JPS63295958A - Measurement of gas density using solid electrolyte - Google Patents

Measurement of gas density using solid electrolyte

Info

Publication number
JPS63295958A
JPS63295958A JP62032455A JP3245587A JPS63295958A JP S63295958 A JPS63295958 A JP S63295958A JP 62032455 A JP62032455 A JP 62032455A JP 3245587 A JP3245587 A JP 3245587A JP S63295958 A JPS63295958 A JP S63295958A
Authority
JP
Japan
Prior art keywords
gas
diffusion
oxygen
solid electrolyte
knudsen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032455A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62032455A priority Critical patent/JPS63295958A/en
Publication of JPS63295958A publication Critical patent/JPS63295958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To measure the density of a gas accurately, by measuring a threshold current in an atmosphere of a low pressure with a threshold current type gas sensor so that a gas to a sensor element is diffused in a Knudsen's manner. CONSTITUTION:A solid electrolyte 1 of stabilized zirconia is provided with an anode 2 and a cathode 3 on both sides and is heated with a heater 6 up to several 100 deg.C. When a voltage is applied to both electrodes 2 and 3, oxygen in an atmosphere is turned with the cathode 3 to oxygen ions and transferred to the anode 2 through the solid electrolyte 1, causing a current to flow. The diffusion of oxygen flowing form a gas passage hole 5 of a gas diffusion control body 4 is controlled to be flat at an area where the applied voltage exists, developing a threshold current. here, the atmosphere gas is brought down to a low pressure to cause a Knudsen's diffusion. In the atmosphere of Knudsen's diffusion, the threshold current is linearly proportional to the concentration of oxygen. Thus, the knudsen's diffusion is caused under the atmosphere of a low pressure, thereby enabling highly accurate measurement of the density of a gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気体中に含まれる特定のガス濃度を測定する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the concentration of a specific gas contained in a gas.

(従来の技術) 気体中のガス濃度、就中酸素濃度を測定する方法は種々
実用されているが、その一つとして固体電解質を用いた
限界電流式酸素センサを利用する方法が知られており、
本願発明者等による先行技術例(特願昭61−5050
号、特願昭61−237985号等)がある。この酸素
センサの酸素センサ素子は第1図に示すように、例えば
安定化ジルコニアからなる固体電解質10両面にアノー
ド2およびカソード3が設けられており、ヒータ6によ
って数百℃の高温に加熱された固体電解質1の両電極間
に電圧を印加するとガス中に含まれる酸素はカソード3
で還元され酸素イオンとなり、この酸素イオンが固体電
解質中の酸素イオン空格子を介してアノード2に移送さ
れることにより、この酸素イオンをキャリヤとする電流
が流れる。この電流はカソード側に被冠されているキャ
ップ状の気体拡散制御体4に設けられた微小な気体流通
孔5により酸素の拡散が制御されることによって、印加
電圧のある領域において平坦部を生ずる。この電圧−電
流の特性は第2図の如くなり平坦部における電流値はい
わゆる限界電流と呼ばれるが、同図に見られる如く酸素
濃度によって異なり、限界電流値と酸素濃度との関係は
第3図の如くなり、限界電流値はガス中の酸素濃度に依
存する。このことから、上記の酸素センサを用いて限界
電流値から酸素濃度を測定する方法がとられている。
(Prior art) There are various methods in practice for measuring gas concentration, especially oxygen concentration, in gas, and one known method is to use a limiting current type oxygen sensor using a solid electrolyte. ,
Examples of prior art by the inventors of the present application (Japanese Patent Application No. 61-5050
No. 61-237985, etc.). As shown in FIG. 1, the oxygen sensor element of this oxygen sensor has an anode 2 and a cathode 3 on both sides of a solid electrolyte 10 made of, for example, stabilized zirconia, and is heated to a high temperature of several hundred degrees Celsius by a heater 6. When a voltage is applied between both electrodes of the solid electrolyte 1, the oxygen contained in the gas is transferred to the cathode 3.
The oxygen ions are reduced to oxygen ions, and the oxygen ions are transferred to the anode 2 via the oxygen ion vacancies in the solid electrolyte, so that a current using the oxygen ions as carriers flows. This current generates a flat portion in a region where the applied voltage is present because oxygen diffusion is controlled by minute gas flow holes 5 provided in a cap-shaped gas diffusion control body 4 that is placed on the cathode side. . This voltage-current characteristic is shown in Figure 2, and the current value at the flat part is called the so-called limiting current, but as seen in the figure, it varies depending on the oxygen concentration, and the relationship between the limiting current value and the oxygen concentration is shown in Figure 3. The limiting current value depends on the oxygen concentration in the gas. For this reason, a method has been adopted in which the oxygen concentration is measured from the limiting current value using the oxygen sensor described above.

前記の如き固体電解質を用いた限界電流式酸素センサを
利用した酸素濃度測定方法では雰囲気気体の圧力が通常
の圧力即ち1気圧前後における環境での測定が前提とな
っており、第2図および第3図に示す特性は1気圧下に
おける実測値であるが、この場合の電圧−電流特性は酸
素ガスの気体流通孔5からのいわゆるノーマル拡散がも
とになっている。一方雰囲気気体の圧力が低いときはい
わゆるクヌーセン拡11kが支配的になるのであるが、
気体の拡散がノーマル拡散が支配的か、クヌーセン拡散
が支配的になるかは、気体のいわゆる平均自由行路(m
ean free path)λとセンサの気体流通孔
5の直径dで決まる。即ち、 d)λ  のときノーマル拡散  (1)d≦λ  の
ときクヌーセン拡散 (2)となり、λは周知の如り(
3)式で与えられる。
The oxygen concentration measurement method using a limiting current type oxygen sensor using a solid electrolyte as described above assumes measurement in an environment where the pressure of the atmospheric gas is normal pressure, that is, around 1 atm. The characteristics shown in FIG. 3 are actually measured values under 1 atmosphere, but the voltage-current characteristics in this case are based on so-called normal diffusion of oxygen gas from the gas flow holes 5. On the other hand, when the pressure of the atmospheric gas is low, the so-called Knudsen expansion 11k becomes dominant.
Whether the gas diffusion is dominated by normal diffusion or Knudsen diffusion depends on the so-called mean free path (m
(ean free path) λ and the diameter d of the gas flow hole 5 of the sensor. That is, d) Normal diffusion when λ (1) Knudsen diffusion when d≦λ (2) As is well known, λ is (
3) Given by Eq.

3.06X10弓 T λ=、 t p     Cp)    (3)ここで
、σは気体衝突直径(入)、Tはセンサの、絶対温度(
K) 、Pは雰囲気気体の全圧(a tm)である。σ
は純酸素の場合3.47人、窒素の場合3.80人、空
気の場合3.71人であり、例えば、センサ温度T−4
50℃(723K)、P=1 atmのときはλは酸素
の場合0.18a、窒素の場合0.15u、空気の場合
0.16.1511となる。そして通常のセンサのdは
30tmであるので(1)式を満足することになる。即
ち、1気圧下ではノーマル拡散が支配的になる。このと
きの限界電流値ILIOゎは 周知の如く次の(4)式
によって表される。
3.06X10 bow T λ=, t p Cp) (3) Here, σ is the gas impingement diameter (in), and T is the sensor's absolute temperature (
K), P is the total pressure of the atmospheric gas (atm). σ
is 3.47 people for pure oxygen, 3.80 people for nitrogen, and 3.71 people for air. For example, sensor temperature T-4
At 50°C (723K) and P=1 atm, λ is 0.18a for oxygen, 0.15u for nitrogen, and 0.16.1511 for air. Since d of a normal sensor is 30 tm, equation (1) is satisfied. That is, normal diffusion becomes dominant under 1 atm. As is well known, the limiting current value ILIO at this time is expressed by the following equation (4).

IL(OX) =   ””’  b (I  X(o
t) )  (4)Tl ここで、F:ファラディ定数、D:ノーマル拡散におけ
る酸素の気体拡散係数、R:気体定数、T:センサの絶
対温度、S:気体流通孔面積、1:気体流通孔長さ、P
:雰囲気気体の全圧、X(ox):雰囲気気体中の酸素
モル分率(ここでX (ox) X 100はパーセン
ト濃度を表わす)である。ここで酸素の気体拡散係数り
は一般に次の(5)式で表される。
IL(OX) = ””' b (I
t) ) (4) Tl where, F: Faraday constant, D: oxygen gas diffusion coefficient in normal diffusion, R: gas constant, T: absolute temperature of sensor, S: gas flow hole area, 1: gas flow hole length, P
: total pressure of the atmospheric gas; Here, the gas diffusion coefficient of oxygen is generally expressed by the following equation (5).

o = o、 < 」=>”・」−(5’)73P ここで、Dsは273K 、 1気圧下での気体拡散係
数、αは定数(通常1.5〜2で気体の種類によって異
なる)である。従って、(4)式と(5)式とから、ノ
ーマル拡散領域では限界電流値IL(Of)は雰囲気ガ
スの全圧Pには依存せず無関係で酸素モル分率即ち酸素
濃度に対して非直線的になり、第3図に示す如き曲線を
描(。
o = o, <”=>”・”-(5')73P Here, Ds is 273K, gas diffusion coefficient under 1 atmosphere, α is a constant (usually 1.5 to 2 and varies depending on the type of gas) It is. Therefore, from equations (4) and (5), in the normal diffusion region, the limiting current value IL(Of) does not depend on the total pressure P of the atmospheric gas and is independent of the oxygen mole fraction, that is, the oxygen concentration. It becomes a straight line and draws a curve as shown in Figure 3 (.

(発明が解決しようとする問題点) 前記の如きノーマル拡散が支配的な場合は(4)式から
純酸素即ち酸素100χのときはX(oz)−1として = oo(6) となり、正確な限界電流値IL(021は測定できない
。そして第2図に実測値を示す如く酸素濃度が高い場合
には電流値が限界電流値に到達するのに高い電圧が必要
になる。しかし、あまり高い電圧をかけるとジルコニア
固体電解質自身の分解電圧領域に入ってしまい、(6)
式による如く全く限界電流領域が観察されな(なってし
まうか、観察されても狭い電圧幅の領域になってしまう
。また限界電流値を得るための印加電圧を一定にセット
することができず酸素濃度が高い場合には上記の如く印
加電圧を高くする必要があり、電流の平坦部が狭いため
に限界電流値が求め難い難点があり、第3図から判るよ
うに上記の如く限界電流値と酸素濃度との関係は非直線
的であり、実用的には限界電流値と酸素濃度とがほぼ比
例関係にある酸素濃度約30%以下の場合に適している
が、逆に酸素濃度が30%以上の場合精度が悪く濃度が
100%近くなると測定できずあまり好ましくない。雰
囲気気体が酸素以外のガス種の場合もほぼ上記と同様で
ある。
(Problem to be solved by the invention) When normal diffusion is dominant as described above, from equation (4), when pure oxygen, that is, oxygen is 100 The limiting current value IL (021) cannot be measured.As shown in the actual measured value in Figure 2, when the oxygen concentration is high, a high voltage is required for the current value to reach the limiting current value.However, if the voltage is too high If the voltage is multiplied by
According to the formula, the limiting current region is not observed at all (or, even if it is observed, it is in a narrow voltage width region.Also, the applied voltage to obtain the limiting current value cannot be set constant). When the oxygen concentration is high, it is necessary to increase the applied voltage as described above, and there is a difficulty in determining the limiting current value because the flat part of the current is narrow. The relationship between oxygen concentration and oxygen concentration is non-linear, and in practice it is suitable when the oxygen concentration is approximately 30% or less, where the limiting current value and oxygen concentration have a nearly proportional relationship. % or more, the accuracy is poor and if the concentration approaches 100%, it cannot be measured, which is not very preferable.If the atmospheric gas is a gas other than oxygen, the same as above is also applied.

(問題点を解決するための手段) 本発明は、前記の如き問題点を解決するためになされた
ものである。前記の如く、通常の1気圧(760mm1
g)程度の雰囲気気体の場合は酸素の拡散はノーマル拡
散によるが、しかし、雰囲気気体の圧力がl mmHg
程度の低い圧力の場合は酸素の拡散はいわゆるクヌーセ
ン拡散によることが知られている。従って、本発明では
測定する雰囲気気体をクヌーセン拡散が起こるような圧
力に於いて限界電流値を測定して雰囲気中の特定のガス
種濃度を測定する方法を提供するものである。通常、ク
ヌーセン拡散はノーマル拡散よりも低い圧力下で起こる
ので、常圧の測定気体ではこのままの圧力状態ではクヌ
ーセン拡散を実現できない。しかし、この場合には測定
する雰囲気気体をポンプ等で吸引し、更に吸引量をニー
ドルバルブ等で低圧に調節すればクヌーセン拡散を容易
に実現することができる。
(Means for Solving the Problems) The present invention has been made in order to solve the above problems. As mentioned above, the normal pressure of 1 atm (760 mm1
In the case of an atmospheric gas of the order of g), oxygen diffusion is by normal diffusion, but if the pressure of the atmospheric gas is
It is known that at moderate pressures, oxygen diffusion occurs through so-called Knudsen diffusion. Therefore, the present invention provides a method for measuring the concentration of a specific gas species in the atmosphere by measuring the limiting current value of the atmospheric gas to be measured at a pressure that causes Knudsen diffusion. Since Knudsen diffusion usually occurs at a lower pressure than normal diffusion, Knudsen diffusion cannot be achieved in the measurement gas at normal pressure under the same pressure conditions. However, in this case, Knudsen diffusion can be easily achieved by sucking the atmospheric gas to be measured using a pump or the like and further adjusting the suction amount to a low pressure using a needle valve or the like.

(作用) 前記(3)式においてP=1mmHg=1/7’60a
tn+のときは気体の平均自由行路λは酸素のとき14
0I11n、窒素のとき117jm1空気のとき122
pとなる。従って、通常のセンサの気体流通孔の直径d
は30uであるが、dが100p以下ならば前記(2)
式を満足するので、クヌーセン拡散が支配的となる。こ
の場合限界電流値IL (02) knは次の(7)式
で表される。
(Function) In the above formula (3), P = 1 mmHg = 1/7'60a
When tn+, the mean free path λ of gas is 14 when oxygen
0I11n, 117jm1 for nitrogen, 122 for air
It becomes p. Therefore, the diameter d of the gas flow hole of a normal sensor
is 30u, but if d is 100p or less, the above (2)
Since the equation is satisfied, Knudsen diffusion becomes dominant. In this case, the limiting current value IL (02) kn is expressed by the following equation (7).

IL Toり k+s =世潤辷−0X(oz)   
(7)Tl ここで、DkRはクヌーセン拡散における酸素の気体拡
散係数で、その他の記号は前記と同様である。この気体
拡散係数り、はノーマル拡散のときの(5)式とは異な
り、雰囲気気体の全圧Pには依存せず温度に依存し次の
(8)式で表される。
IL Tori k+s=Sejun 辷-0X(oz)
(7) Tl Here, DkR is the gas diffusion coefficient of oxygen in Knudsen diffusion, and the other symbols are the same as above. This gas diffusion coefficient, unlike the equation (5) for normal diffusion, does not depend on the total pressure P of the atmospheric gas but depends on the temperature, and is expressed by the following equation (8).

D m、1= 0.486d 117r       
(8”)ここで、dはセンサの気体流通孔の直径であり
、8は気体の平均分子量を示す。従って、(7)式と(
8)式とからセンサの構造及び雰囲気気体の構成が一定
であれば、限界電流値IL(Of□7は酸素モル分率X
(ox)に直線的に比例することが判り100%酸素の
場合にも測定できる。
D m, 1 = 0.486d 117r
(8”) Here, d is the diameter of the gas flow hole of the sensor, and 8 represents the average molecular weight of the gas. Therefore, equation (7) and (
From equation 8), if the structure of the sensor and the composition of the atmospheric gas are constant, the limiting current value IL (Of□7 is the oxygen molar fraction
(ox), and can be measured even in the case of 100% oxygen.

(実施例) 第1図に示す如き限界電流式の酸素センサで、気体流通
孔5の直径が30−のものを用い、これを雰囲気ガス1
 s+mHgの中に設置して、ヒータ6にてセンサを4
50℃に加熱し、雰囲気気体の酸素濃度を種々異ならせ
たときの電圧−電流特性を実測し第4図に示す如き結果
を得た。この場合は勿論前述の如くクヌーセン拡散が支
配的であり、第4図から限界電流値と酸素濃度の関係を
求めると前記理論と同様に直線的に比例している。この
ことから酸素濃度が100%のときも測定でき、第4図
から判るように印加電圧をある一定の値にセットしてお
けばあらゆる酸素濃度の場合も測定できることが判る。
(Example) A limiting current type oxygen sensor as shown in FIG.
s + mHg, and the sensor is heated to 4 with heater 6.
The voltage-current characteristics were measured when heated to 50° C. and the oxygen concentration of the atmosphere gas was varied, and the results shown in FIG. 4 were obtained. In this case, of course, as mentioned above, Knudsen diffusion is dominant, and when the relationship between the limiting current value and the oxygen concentration is determined from FIG. 4, it is linearly proportional as in the above theory. From this, it can be seen that measurement is possible even when the oxygen concentration is 100%, and as can be seen from FIG. 4, it is possible to measure any oxygen concentration by setting the applied voltage to a certain constant value.

この場合前記(7)式から判るようにクヌーセン拡散領
域では限界電流は雰囲気気体の圧力に依存するので、こ
の圧力が既知である必要がある。
In this case, as can be seen from equation (7) above, the limiting current in the Knudsen diffusion region depends on the pressure of the atmospheric gas, so this pressure needs to be known.

上記は雰囲気気体の圧力がクヌーセン拡散の起こるl 
mm11gの場合の測定結果であるが、雰囲気気体の圧
力が高くノーマル拡散が支配的になる場合は雰囲気気体
をポンプ等で吸引し、更に吸引量をニードルパルプ等で
低圧に調節してクヌーセン拡散が起こるようにしてやれ
ば、雰囲気気体の圧力が高くても酸素濃度の測定が可能
である。
The above shows that the pressure of the atmospheric gas is l where Knudsen diffusion occurs.
The measurement results are for mm11g, but if the pressure of the atmospheric gas is high and normal diffusion becomes dominant, the atmospheric gas is sucked in with a pump, etc., and the suction amount is adjusted to a low pressure with a needle pulp, etc. to prevent Knudsen diffusion. If this is allowed to occur, the oxygen concentration can be measured even if the pressure of the atmospheric gas is high.

なお、上記の如き酸素センサの作動温度をTとすれば、 で表され、ここでRは気体定数、Qは酸素イオン(0”
−”)の固体電解質中の拡散における活性化エネルギー
、μは電極間の電気化学ポテンシャル、Xは固体電解質
の厚さ、■、は限界電流値である。
In addition, if the operating temperature of the oxygen sensor as mentioned above is T, it is expressed as follows, where R is the gas constant and Q is the oxygen ion (0"
−”) in the solid electrolyte, μ is the electrochemical potential between the electrodes, X is the thickness of the solid electrolyte, and ■ is the limiting current value.

(9)式から判るようにμが一定であるならば(印加す
る電圧で決まる)、■1を小さくすればするほどセンサ
の作動温度Tは低くなる。クヌーセン拡散のときの気体
拡散係数Dknはノーマル拡散のときの気体拡散係数り
よりも1〜2桁小さいので(4)式および(7)式なら
びに第2図と第4図とを比較して明らかなようにクヌー
セン拡散のときの限界電流値IL(Oゎ□はノーマル拡
散のときの限界電流値IL(oゎよりも1〜2桁小さい
ので、クヌーセン拡散領域では(9)弐からセンサの作
動温度Tは小さくなり、即ち、本発明の測定方法によれ
ば酸素センサは低温作動が可能であることが判る。
As can be seen from equation (9), if μ is constant (determined by the applied voltage), the smaller 1 is, the lower the sensor operating temperature T will be. The gas diffusion coefficient Dkn during Knudsen diffusion is 1 to 2 orders of magnitude smaller than the gas diffusion coefficient during normal diffusion, which is clear by comparing equations (4) and (7) and Figures 2 and 4. As shown above, the limiting current value IL (Oゎ□) during Knudsen diffusion is one to two orders of magnitude smaller than the limiting current value IL (oゎ) during normal diffusion, so in the Knudsen diffusion region, the sensor operates from (9) 2 It can be seen that the temperature T becomes small, that is, the oxygen sensor can operate at low temperatures according to the measuring method of the present invention.

ところで、実際の測定においては各種の条件により、完
全なりヌーセン拡散の発生を実現させることは困難な場
合が多いが、クヌーセン拡散とノーマル拡散が入り混じ
った状態であっても、クヌーセン拡散が支配的であり実
質的にクヌーセン拡散が実現できていれば、高いガス濃
度測定が可能である。
By the way, in actual measurements, it is often difficult to achieve complete Nudsen diffusion due to various conditions, but even if Knudsen diffusion and normal diffusion are mixed, Knudsen diffusion is dominant. Therefore, if Knudsen diffusion can be substantially realized, high gas concentration measurement is possible.

ここで、限界電流式の酸素センサとは、酸素イオン伝導
性を有する固体電解質電極面に対して、酸素分子(イオ
ン)供給を制限する(或いは拡散を律速する)手段を設
けたセンサを総称するものであって、両面に電極が形成
された固体電解質に、外気の間の微小な気体流通孔が開
けられた中空カプセルを被冠し、該気体流通孔の気体拡
散抵抗によって生ずる限界電流特性を利用する上記形状
以外には拡散抵抗を生じる気体流通孔の代わりに多孔質
物質(微細な貫通孔を多数有する多孔性物質、例えば多
孔質セラミック)を上記カプセルの一部に設けたもの、
固体電解質の一面或いは両面、又は該固体電解賞全体養
包囲するように多孔質物質を形成したもの、固体電解質
の電極上に多孔性の拡散制御体を設け、更にその上に拡
散を阻止する緻密な層を一部あるいは全面に形成したも
の、または電極上に直接緻密層を形成したもの、僅かな
間隙を持たせた少なくともどちらか一方が両面に電極が
形成された固体電解質の板を並べその間隙による気体の
拡散抵抗作用を利用したもの、一端部が閉塞された筒状
の固体電解質の内外面に電極が設けられ、その一方の電
極側に前述の如き拡散制御体を設けたタイプ等、固体電
解質の酸素イオン移送現象を制限(律速)することによ
って濃度を電圧−電流特性より直接あるいは他の測定方
法により間接的に測定する方式のものを用いることがで
きる。ただし、拡散制御体として多孔性の物質を用いた
場合には前記実施例に示される如く気体流通孔径のみを
もってクヌーセン拡散発生の要因とすることはできず、
多孔度、孔形状、厚みなどの種々のパラメータを総合し
たものによって決定される。
Here, the limiting current type oxygen sensor is a general term for sensors that are provided with a means to limit the supply of oxygen molecules (ions) (or to limit the rate of diffusion) to the solid electrolyte electrode surface having oxygen ion conductivity. A solid electrolyte with electrodes formed on both sides is covered with a hollow capsule in which minute gas flow holes are opened between the outside air, and the limiting current characteristics caused by the gas diffusion resistance of the gas flow holes are In addition to the above-mentioned shape to be used, a part of the capsule is provided with a porous material (a porous material having a large number of fine through-holes, for example, a porous ceramic) instead of a gas flow hole that causes diffusion resistance;
A porous substance is formed to surround one or both sides of a solid electrolyte, or the entire solid electrolyte, a porous diffusion control body is provided on the electrode of the solid electrolyte, and a dense material is further placed on the solid electrolyte to prevent diffusion. A solid electrolyte plate is formed on a part or the entire surface, or a dense layer is formed directly on the electrode, or a solid electrolyte plate with electrodes formed on at least one side on both sides with a slight gap is arranged. Types that utilize the gas diffusion resistance effect due to gaps, types that have electrodes on the inner and outer surfaces of a cylindrical solid electrolyte with one end closed, and a type that has a diffusion control body as described above on one of the electrodes, etc. It is possible to use a system in which the concentration is measured directly by voltage-current characteristics or indirectly by other measurement methods by limiting (rate-limiting) the oxygen ion transport phenomenon in the solid electrolyte. However, when a porous material is used as the diffusion control body, the gas flow pore diameter alone cannot be considered as a factor in the occurrence of Knudsen diffusion, as shown in the above example.
It is determined by a combination of various parameters such as porosity, pore shape, and thickness.

また、酸素イオン伝導体以外のガスイオン伝導体を使用
すれば、他のガス種濃度を測定することができる。例え
ば、水素ガス濃度を測定しようとする場合にはH+イオ
ン伝導体を用いる。H1イオンはプラスイオンであるか
ら電圧印加方向とイオン移送方向は同じであるので、拡
散制御体は酸素濃度測定のときとは逆にアノード側に設
けることになる。
Furthermore, if a gas ion conductor other than the oxygen ion conductor is used, the concentration of other gas species can be measured. For example, when attempting to measure hydrogen gas concentration, an H+ ion conductor is used. Since H1 ions are positive ions, the direction of voltage application and the direction of ion transport are the same, so the diffusion control body is provided on the anode side, contrary to the case of oxygen concentration measurement.

(発明の効果) 本発明によるガス濃度の測定方法によれば、前述の如く
雰囲気気体の圧力が高くても既知であればガス濃度が0
〜100%の範囲における雰囲気中の特定のガス種濃度
の測定が可能であり、しかも、このすべての範囲におい
て限界電流値とガス濃度とはほぼ直線的に比例関係にあ
るので、精度よく測定できる。しかも印加電圧を低めの
一定電圧に設定することができ、センサの加熱温度も低
くすることができる。
(Effects of the Invention) According to the method for measuring gas concentration according to the present invention, even if the pressure of the atmospheric gas is high as described above, the gas concentration can be zero if it is known.
It is possible to measure the concentration of a specific gas species in the atmosphere in the range of ~100%, and since there is an almost linear proportional relationship between the limiting current value and the gas concentration in this entire range, it can be measured with high accuracy. . Furthermore, the applied voltage can be set to a lower constant voltage, and the heating temperature of the sensor can also be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明に用いる限界電流式酸素センサの
断面図、第2図は従来の通常気圧下(latm)におけ
る酸素センサの電圧−電流特性を示すグラフ、第3図は
第2図から求めた限界電流値と酸素濃度との関係を示す
グラフ、第4図は本発明による低圧下(1mmHg)に
おける酸素センサの電圧−電流特性を示すグラフ、第5
図は第4図から求めた限界電流値と酸素濃度との関係を
示すグラフである。 1:固体電解質、2ニアノード、3:カソード′、4:
気体拡散制御体、5:気体流通孔。 代理人  弁理士  竹 内  守 手続ネ甫正書(方式) 昭和63年“7月 1日 特許庁長官 吉 1)文 毅 殿 1、事件の表示 昭和62年特許願第032455号 2、発明の名称 固体電解質を用いたガス濃度測定方法 3、補正をする者 事件との関係 特許出願人 住 所  東京都江東区木場−丁目5番1号名 称  
(51B)藤倉電線株式会社代表者 加賀谷 誠 − 4、代理人 〒101 居 所 東京都千代田区内神田二丁目15番13号6、
補正の対象 明細Sの「図面の簡単な説明」の欄 7、補正の内容
Fig. 1 (a) is a cross-sectional view of the limiting current type oxygen sensor used in the present invention, Fig. 2 is a graph showing the voltage-current characteristics of the conventional oxygen sensor under normal atmospheric pressure (latm), and Fig. 3 is a graph showing the voltage-current characteristics of the conventional oxygen sensor under normal atmospheric pressure (latm). Figure 4 is a graph showing the relationship between the limiting current value and oxygen concentration obtained from the figure. Figure 4 is a graph showing the voltage-current characteristics of the oxygen sensor under low pressure (1 mmHg) according to the present invention.
The figure is a graph showing the relationship between the limiting current value obtained from FIG. 4 and the oxygen concentration. 1: solid electrolyte, 2 near node, 3: cathode', 4:
Gas diffusion control body, 5: gas flow hole. Agent Patent Attorney Takeuchi Mori Proceedings (formula) July 1, 1988 Director General of the Patent Office Yoshi 1) Takeshi Moon 1, Indication of the case Patent Application No. 032455 of 1988 2, Title of the invention Gas concentration measurement method using solid electrolyte 3, relationship with the case of the person making the amendment Patent applicant address: 5-1 Kiba-chome, Koto-ku, Tokyo Name:
(51B) Fujikura Electric Wire Co., Ltd. Representative Makoto Kagaya - 4, Agent 101 Address 2-15-13-6 Uchikanda, Chiyoda-ku, Tokyo
Column 7 of “Brief explanation of drawings” of specification S subject to amendment, content of amendment

Claims (1)

【特許請求の範囲】[Claims] ガスイオン伝導性を持った固体電解質の両面に多孔質電
極を設け、その一方をアノード、他方をカソードとし、
いずれかの電極を蔽う気体拡散制御体を設けた限界電流
式ガスセンサを用い、雰囲気気体中の特定のガス種のセ
ンサ素子への拡散が実質的にクヌーセン拡散となるよう
な低圧の雰囲気に於いて、限界電流を測定することによ
って雰囲気気体中の特定のガス種濃度を測定することを
特徴とする固体電解質を用いたガス濃度測定方法。
Porous electrodes are provided on both sides of a solid electrolyte with gas ion conductivity, one of which is used as an anode and the other as a cathode.
Using a limiting current type gas sensor equipped with a gas diffusion controller that covers one of the electrodes, in a low-pressure atmosphere where the diffusion of a specific gas species in the atmospheric gas to the sensor element is essentially Knudsen diffusion. A gas concentration measuring method using a solid electrolyte, characterized in that the concentration of a specific gas species in an atmospheric gas is measured by measuring a limiting current.
JP62032455A 1987-02-17 1987-02-17 Measurement of gas density using solid electrolyte Pending JPS63295958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032455A JPS63295958A (en) 1987-02-17 1987-02-17 Measurement of gas density using solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032455A JPS63295958A (en) 1987-02-17 1987-02-17 Measurement of gas density using solid electrolyte

Publications (1)

Publication Number Publication Date
JPS63295958A true JPS63295958A (en) 1988-12-02

Family

ID=12359446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032455A Pending JPS63295958A (en) 1987-02-17 1987-02-17 Measurement of gas density using solid electrolyte

Country Status (1)

Country Link
JP (1) JPS63295958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354434A (en) * 1989-04-12 1991-03-08 Puritan Bennett Corp Method and apparatus for measuring unknown parameter of gas to be inspected

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354434A (en) * 1989-04-12 1991-03-08 Puritan Bennett Corp Method and apparatus for measuring unknown parameter of gas to be inspected

Similar Documents

Publication Publication Date Title
US6036841A (en) Method for measuring nitrogen oxide
JP6469464B2 (en) Gas sensor
JP3272215B2 (en) NOx sensor and NOx measuring method
US4500412A (en) Oxygen sensor with heater
JP2506551B2 (en) Wide range oxygen sensor
JP3626775B2 (en) Sensor for measuring the oxygen content in a gas mixture and method for adjusting the composition of a fuel / air mixture supplied to an internal combustion engine
JP4205792B2 (en) NOx decomposition electrode and NOx concentration measuring device
US20110036715A1 (en) Gas sensor
US4900425A (en) Oxygen sensor
CA1248198A (en) Air-fuel ratio sensor used to control an internal combustion engine
US4138881A (en) Resistor-type solid electrolyte oxygen sensor
US20100126883A1 (en) Sensor element having suppressed rich gas reaction
EP0216977B1 (en) Method and device for determining oxygen in gases
JPH0513262B2 (en)
JPH067118B2 (en) Air-fuel ratio sensor
JPS63295958A (en) Measurement of gas density using solid electrolyte
JPS6064243A (en) Method and apparatus for measuring humidity
US5972200A (en) Method for driving a wide range air to fuel ratio sensor
KR101011296B1 (en) Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
JP2805811B2 (en) Combustion control sensor
JP2002340851A (en) Gas sensor and gas concentration measurement method using it
JPS63180847A (en) Pressure measurement using solid electrolyte
JPS63172953A (en) Method for measuring alcohol concentration by using solid electrolyte
JP4119545B2 (en) Water vapor sensor
JPH04254749A (en) Laminated-type limiting-current-type oxygen sensor