JPS63180882A - Length measuring apparatus for underwater moving object - Google Patents

Length measuring apparatus for underwater moving object

Info

Publication number
JPS63180882A
JPS63180882A JP1312087A JP1312087A JPS63180882A JP S63180882 A JPS63180882 A JP S63180882A JP 1312087 A JP1312087 A JP 1312087A JP 1312087 A JP1312087 A JP 1312087A JP S63180882 A JPS63180882 A JP S63180882A
Authority
JP
Japan
Prior art keywords
moving object
underwater moving
reflected sound
circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1312087A
Other languages
Japanese (ja)
Inventor
Nobuaki Okabashi
岡橋 伸彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1312087A priority Critical patent/JPS63180882A/en
Publication of JPS63180882A publication Critical patent/JPS63180882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable measurement of length of an underwater moving object with a simple construction, by measuring arrival time of a reflected sound from the front of an underwater moving object and that from the rear thereof and the frequency thereof. CONSTITUTION:This apparatus is basically provided with a transmitter 5, a receiver 6, a time detection circuit 7, a frequency detection circuit 8 and a computing circuit 9. Then, the transmitter 5 transmits an ultrasonic wave with a frequency F0 in the full bearing direction of 360 deg.. The receiver 6 receives a reflected sound from an underwater moving object and converted into an electrical signal to be applied to the circuit 7 and the circuit 8. The circuit 7 determines the arrival time t1 of the reflected sound from the front of the underwater moving object and the arrival time t2 of the reflected sound from the rear to be applied to the circuit 9. The circuit 8 determines the frequency F1 of the reflected sound from the front of the underwater moving object and that F2 of the reflected sound from the rear to be applied to the circuit 9. The circuit 9 calculates the length L of the underwater moving object from the frequencies F0, F1 and F2 and from the arrival times t1 and t2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水中において水中移動物体の長さを測定する
測長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a length measuring device that measures the length of an underwater moving object underwater.

(従来の技術) 第4図は従来の測定原理を示す。第4図において、水底
の適宜場所には測長装置10が配置され、この測長装置
10は360°の全方位方向へ超音波を送波し、その反
射音を受けて水中移動物体11を検出するとともに、水
中移動物体11の長さLを次の(1)式に従って測定す
るものである。
(Prior Art) FIG. 4 shows the conventional measurement principle. In FIG. 4, a length measuring device 10 is placed at an appropriate location on the bottom of the water. At the same time, the length L of the underwater moving object 11 is measured according to the following equation (1).

L= L2!3 i n−1−1lsinφ1−−−−
−−一−−−(1)ここで、角度φl、同φ2は、測長
装置10における垂線から水中移動物体11の前部およ
び後部に至る角度(以下、「方位角」という)である。
L= L2!3 i n-1-1l sinφ1---
--1 --- (1) Here, the angles φl and φ2 are angles from the perpendicular in the length measuring device 10 to the front and rear parts of the underwater moving object 11 (hereinafter referred to as "azimuth angles").

また、距離Lrは測長装置10から水中移動物体11の
前部までの距離であり、距離t2は後部までの距離であ
る。距離Ll、同t2は、反射音の到達時間から求める
。第5図に示す如く、水中移動物体11からの反射音の
うち、物体前部と後部とからの反射音は符号13.同1
4のように太きな振幅を示すので、超音波の送信タイミ
ングから反射音13.同14が到達する到達時間をそれ
ぞれ1..1.とじて、距離Ll、同t2を次の式(2
)、同(3)によって求める。なお、Cは水中の音速で
ある。
Moreover, the distance Lr is the distance from the length measuring device 10 to the front part of the underwater moving object 11, and the distance t2 is the distance to the rear part. The distance Ll and t2 are determined from the arrival time of the reflected sound. As shown in FIG. 5, among the reflected sounds from the underwater moving object 11, the reflected sounds from the front and rear parts of the object are denoted by 13. Same 1
4 shows a thick amplitude, so the reflected sound 13. The arrival time of the same 14 is 1. .. 1. Then, the distance Ll and the same t2 are calculated using the following formula (2
), calculated using (3). Note that C is the speed of sound in water.

1+=止        −・・・−−−(2)t2=
」上        −−−一−−−−−(3)一方、
方位角φh同φ2も前記反射音13.同14から求める
のであるが、3次元的に求める必要があるので、従来の
測長装置10は第6図に示す如くに構成されている。即
ち、従来の測長装置10は、送波器15が送波する超音
波の反射音を受波する3系統の受波器16.同17およ
び同18を備える。受波器17は当該測長装置10の配
置平面に設定したX−Y座標の原点位置に配置され、そ
の受渡反射音の電気変換信号が時間検出回路19へ与え
られるとともに、位相検出回路20および同21の一方
の入力へそれぞれ与えられる。
1+=stop −・・・−−−(2) t2=
” Part 1 ----1---(3) On the other hand,
The azimuth angle φh and φ2 are also the same as the reflected sound 13. However, since it is necessary to obtain it three-dimensionally, a conventional length measuring device 10 is constructed as shown in FIG. That is, the conventional length measuring device 10 has three systems of receivers 16 . 17 and 18. The receiver 17 is arranged at the origin position of the X-Y coordinate set on the arrangement plane of the length measuring device 10, and the electrical conversion signal of the transmitted and reflected sound is given to the time detection circuit 19, and the phase detection circuit 20 and 21, respectively.

時間検出回路1つは前記式(2)、同(3)によって到
達時間t1+同t2を求め、それを演算回路22へ与え
る。
One time detection circuit calculates the arrival time t1+t2 using the above equations (2) and (3) and supplies it to the arithmetic circuit 22.

一方の受渡器16はX軸上に配置され、その受渡反射音
の電気変換信号が位相検出回路20の他方の入力へ与え
られる。その結果、位相検出回路20では受波器17と
同16とにおける受波反射音間の位相差を求め、それを
方位角φ1.同φ2のX方向の成分(φIX、φ2X)
として演算回路22へ与える。
One of the transfer devices 16 is arranged on the X-axis, and an electrical conversion signal of the reflected sound of the transfer device 16 is given to the other input of the phase detection circuit 20 . As a result, the phase detection circuit 20 determines the phase difference between the received and reflected sounds at the receivers 17 and 16, and calculates the phase difference between the azimuth angles φ1 and φ1. Component of the same φ2 in the X direction (φIX, φ2X)
It is given to the arithmetic circuit 22 as .

他方の受渡器18はY軸上に配置され、その受渡反射音
の電気変換信号が位相検出回路21の他方の入力へ与え
られる。その結果、位相検出回路21では受波器17と
同18とにおける受渡反射音間の位相差を求め、それを
方位角φ1.同φ2のY方向の成分(φIY、φ2Y)
として演算回路22へ与える。
The other transfer device 18 is arranged on the Y-axis, and the electrical conversion signal of the transfer reflected sound is given to the other input of the phase detection circuit 21. As a result, the phase detection circuit 21 determines the phase difference between the transmitted and reflected sound at the receivers 17 and 18, and calculates the phase difference between the received and reflected sounds at the azimuth angle φ1. Y-direction component of the same φ2 (φIY, φ2Y)
It is given to the arithmetic circuit 22 as .

斯くして、演算回路22は、前記式(1)に従って水中
移動物体11の長さしを演算算出できることになる。
In this way, the calculation circuit 22 can calculate the length of the underwater moving object 11 according to the equation (1).

(発明が解決しようとする問題点) 上述した従来の測長装置は、水中移動物体の前部からの
反射音と、後部からの反射音の到達時間および、それぞ
れの反射音の方位角を測定することにより測長している
ので、方位角測定のために受渡器を3系統設ける必要が
あり、回路が複雑で形状も大きくなる問題点がある。
(Problems to be Solved by the Invention) The conventional length measuring device described above measures the arrival time of the reflected sound from the front part of an underwater moving object, the arrival time of the reflected sound from the rear part, and the azimuth angle of each reflected sound. Since the length is measured by doing this, it is necessary to provide three systems of transfer devices for azimuth measurement, which poses a problem that the circuit is complicated and the shape is large.

本発明は、従来のこのような問題点に鑑みなされたもの
で、その目的は、簡易な構成で水中移動物体の長さ測定
を行い得る水中移動物体の測長装置を提供することにあ
る。
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a length measuring device for an underwater moving object that can measure the length of an underwater moving object with a simple configuration.

(問題点を解決するための手段) 前記目的を達成するために、本発明の水中移動物体の測
長装置は次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, a length measuring device for an underwater moving object according to the present invention has the following configuration.

即ち、本発明の水中移動物体の測長装置は、音響的に検
出した水中移動物体の前部および後部からの反射音によ
って該水中移動物体の長さを測定する水中移動物体の測
長装置において; 前記反射音の到達時間を検出する時
間検出回路と; 前記反射−音の周波数を検出する周波
数検出回路と;前記検出した到達時間と周波数とから水
中移動物体の長さを演算する演算回路と; を備えたこ
とを特徴とする水中移動物体の測長装置である。
That is, the length measuring device for an underwater moving object of the present invention is a length measuring device for an underwater moving object that measures the length of an underwater moving object by acoustically detected sound reflected from the front and rear parts of the underwater moving object. a time detection circuit that detects the arrival time of the reflected sound; a frequency detection circuit that detects the frequency of the reflected sound; and an arithmetic circuit that calculates the length of the underwater moving object from the detected arrival time and frequency. This is a length measuring device for an underwater moving object, which is characterized by being equipped with;

(作 用) 次に、前記構成を有する本発明の水中移動物体の作用を
説明する。
(Function) Next, the function of the underwater moving object of the present invention having the above configuration will be explained.

第1図は本発明に係る測定原理図である。第1図におい
て、符号1は本発明の測長装置である。
FIG. 1 is a diagram showing the principle of measurement according to the present invention. In FIG. 1, reference numeral 1 indicates a length measuring device of the present invention.

この測長装置1は、従来と同様に水底の適宜場所に配置
され、360°の全方位方向へ周波数F。
This length measuring device 1 is placed at an appropriate location on the bottom of the water, as in the conventional case, and measures frequency F in all directions of 360°.

の超音波を送波している。符号t1および同L2は測長
装置1から長さしの水中移動物体2の前部および後部ま
での距離である。水中移動物体2は移動速度V丁で移動
しており、水中移動物体2の前部からは周波数F1で、
後部から周波数F2でそれぞれ超音波が反射される。水
中移動物体2の前部での反射音は移動方向から角度θl
で、また後部では反射音は移動方向から角度θ2でそれ
ぞれ反射されるとする。
It transmits ultrasonic waves. The symbols t1 and L2 are the distances from the length measuring device 1 to the front and rear parts of the underwater moving object 2. The underwater moving object 2 is moving at a moving speed of V, and from the front of the underwater moving object 2 there is a frequency of F1,
Ultrasonic waves at frequency F2 are reflected from the rear. The reflected sound at the front of the underwater moving object 2 is at an angle θl from the direction of movement.
Also, it is assumed that the reflected sound is reflected at an angle θ2 from the moving direction at the rear.

第2図は反射音のドツプラ効果を説明するためのもので
ある。第2図において、一般に、発音源3から周波数F
で発音され、速度Vで移動する物体4に当り、そこで反
射して再び発音源3の位置に戻ってきた反射音の周波数
F′は、発音源3と移動物体4を結ぶ線と移動物体4の
移動方向とがなす角度をθとすれば、次の(4)式で示
される。
FIG. 2 is for explaining the Doppler effect of reflected sound. In FIG. 2, in general, the frequency F from the sound source 3 is
The frequency F' of the reflected sound that is emitted at , hits an object 4 moving at a speed V, is reflected, and returns to the position of the sound source 3 is the distance between the line connecting the sound source 3 and the moving object 4 and the moving object 4. If the angle between the moving direction and the moving direction is θ, it is expressed by the following equation (4).

F′=(1+λ■四1旦) F     −=−・−−
(4)ここで、Coはその媒体中の音速である。なお、
簡単のため発音源3は停止しているものとした。
F′=(1+λ■41dan) F −=−・−−
(4) where Co is the speed of sound in the medium. In addition,
For simplicity, it is assumed that the sound source 3 is stopped.

つまり、第1図に示した周波数F1+同F2はCを水中
での音速として次の式(5)1式(6)で求まる。
That is, the frequency F1+F2 shown in FIG. 1 is determined by the following equations (5) and (6), where C is the sound speed in water.

F s −(1+” ” ”  ) F o     
 −−−−−−−−(5)F2−(1+  ” ” ”
  ) Fo−−−−(6)また、第1図において、長
さLは次の式(7)となることは明らか・である。
F s −(1+” ” ”) F o
−−−−−−−−(5)F2−(1+ ” ” ”
) Fo---(6) Also, in FIG. 1, it is clear that the length L is expressed by the following equation (7).

L= t2c o sθ2−Llcosθ1−−−−−
−−− (7)そうすると、式(2)、同(3)、同(
5)〜同(7)から、長さしは次の(8)式で示すこと
ができる。
L=t2cosθ2−Llcosθ1---
--- (7) Then, equations (2), (3), and (
From 5) to (7), the length can be expressed by the following equation (8).

ここで t□ :水中移動物体前部からの到達時間t2
:水中移動物体後部からの到達時間Δfl =pt −
FO:水中移動物体前部からの反射音の周波数のドツプ
ラ成分 Δf2=F2  Fo :水中移動物体後部からの反射
音の周波数のドツプラ成分 斯くして、本発明においては、反射音の到達時間t!、
同t2と、反射音の周波数F1.同F2とを測定するだ
けで水中移動物体の長さしを求めることができるのであ
る。これにより、受渡器は1系統で済むのである。
Here, t□: Arrival time t2 from the front of the underwater moving object
: Arrival time Δfl from the rear of the underwater moving object = pt −
FO: Doppler component of the frequency of the reflected sound from the front of the underwater moving object Δf2=F2 Fo: Doppler component of the frequency of the reflected sound from the rear of the underwater moving object Thus, in the present invention, the arrival time t! ,
t2 and the frequency F1 of the reflected sound. By simply measuring F2, the length of an underwater moving object can be determined. As a result, only one system of delivery device is required.

以上説明したように、本発明の水中移動物体の測長装置
によれば、水中移動物体の前部からの反射音、後部から
の反射音それぞれの到達時間と、それら反射音の周波数
とを計測するだけで水中移動物体の長さを求めることが
できるので、受渡器は、1系統あればよいことになり、
回路の簡素化。
As explained above, according to the length measuring device for an underwater moving object of the present invention, the arrival time of the reflected sound from the front part and the reflected sound from the rear part of the underwater moving object, and the frequency of these reflected sounds are measured. Since you can find the length of an underwater moving object by simply doing this, you only need one delivery system.
Circuit simplification.

装置の小型化、軽量化がはかれる効果がある。This has the effect of making the device smaller and lighter.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例に係る水中移動物体の測長装
置を示す。この測長装置は送波器5と、受波器6と、時
間検出回路7と、周波数検出回路8と、演算回路9とを
基本的に備える。
FIG. 3 shows a length measuring device for an underwater moving object according to an embodiment of the present invention. This length measuring device basically includes a wave transmitter 5, a wave receiver 6, a time detection circuit 7, a frequency detection circuit 8, and an arithmetic circuit 9.

送波器5は、周波数FOの超音波を360°の全方位方
向へ送波する。
The transmitter 5 transmits ultrasonic waves having a frequency of FO in all directions of 360°.

受渡器6は、水中移動物体で反射された反射音を受波し
、それを電気信号に変換し時間検出回路7と周波数検出
回路8とへ与える。
The delivery device 6 receives reflected sound reflected by an underwater moving object, converts it into an electric signal, and supplies it to a time detection circuit 7 and a frequency detection circuit 8.

時間検出回路7では、水中移動物体の前部からの反射音
の到達時間t1および後部からの反射音の到達時間t2
を求め(第5図および式(2)。
The time detection circuit 7 determines the arrival time t1 of the reflected sound from the front of the underwater moving object and the arrival time t2 of the reflected sound from the rear of the underwater moving object.
(Figure 5 and equation (2)).

同(3)参照)、それを演算口゛路9へ与える。(see (3)), and feeds it to the arithmetic port 9.

周波数検出回路8は、水中移動物体の前部からの反射音
の周波数F!および後部からの反射音の周波数F2を求
め、それを演算回路9へ与える。
The frequency detection circuit 8 detects the frequency F! of the reflected sound from the front of the underwater moving object! Then, the frequency F2 of the reflected sound from the rear is determined and fed to the arithmetic circuit 9.

演算回路9は、周波数F。、同Fl、同F2および到達
時間tI+同t2に基づき前記式(8)に従って水中移
動物体の長さしを演算算出する。
The arithmetic circuit 9 has a frequency F. , Fl, F2, and arrival time tI+t2, the length of the underwater moving object is calculated according to the above equation (8).

(発明の効果) 以上説明したように、本発明の水中移動物体の測長装置
によれば、水中移動物体の前部からの反射音、後部から
の反射音それぞれの到達時間と、それら反射音の周波数
とを計測するだけで水中移動物体の長さを求めることが
できるので、受渡器は1系統あればよいことになり、回
路の簡素化。
(Effects of the Invention) As explained above, according to the length measuring device for an underwater moving object of the present invention, the arrival time of the reflected sound from the front part and the reflected sound from the rear part of the underwater moving object, and the arrival time of the reflected sound from the front part and the rear part of the underwater moving object are measured. Since the length of an underwater moving object can be determined simply by measuring the frequency of

装置の小型化、軽量化がはかれる効果がある。This has the effect of making the device smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図はドツプラ効果
の説明図、第3図は本発明の一実施例に係る水中移動物
体の測長装置の構成ブロック図、第4図は従来の測定原
理図、第5図は測長装置の受信波形図、第6図は従来の
水中移動物体の測長装置の構成ブロック図である。 1・・・・・・本発明の測長装置、 2・・・・・・水
中移動物体、 3・・・・・・発音源、 4・・・・・
・移動物体、5・・・・・・送波器、 6・・・・・・
受波器、 7・・・・・・時間検出回路、 8・・・・
・・周波数検出回路、 9・・・・・・演算回路、 1
0・・・・・・従来の測長装置、 11・・・・・・水
中移動物体、 15・・・・・・送波器、 16・・・
・・受波器1、17・・・・・・受波器2、18・・・
・・受波器3、19・・・・・・時間検出回路、 20
・・・・・・位相検出回路1、21・・・・・・位相検
出回路2、22・・・・演算回路。 代理人 弁理士  八 幡  義 博 7に面 Vr−−−−−−一蔚動遮裏 lt 、 t、z −−−−’;*]長LL+□57に
4−I多麦I矛秘るトAでai巨@Fo −−−−−−
m訪音流/1周液数Ft、 Fl? −−−−−2之j
A4χ)〒/)Aう皮1す;et、 f3z−−−−7
に+…市体/1秒動注1禰劫煉幻)のケ悄度L−−−−
−−−・水中料動物体の長で峯光咽/) 3M□l定派
理 第 / 図 Fこ一−−反射1゛の用液で( 反射4/)ド〃°う効果 第 2 図 水禿qy)昶ナナI幼4勿体の渕邊」克償0.溝戎イ列
第 3 図 it 、 tz−−−−一渕表幸七!が5水中好★Rぢ
住jで4距J腿L −−−−−−−−一未中物り俺体/
l委ざ役!/)渕支麓チ夏 ヰ 4 図 夜東カ水申粁 動伸休/l渕長装置へ倫へ例 冶 6 図
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is an explanatory diagram of the Doppler effect, Fig. 3 is a block diagram of the configuration of a length measuring device for an underwater moving object according to an embodiment of the present invention, and Fig. 4 is an explanatory diagram of the Doppler effect. FIG. 5 is a received waveform diagram of a length measuring device, and FIG. 6 is a block diagram of a conventional length measuring device for underwater moving objects. 1...Length measuring device of the present invention, 2...Underwater moving object, 3...Sound source, 4...
・Moving object, 5... Transmitter, 6...
Receiver, 7... Time detection circuit, 8...
...Frequency detection circuit, 9...Arithmetic circuit, 1
0... Conventional length measuring device, 11... Underwater moving object, 15... Transmitter, 16...
...Receiver 1, 17...Receiver 2, 18...
...Receiver 3, 19...Time detection circuit, 20
... Phase detection circuit 1, 21 ... Phase detection circuit 2, 22 ... Arithmetic circuit. Agent Yoshihiro Yahata Patent attorney Ai big @Fo -------
m visiting sound flow/number of liquids per round Ft, Fl? −−−−−2 no.j
A4χ)〒/)A skin 1su;et, f3z----7
ni +... city body/1 second motion note 1 nekoregen) ga agony degree L----
---・The length of the aquatic animal body is the length of the body. 3M□l Theorem No. 1 / Fig. Mizubald qy) Akira Nana I Young 4 Muttai no Fuchibe” Compensation 0. Mizoeki row 3rd figure it, tz----Ichibuchi Omote Koushichi! Is 5 underwater good★Rjishu j and 4 distance J thigh L -----------Ichimi middle school body /
l Delegated role! /) Fuchishiroku Chi Natsui 4 Fig. Yotoka Mizushin kain movement extension/l Fuchicho equipment to Rin example 6 Fig.

Claims (1)

【特許請求の範囲】[Claims] 音響的に検出した水中移動物体の前部および後部からの
反射音によって該水中移動物体の長さを測定する水中移
動物体の測長装置において;前記反射音の到達時間を検
出する時間検出回路と;前記反射音の周波数を検出する
周波数検出回路と前記検出した到達時間と周波数とから
水中移動物体の長さを演算する演算回路と;を備えたこ
とを特徴とする水中移動物体の測長装置。
In a length measuring device for an underwater moving object that measures the length of an underwater moving object by acoustically detected reflected sound from the front and rear parts of the underwater moving object; a time detection circuit that detects the arrival time of the reflected sound; A length measuring device for an underwater moving object, comprising: a frequency detection circuit that detects the frequency of the reflected sound; and a calculation circuit that calculates the length of the underwater moving object from the detected arrival time and frequency. .
JP1312087A 1987-01-22 1987-01-22 Length measuring apparatus for underwater moving object Pending JPS63180882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1312087A JPS63180882A (en) 1987-01-22 1987-01-22 Length measuring apparatus for underwater moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312087A JPS63180882A (en) 1987-01-22 1987-01-22 Length measuring apparatus for underwater moving object

Publications (1)

Publication Number Publication Date
JPS63180882A true JPS63180882A (en) 1988-07-25

Family

ID=11824295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312087A Pending JPS63180882A (en) 1987-01-22 1987-01-22 Length measuring apparatus for underwater moving object

Country Status (1)

Country Link
JP (1) JPS63180882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170894A (en) * 1989-11-30 1991-07-24 Nec Corp Apparatus for measuring length of submerged body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170894A (en) * 1989-11-30 1991-07-24 Nec Corp Apparatus for measuring length of submerged body

Similar Documents

Publication Publication Date Title
US10698094B2 (en) 3D-position determination method and device
ATE420399T1 (en) REMOTE ATTITUDE AND POSITION DISPLAY SYSTEM
JPH02102477A (en) Ultrasonic distance measuring instrument
GB953631A (en) Air mass relative motion meter
US4635198A (en) Apparatus for measuring cross-sections on objects, more especially on parts of the body
CN105572673B (en) Ultrasonic ranging method and device
JPS63180882A (en) Length measuring apparatus for underwater moving object
RU153990U1 (en) ACOUSTIC ANEMOMETER
CN110392842B (en) Method and acoustic device for measuring surface movement
RU169800U1 (en) ACOUSTIC ANEMOMETER
JPS63266377A (en) Acoustic wave surveying system
KR101858153B1 (en) A ultrasonic-wave analyzer
CN205941897U (en) Reduce indoor positioning system of blind area
JPS63266376A (en) Acoustic wave positioning system
JPS5825225B2 (en) Sound wave propagation time measurement method and position locating method
JPS58111773A (en) Homing apparatus
JPH06118169A (en) Acoustic position measuring device
JPS62277581A (en) Body detection sensor
GERLACH Localization and dynamics determinations over spherical surfaces(algorithms, Doppler navigation and hyperbolic navigation)[Interim Report]
JPH03282391A (en) Guiding device for underwater sailing body
JPS635289A (en) Position detector
JPS60179621A (en) Ultrasonic temperature detector
JPH03239981A (en) Method and device for detecting position of object
JPH0512820Y2 (en)
JPH01263514A (en) Acoustic wave measuring system