JPS63180847A - Pressure measurement using solid electrolyte - Google Patents

Pressure measurement using solid electrolyte

Info

Publication number
JPS63180847A
JPS63180847A JP62012230A JP1223087A JPS63180847A JP S63180847 A JPS63180847 A JP S63180847A JP 62012230 A JP62012230 A JP 62012230A JP 1223087 A JP1223087 A JP 1223087A JP S63180847 A JPS63180847 A JP S63180847A
Authority
JP
Japan
Prior art keywords
gas
oxygen
pressure
solid electrolyte
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012230A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62012230A priority Critical patent/JPS63180847A/en
Publication of JPS63180847A publication Critical patent/JPS63180847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable measurement of pressure of an atmospheric gas due to current flowing with gas ions as the carrier, by a method wherein porous electrodes are provided on both sides of a solid electrolyte with one thereof as anode and the other as cathode and a gas diffusion control body is provided covering the cathode to apply a voltage between both the electrodes under a low pressure. CONSTITUTION:An anode 12 and a cathode 13 are provided on both surfaces of a solid electrolyte 11; when a voltage is applied between both the electrodes of the solid electrolyte 11 heated with a heater 16, oxygen contained in a gas is reduced with the cathode 13 to become oxygen ions, which are transferred to the anode 12 through an oxygen ion vacancy in the solid electrolyte 11 to make current flow with the oxygen ions as the carrier. A plateau is generated at an area where the voltage is applied with the control of the diffusion of oxygen through a gas passage hole 15 provided on a gas diffusion control body 14. The so-called threshold current value IL at the plateau is proportional to the concentration of oxygen in a gas, thereby enabling an oxygen sensor to detect the concentration of oxygen from the current value IL.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧力センサを用いて低圧雰囲気ガスの圧力を測
定する方法に係り、特に高温における圧力を測定するこ
とができる固体電解質を構成の主体とする圧力センサを
用いて圧力を測定する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method of measuring the pressure of a low-pressure atmospheric gas using a pressure sensor, and in particular to a solid electrolyte that can measure pressure at high temperatures. The present invention relates to a method of measuring pressure using a pressure sensor.

(従来の技術) 圧力の検出手段にはいろいろの方式のものかあるが、小
型、高感度、高精度という長所があることから近年は半
導体素子を用いた半導体圧力センサが各種の分野におい
て広く利用されている。しかも圧力の検出構造にはダイ
ヤフラムの変位を媒体としているものが多い。その−例
として第4図に示す如き絶対圧形半導体圧力センサがあ
る。同図において、1はステム、2はガラス製の台座、
3はシリコン単結晶板であり、このシリコン単結晶板3
の下面の一部がエツチングにより削り取られ、円形のダ
イヤフラム4が形成されている。このダイヤフラム4お
よび台座2の間は真空もしくは一定圧力に保たれ、また
、ダイヤフラム4の上面の周縁部に4個のP型抵抗体が
拡散またはイオン打込み技術により形成されている。5
は上記抵抗体に接続されている金線、6はリードピン、
7はケースである。そして、被測定媒体の圧力Paによ
ってダイヤフラム4が下方に湾曲すると、これに伴いダ
イヤフラム4に形成された抵抗体に歪が発生する。そし
て、この歪に基づく抵抗体の抵抗値の変化から被測定媒
体の圧力Paが検出されるというものである。そのほか
差圧形半導体圧力センサなど、あるいはこれらの改良さ
れたものがある。
(Prior art) There are various methods for detecting pressure, but in recent years semiconductor pressure sensors using semiconductor elements have been widely used in various fields because they have the advantages of small size, high sensitivity, and high accuracy. has been done. Moreover, many pressure detection structures use the displacement of a diaphragm as a medium. An example thereof is an absolute pressure type semiconductor pressure sensor as shown in FIG. In the same figure, 1 is a stem, 2 is a glass pedestal,
3 is a silicon single crystal plate, and this silicon single crystal plate 3
A portion of the lower surface of the diaphragm 4 is etched away to form a circular diaphragm 4. A vacuum or constant pressure is maintained between the diaphragm 4 and the pedestal 2, and four P-type resistors are formed at the periphery of the upper surface of the diaphragm 4 by diffusion or ion implantation techniques. 5
is the gold wire connected to the above resistor, 6 is the lead pin,
7 is a case. When the diaphragm 4 curves downward due to the pressure Pa of the medium to be measured, strain occurs in the resistor formed in the diaphragm 4 accordingly. Then, the pressure Pa of the medium to be measured is detected from the change in the resistance value of the resistor based on this strain. In addition, there are differential pressure type semiconductor pressure sensors, and improved versions of these sensors.

(発明が解決しようとする問題点) 前記の如き半導体素子を構成の主体とするような半導体
圧力センサは使用可能な温度範囲が、せいぜい−10℃
〜50℃程度と非常に狭く、これ以上の温度では実用に
耐え難く、また、低圧用のダイヤフラムは機械的に非常
にもろいという欠点がある。
(Problems to be Solved by the Invention) The usable temperature range of a semiconductor pressure sensor mainly composed of a semiconductor element as described above is -10°C.
It is very narrow at about ~50°C, and cannot withstand practical use at temperatures higher than this, and the low-pressure diaphragm has the drawback of being mechanically very fragile.

(問題点を解決するための手段) 従来、第1図(イ)に示す如き固体電解質を構成の主体
とした酸素センサが知られているが、同図において、固
体電解質11の両面にアノード12およびカソード13
が設けられており、ヒータ16によって数百℃の高温に
加熱された固体電解質11の両電極間に電圧を印加する
と気体中に含まれる酸素はカソード13で還元され酸素
イオンとなり、この酸素イオンが固体電解質中の酸素イ
オン空格子を介してアノード12に移送されることによ
り、この酸素イオンをキャリヤとする電流が流れる。こ
の電流はカソード側に被冠されているキャップ14に設
けられた微小な気体流通孔15によって酸素の拡散が制
御されることによって、印加電圧のある領域において平
坦部を生ずる。この電圧−電流の特性は第1図(ロ)の
如くなり平坦部における電流値I、はいわゆる限界電流
と呼ばれるものであるが、この■1は気体中の酸素濃度
に比例することから、上記の酸素センサは限界電流値■
1から酸素濃度を検知するというものである。この限界
電流値はおおよそ100mmHg以下の低圧下では圧力
によって変化することが判った。
(Means for solving the problem) Conventionally, an oxygen sensor mainly composed of a solid electrolyte as shown in FIG. 1(a) is known. and cathode 13
is provided, and when a voltage is applied between the two electrodes of the solid electrolyte 11 heated to a high temperature of several hundred degrees Celsius by the heater 16, the oxygen contained in the gas is reduced to oxygen ions at the cathode 13, and these oxygen ions Oxygen ions are transferred to the anode 12 via the vacancies in the solid electrolyte, so that a current using the oxygen ions as carriers flows. This current produces a flat portion in a region where the applied voltage is present, as the diffusion of oxygen is controlled by minute gas flow holes 15 provided in the cap 14 placed on the cathode side. This voltage-current characteristic is shown in Figure 1 (b), and the current value I at the flat part is what is called the limiting current, but since this (1) is proportional to the oxygen concentration in the gas, the above The oxygen sensor has a limiting current value■
1 to detect the oxygen concentration. It has been found that this limiting current value changes depending on the pressure under low pressure of about 100 mmHg or less.

そこで、本発明は酸素濃度が既知の環境において、固体
電解質を用いたいわゆる限界電流式酸素センサと同一構
造の圧力センサを用いて限界電流値を測定することによ
って圧力を測定する方法を提供するものである。
Therefore, the present invention provides a method of measuring pressure in an environment where the oxygen concentration is known by measuring the limiting current value using a pressure sensor having the same structure as a so-called limiting current type oxygen sensor using a solid electrolyte. It is.

(作用) 前記第1図(イ)の如き限界電流式圧力センサの第1図
(ロ)に示す如き電圧−電流特性において電流の平坦部
、即ち限界電流値■、が生ずるのは微小な気体流通孔1
5によって気体の拡散が律速されることに起因している
。このような通常の限界電流式センサの電圧−電流特性
は酸素ガスの気体流通孔15からのいわゆるノーマル拡
散がもとになっている。このときの限界電流値ILい、
は周知の如く次の(1)式によって表される。
(Function) In the voltage-current characteristics shown in FIG. 1 (B) of the limiting current type pressure sensor shown in FIG. Flow hole 1
This is because gas diffusion is rate-limited by 5. The voltage-current characteristics of such a normal limiting current type sensor are based on so-called normal diffusion of oxygen gas from the gas flow hole 15. The limiting current value IL at this time is
As is well known, is expressed by the following equation (1).

I L (n) =  ”’絆・6(1=u%)(1)
RTA       P ここで、F:ファラディ定数、D二ノーマル拡散におけ
る酸素の気体拡散係数、R:気体定数、T:センサの絶
対温度、S:気体流通孔面積、β:気体流通孔長さ、P
:雰囲気ガスの全圧、PO2:雰囲気ガス中の酸素分圧
(ここでPO2/Pは雰囲気ガス中の酸素濃度を意味す
る)である。ただしノーマル拡散における場合酸素の気
体拡散係数りは一般に次の(2)式で表される。
I L (n) = ”'Kizuna・6 (1=u%) (1)
RTA P Here, F: Faraday constant, D gas diffusion coefficient of oxygen in binormal diffusion, R: gas constant, T: absolute temperature of sensor, S: gas flow hole area, β: gas flow hole length, P
: total pressure of atmospheric gas, PO2: partial pressure of oxygen in atmospheric gas (here, PO2/P means oxygen concentration in atmospheric gas). However, in the case of normal diffusion, the gas diffusion coefficient of oxygen is generally expressed by the following equation (2).

o = os (−i−”j’・」−(2’)73P ここで、Dsは273K 、 1気圧下での気体拡散係
数、αは定数(通常1.5〜2で気体の種類によって異
なる)である。従って、(1)式と(2)式とから、ノ
ーマル拡散領域では酸素濃度PO2/Pが一定であれば
限界電流値IL(I+1は雰囲気ガスの全圧Pには依存
しないことが判る。
o = os (-i-"j'・"-(2')73P Here, Ds is 273K, gas diffusion coefficient under 1 atmosphere, α is a constant (usually 1.5 to 2 and varies depending on the type of gas) ). Therefore, from equations (1) and (2), in the normal diffusion region, if the oxygen concentration PO2/P is constant, the limiting current value IL (I+1 does not depend on the total pressure P of the atmospheric gas. I understand.

このノーマル拡散は雰囲気ガスの全圧P、即ち圧力が高
い場合に起こるのであるが、逆に圧力が低くなるとセン
サ出力はいわゆるクヌーセン拡散に支配されるようにな
る。この場合、限界電流値IL nrは次の(3)式で
表される。
This normal diffusion occurs when the total pressure P of the atmospheric gas, that is, the pressure is high, but conversely, when the pressure is low, the sensor output becomes dominated by so-called Knudsen diffusion. In this case, the limiting current value ILnr is expressed by the following equation (3).

4FD・・SPo・       (3)T L (k
l ””   RT 、2ここで、Dknはクヌーセン
拡散における酸素の気体拡散係数で、その他の記号は前
記と同様である。この気体拡散係数りいはノーマル拡散
のときの(2)式とは異なり、雰囲気ガスの全圧Pには
依存せず温度に依存し次の(4)式で表される。
4FD・・SPo・ (3) T L (k
l ”” RT , 2 where Dkn is the gas diffusion coefficient of oxygen in Knudsen diffusion, and the other symbols are the same as above. Unlike the equation (2) for normal diffusion, this gas diffusion coefficient Ri does not depend on the total pressure P of the atmospheric gas, but depends on the temperature, and is expressed by the following equation (4).

Dk、l= 0.486d 、/ T/IJ     
   (4)ここで、dはセンサの気体流通孔の直径で
あり、問は気体の平均分子量を示す。従って、(3)式
と(4)式とからセンサが一定温度で気体拡散孔直径d
を除くセンサの構造が一定であり、雰囲気ガスの構成が
一定であれば、限界電流値IL(klは気体拡散孔直径
dと酸素分圧PO□とに比例することが判る。即ち、 It++o−KI−d  −PO2(Kl:定数)(5
)更に気体拡散孔直径dが一定であれば ILfア〉=に2・Po2(K2:定数)(6)となる
。そこで雰囲気ガスの全圧をPとして(6)式を変形す
ると h<*r=Kz・(Po□/P)  ・P(7)となり
、ここでPo2/Pは酸素濃度である。従って、一定の
酸素濃度下では限界電流値IL(k)は雰囲気ガスの全
圧即ち圧力に比例するので、この限界電流値■Lck、
を知ることによって圧力Pを求めることができる。
Dk, l = 0.486d, / T/IJ
(4) Here, d is the diameter of the gas flow hole of the sensor, and Q is the average molecular weight of the gas. Therefore, from equations (3) and (4), the sensor has a gas diffusion hole diameter d at a constant temperature.
It can be seen that if the structure of the sensor except for KI-d-PO2 (Kl: constant) (5
) Furthermore, if the gas diffusion hole diameter d is constant, ILfA>=2.Po2 (K2: constant) (6). Therefore, when formula (6) is modified by setting the total pressure of the atmospheric gas as P, it becomes h<*r=Kz·(Po□/P)·P(7), where Po2/P is the oxygen concentration. Therefore, under a constant oxygen concentration, the limiting current value IL(k) is proportional to the total pressure of the atmospheric gas, so this limiting current value ■Lck,
By knowing, the pressure P can be determined.

しかし、ノーマル拡散が支配的か、クヌーセン拡散が支
配的になるかは、気体のいわゆる平均自由行路(mea
n free path)λとセンサの気体流通孔直径
dで決まる。即ち、 d)λ  のときノーマル拡散  (8)d≦λ  の
ときクヌーセン拡散 (9)ここで、λは周知の如< 
 (10)式で与えられる。
However, whether normal diffusion or Knudsen diffusion is dominant depends on the so-called mean free path (mea) of the gas.
n free path) λ and the sensor gas flow hole diameter d. That is, d) Normal diffusion when λ (8) Knudsen diffusion when d≦λ (9) Here, λ is <
It is given by equation (10).

λ=jμ乙度”−(−)    (10)σ2P ここで、σは気体衝突直径(人)、Tはセンサの絶対温
度(K) 、Pは雰囲気ガスの全圧(a tm)である
。σは純酸素の場合3.47人、窒素の場合3.80人
、空気の場合3.71人であり、例えば、センサ温度が
450°C(723K)、雰囲気ガスの全圧1 mm)
Ig(P=1/760atm)の場合はλは純酸素のと
き140即、窒素のとき117P、空気のとき122J
rInとなり、センサの通常の気体流通孔直径d=30
−と比べると(9)式を満足するのでクヌーセン拡散の
領域となる。しかし、雰囲気ガスの全圧が非常に高くな
ると(8)式を満足し、前記の如(ノーマル拡散が支配
的となるが、雰囲気ガスの全圧が中間的な大きさの場合
はdとλとの関係が(8)式と(9)式との中間的な関
係となり、ノーマル拡散とクヌーセン拡散とが共存する
ので限界電流(11LItはIL(7,とIL〜、との
中間の値となり雰囲気ガスの全圧即ち圧力との関係は飽
和曲線を描くことになる。従って、雰囲気ガスの圧力と
限界電流との関係を予め種々の酸素濃度において求めて
おけばこの関係が飽和しない範囲において限界電流値I
Lを測定することによって雰囲気ガスの圧力を知ること
ができる。
λ=jμ −(-) (10) σ2P where σ is the gas impingement diameter (person), T is the absolute temperature of the sensor (K), and P is the total pressure of the atmospheric gas (atm). σ is 3.47 people for pure oxygen, 3.80 people for nitrogen, and 3.71 people for air (for example, when the sensor temperature is 450°C (723K) and the total pressure of the atmospheric gas is 1 mm).
In the case of Ig (P = 1/760 atm), λ is 140 for pure oxygen, 117P for nitrogen, and 122J for air.
rIn, and the sensor's normal gas flow hole diameter d=30
-, it satisfies equation (9) and becomes a region of Knudsen diffusion. However, when the total pressure of the atmospheric gas becomes very high, Equation (8) is satisfied, and as mentioned above (normal diffusion becomes dominant, but when the total pressure of the atmospheric gas is intermediate in magnitude, d and λ The relationship with is intermediate between equations (8) and (9), and since normal diffusion and Knudsen diffusion coexist, the limiting current (11LIt is an intermediate value between IL(7, and IL~). The relationship with the total pressure of the atmospheric gas, that is, the pressure, will draw a saturation curve.Therefore, if the relationship between the pressure of the atmospheric gas and the limiting current is determined in advance at various oxygen concentrations, the limit will be determined within the range where this relationship is not saturated. Current value I
By measuring L, the pressure of the atmospheric gas can be determined.

(実施例) 第1図(イ)に示す如き限界電流方式の圧力センサを用
い、同図における気体流通孔15の直径を30trmと
したとき、これを雰囲気ガス中に設置してヒータ16に
て450℃に加熱したとき種々の雰囲気ガスの圧力に対
して電圧−電流特性を求めた結果を雰囲気ガスが21%
0□−N2系および40%0□−N2系のときそれぞれ
第2図(イ)および(ロ)に示す。
(Example) Using a limiting current type pressure sensor as shown in FIG. When heated to 450℃, the voltage-current characteristics were determined for the pressure of various atmospheric gases.
The 0□-N2 system and the 40% 0□-N2 system are shown in Figures 2 (a) and (b), respectively.

そして同図における特性曲線の平坦部の電流即ち限界電
流値■、と雰囲気ガスの圧力との関係は第2図(ハ)の
如くなる。従って雰囲気ガスの種々の酸素濃度における
限界電流値と雰囲気ガスの圧力との関係を求めておけば
、ある酸素濃度における限界電流値を測定することによ
って雰囲気ガスの圧力を知ることができる。
The relationship between the current in the flat part of the characteristic curve in the same figure, that is, the limit current value (2), and the pressure of the atmospheric gas is as shown in FIG. 2 (c). Therefore, if the relationship between the limiting current value and the pressure of the atmospheric gas at various oxygen concentrations of the atmospheric gas is determined, the pressure of the atmospheric gas can be determined by measuring the limiting current value at a certain oxygen concentration.

また、雰囲気ガスとして空気中に水分がふくまれている
場合の電圧−電流特性(25℃、50%R1(のときの
実測)は第3図(イ)に示す如く二段の平坦部をもつ電
流特性となるが、第2段の平坦部の領域では水分の分解
による電流が加わるためであり、第1段の平坦部が酸素
のイオン化による電流であるので、この第1段の平坦部
の電流値を限界電流値として第3図(ロ)に雰囲気ガス
の圧力との関係を得ることができた。従って、水分を含
む場合は、印加電圧を適当に選ぶ(第3図の場合はほぼ
1ボルト)ことによって第1段の平坦部の限界電流値を
測定して雰囲気ガスの圧力を知ることができる。
In addition, the voltage-current characteristics (actual measurements at 25°C and 50% R1) when the air contains moisture as an atmospheric gas have two flat parts as shown in Figure 3 (a). Regarding the current characteristics, this is due to the current applied due to the decomposition of water in the flat area of the second stage, and the current due to the ionization of oxygen in the flat area of the first stage. Using the current value as the limiting current value, we were able to obtain the relationship with the pressure of the atmospheric gas in Figure 3 (b). Therefore, if moisture is included, the applied voltage should be selected appropriately (in the case of Figure 3, it is approximately 1 volt), the pressure of the atmospheric gas can be determined by measuring the limiting current value of the flat portion of the first stage.

ここで、限界電流方式の酸素センサとは、酸素イオン伝
導性を有する固体電解質電極面に対して、酸素分子(イ
オン)供給を制限する(或いは拡散を律速する)手段を
設けたセンサを総称するものであって、両面に電極が形
成された固体電解質に、外気の間の微小な気体流通孔が
開けられた中空カプセルを被冠し、該気体流通孔の気体
拡散抵抗によって生ずる限界電流特性を利用する上記形
状以外には拡散抵抗を生じる気体流通孔の代わりに多孔
質物質(微細な貫通孔を多数有する多孔性物質、例えば
多孔質セラミック)を上記カプセルの一部に設けたもの
、固体電解質の一面或いは両面、又は該固体電解質全体
を包囲するように多孔質物質を形成したもの、固体電解
質の電極上に多孔性の拡散制御体を設け、更にその上に
拡散を阻止する緻密な層を一部あるいは全面に形成した
もの、または電極上に直接緻密層を形成したもの、僅か
な間隙を持たせた少なくともどちらか一方が両面に電極
が形成された固体電解質の板を並べその間隙による気体
の拡散抵抗作用を利用したもの、一端部が閉塞された筒
状の固体電解質の内外面に電極が設けられ、その一方の
電極側に前述の如き拡散制御体を設けたタイプ等、固体
電解質の酸素イオン移送現象を制限(律速)することに
よって濃度を電圧−電流特性より直接あるいは他の測定
方法により間接的に測定する方式のものを用いることが
できる。ただし、拡散制御体として多孔性の物質を用い
た場合には前記実施例に示される如く気体流通孔径のみ
をもってクヌーセン拡散の要因とすることはできず、多
孔度、孔形状、厚みなどの種々のパラメータを総合した
ものによって決定される。
Here, the limiting current type oxygen sensor is a general term for sensors that are provided with a means to limit the supply of oxygen molecules (ions) (or to limit the rate of diffusion) to the solid electrolyte electrode surface having oxygen ion conductivity. A solid electrolyte with electrodes formed on both sides is covered with a hollow capsule in which minute gas flow holes are opened between the outside air, and the limiting current characteristics caused by the gas diffusion resistance of the gas flow holes are In addition to the above-mentioned shapes to be used, capsules in which a porous material (a porous material with many fine through-holes, e.g., porous ceramic) is provided in a part of the capsule in place of gas flow holes that cause diffusion resistance, and solid electrolytes. A porous substance is formed to surround one or both sides of the solid electrolyte, or the solid electrolyte has a porous diffusion control body on the electrode, and a dense layer that prevents diffusion is further provided on the solid electrolyte electrode. A solid electrolyte plate formed on a part or the entire surface, or a dense layer formed directly on the electrode, or a solid electrolyte plate with electrodes formed on both sides with a slight gap between them. Some types of solid electrolytes include those that utilize the diffusion resistance effect of solid electrolytes, and types that have electrodes on the inner and outer surfaces of a cylindrical solid electrolyte with one end closed, and a diffusion control body as described above on one of the electrodes. It is possible to use a system in which the concentration is measured directly by voltage-current characteristics or indirectly by other measurement methods by limiting (rate-limiting) the oxygen ion transport phenomenon. However, when a porous material is used as a diffusion control material, the gas flow pore size alone cannot be considered as a factor for Knudsen diffusion as shown in the above example, and various factors such as porosity, pore shape, thickness, etc. It is determined by a combination of parameters.

(発明の効果) 前記の如く本発明に基づきガスセンサと同一構造の圧力
センサを用いてガス濃度既知の雰囲気ガス中における限
界電流値を測定することによって       ′容易
に雰囲気ガスの圧力を知ることができる。しかも使用す
るセンサは高温に耐えるので高温における測定が可能で
あるとともにダイヤフラムの如きもろい部品がなく丈夫
である。なお、この圧力がおおよそ100mmHg以下
の場合に有効である。
(Effects of the Invention) As described above, by measuring the limiting current value in an atmospheric gas of known gas concentration using a pressure sensor having the same structure as a gas sensor based on the present invention, the pressure of the atmospheric gas can be easily determined. . Moreover, the sensor used can withstand high temperatures, so it is possible to perform measurements at high temperatures, and it is durable as it does not have fragile parts such as a diaphragm. Note that this is effective when this pressure is approximately 100 mmHg or less.

また、固体電解質に水素イオン伝導性のものを用いれば
水素雰囲気における圧力の測定にも応用することができ
ることは言うまでもない。
It goes without saying that if a hydrogen ion conductive solid electrolyte is used, the method can also be applied to pressure measurement in a hydrogen atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明に用いる圧力センサの断面図、第
1図(ロ)は同センサの電圧−電流特性の傾向を示すグ
ラフ、第2図(イ)、(ロ)および第3図(イ)は圧力
センサの電圧−電流特性の実測値を示すグラフ、第2図
(ハ)および第3図(ロ)は圧力センサの限界電流値と
雰囲気ガスの圧力との関係を示すグラフ、第4図は従来
の半導体圧力センサの断面図である。 11:固体電解質、12ニアノード、13:カソード、
14:微小な気体流通孔、15:気体拡散制御体。 代理人  弁理士  竹 内  9 第1図 (イ) (ロ) 電圧 第 2 図 (ロ) 第2図(ハ) 亙力(mmHg) 第3図(イ) 電涯 (V) 特開口aG3−180847 (6) 北方(mmHg)
Figure 1 (a) is a cross-sectional view of the pressure sensor used in the present invention, Figure 1 (b) is a graph showing the tendency of the voltage-current characteristics of the sensor, Figures 2 (a), (b) and 3 Figure (a) is a graph showing the actual measured values of the voltage-current characteristics of the pressure sensor, and Figures 2 (c) and 3 (b) are graphs showing the relationship between the limit current value of the pressure sensor and the pressure of the atmospheric gas. , FIG. 4 is a sectional view of a conventional semiconductor pressure sensor. 11: solid electrolyte, 12 near node, 13: cathode,
14: Microscopic gas flow hole, 15: Gas diffusion control body. Agent Patent Attorney Takeuchi 9 Figure 1 (A) (B) Voltage Figure 2 (B) Figure 2 (C) Power (mmHg) Figure 3 (A) Electric power (V) Special opening aG3-180847 (6) Northern (mmHg)

Claims (1)

【特許請求の範囲】[Claims] イオン伝導性を持った固体電解質の両面に多孔質電極を
設け、その一方をアノード、他方をカソードとし、カソ
ードを蔽うガス拡散制御体を設け低圧下において両電極
間に電圧を印加してガスイオンをキャリヤとして流れる
電流により雰囲気ガスの圧力を測定することを特徴とす
る固体電解質を用いた圧力測定方法。
Porous electrodes are provided on both sides of a solid electrolyte with ion conductivity, one of which is an anode and the other is a cathode, a gas diffusion control body is provided that covers the cathode, and a voltage is applied between both electrodes under low pressure to generate gas ions. A pressure measurement method using a solid electrolyte, characterized in that the pressure of an atmospheric gas is measured by a current flowing as a carrier.
JP62012230A 1987-01-23 1987-01-23 Pressure measurement using solid electrolyte Pending JPS63180847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012230A JPS63180847A (en) 1987-01-23 1987-01-23 Pressure measurement using solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012230A JPS63180847A (en) 1987-01-23 1987-01-23 Pressure measurement using solid electrolyte

Publications (1)

Publication Number Publication Date
JPS63180847A true JPS63180847A (en) 1988-07-25

Family

ID=11799568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012230A Pending JPS63180847A (en) 1987-01-23 1987-01-23 Pressure measurement using solid electrolyte

Country Status (1)

Country Link
JP (1) JPS63180847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512511A (en) * 2003-11-12 2007-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Equipment for the measurement of gas pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512511A (en) * 2003-11-12 2007-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Equipment for the measurement of gas pressure

Similar Documents

Publication Publication Date Title
JP4205792B2 (en) NOx decomposition electrode and NOx concentration measuring device
Taliercio et al. Realization of porous silicon membranes for gas sensor applications
JPS63738B2 (en)
JPH08122287A (en) Measuring device and method of concentration of gas component
JPS59184854A (en) Oxygen sensor
US3763850A (en) Or measuring the partial pressure of a gas in a fluid
US7601233B2 (en) Electrochemical gas sensor with passage for receiving gas
JP2008008665A (en) Limiting current type oxygen sensor
JPS63180847A (en) Pressure measurement using solid electrolyte
KR101011296B1 (en) Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
US6129824A (en) Electrochemical sensor for the detection of hydrogen chloride
JP4115014B2 (en) Hydrogen gas sensor
JPS58109846A (en) Element for oxygen detection and its preparation
JPS6312252B2 (en)
JPS63172953A (en) Method for measuring alcohol concentration by using solid electrolyte
RU2795670C1 (en) Sensor for measuring oxygen concentration in a gas mixture
JPS63295958A (en) Measurement of gas density using solid electrolyte
JPS62145161A (en) Oxygen sensor
JPS63172952A (en) Method for measuring hydrogen concentration by using solid electrolyte
JPH0234605Y2 (en)
JPH07167829A (en) Gas sensor
JPH02179459A (en) Structure of moisture sensitive element and humidity sensor
Hu et al. Carbon dioxide gas-sensing electrode based on a pH-ISFET with back-side contacts
Akasaka et al. Oxygen and Humidity Sensing Property of a Limiting Current-Type Thin-Film YSZ-Based Sensor on a Micro-Hotplate
CN114594150A (en) Solid diaphragm, preparation method thereof and gas sensor provided with solid diaphragm