1. In a cooling system for a computer that uses semiconductor elements for the CPU and memory and operates at extremely low temperatures, it consists of a compressor, heat exchanger, expander, and piping that connects these devices, and the piping before and after the expander 1. A cooling device for a cryogenic computer, characterized in that a cooling plate having a gas flow path is disposed therebetween, and a substrate in which the semiconductor element is embedded is tightly attached to the cooling plate.
JP62012376A 1987-01-23 1987-01-23 Cooler for cryogenic computer Pending JPS63181385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012376A JPS63181385A (en) 1987-01-23 1987-01-23 Cooler for cryogenic computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012376A JPS63181385A (en) 1987-01-23 1987-01-23 Cooler for cryogenic computer

Publications (1)

Publication Number Publication Date
JPS63181385A true JPS63181385A (en) 1988-07-26

Family

ID=11803550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012376A Pending JPS63181385A (en) 1987-01-23 1987-01-23 Cooler for cryogenic computer

Country Status (1)

Country Link
JP (1) JPS63181385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771509B2 (en) 1992-05-20 2004-08-03 Seiko Epson Corporation Cartridge for electronic devices
US7804688B2 (en) 1992-05-20 2010-09-28 Seiko Epson Corporation Apparatus including processor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327769A (en) * 1976-08-25 1978-03-15 Akebono Brake Ind Co Ltd Automatic adjusting device for drum brake clearance
JPS5590730A (en) * 1978-12-26 1980-07-09 Bendix Corp Automatic abrasion adjuster for lining of nonnservo type drum brake

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327769A (en) * 1976-08-25 1978-03-15 Akebono Brake Ind Co Ltd Automatic adjusting device for drum brake clearance
JPS5590730A (en) * 1978-12-26 1980-07-09 Bendix Corp Automatic abrasion adjuster for lining of nonnservo type drum brake

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771509B2 (en) 1992-05-20 2004-08-03 Seiko Epson Corporation Cartridge for electronic devices
US6845014B2 (en) 1992-05-20 2005-01-18 Seiko Epson Corporation Cartridge for electronic devices
US7035108B2 (en) 1992-05-20 2006-04-25 Seiko Epson Corporation Information processing device
US7345883B2 (en) 1992-05-20 2008-03-18 Seiko Epson Corporation Processing device
US7359202B2 (en) 1992-05-20 2008-04-15 Seiko Epson Corporation Printer apparatus
US7583505B2 (en) 1992-05-20 2009-09-01 Seiko Epson Corporation Processor apparatus
US7804688B2 (en) 1992-05-20 2010-09-28 Seiko Epson Corporation Apparatus including processor

Similar Documents

Publication Publication Date Title
US4912600A (en) Integrated circuit packaging and cooling
US9066451B2 (en) Free cooling solution for a containerized data center
Zilio et al. Active and passive cooling technologies for thermal management of avionics in helicopters: Loop heat pipes and mini-Vapor Cycle System
CA2373718A1 (en) Cryogenic cooling system with cooldown and normal modes of operation
US20050145371A1 (en) Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
CN1325856C (en) Multistage pulse tube refrigeration system for high temperature superconductivity
US6330809B1 (en) Application of a chiller in an apparatus for cooling a generator/motor
CN100416880C (en) Multi-stage refrigeration of high-temp. superconducting
US4825667A (en) Cryogenic cooling system
JPS63181385A (en) Cooler for cryogenic computer
US7162877B2 (en) Pulse tube refrigerator
US4444019A (en) Method of cold generation and a plant for accomplishing same
Chang et al. Plate-fin heat-exchangers for a 10 kW Brayton cryocooler and a 1 km HTS cable
US4566284A (en) Method and apparatus to upgrade the capacity of ambient-air liquid cryogen vaporizers
JP2016539307A (en) Refrigeration method and corresponding cold box and cryogenic equipment
US3713305A (en) DEVICE FOR PRODUCING COLD AT TEMPERATURE LOWER THAN THAT OF lambda -POINT OF HELIUM
US11145570B2 (en) Closed loop liquid cooler and electronic device using the same
US3353371A (en) Dual tube regenerative cryostat
JP2000146357A (en) Cooling system
JP2633581B2 (en) Heat exchanger for refrigerator
CN117542807B (en) Composite phase-change load cooling and recycling device
US4483158A (en) Method of cold generation and a plant for accomplishing same
JPS59222906A (en) Current lead for superconductive coil
JPS6287766A (en) Heat accumulation type heat exchanger
JPH0227780A (en) Building for superconducting apparatus