JPS63180729A - Viscous fluid coupling - Google Patents

Viscous fluid coupling

Info

Publication number
JPS63180729A
JPS63180729A JP1386087A JP1386087A JPS63180729A JP S63180729 A JPS63180729 A JP S63180729A JP 1386087 A JP1386087 A JP 1386087A JP 1386087 A JP1386087 A JP 1386087A JP S63180729 A JPS63180729 A JP S63180729A
Authority
JP
Japan
Prior art keywords
viscous fluid
storage chamber
oil passage
rotor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1386087A
Other languages
Japanese (ja)
Other versions
JP2629689B2 (en
Inventor
Takatsugu Nakamura
中村 隆次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP62013860A priority Critical patent/JP2629689B2/en
Publication of JPS63180729A publication Critical patent/JPS63180729A/en
Application granted granted Critical
Publication of JP2629689B2 publication Critical patent/JP2629689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluid-Damping Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To control the quantity of viscous fluid into an operation chamber so as to improve performance by providing a divider plate between a rotor and an output member, and providing an opening/closing valve which sets the opening area of an oil passage provided on the divider plate to be small at the low temperature. CONSTITUTION:A divider plate 11 is provided between a rotor 1 and a cover 4 serving as an output shaft so as to form a reserve chamber 6, and furthermore, an operation chamber 5 sealed with a labyrinth is formed between the rotor 1 and the divider 11. In addition, an oil passage hole 14 is formed on the outer periphery portion of the divider plate 11, and then, there is provided a valve 9 for opening/closing the oil passage hole 14 by means of a temperature sensing member 7 through a rod 8 so as to control the quantity of viscous fluid which flows into the operation chamber 5 from the reserve chamber 6. Therefore, it is possible to transmit torque in accordances with the inflow quantity of viscous fluid into the operation chamber 5 so as to enable continuously linear control, thereby improving performance without either complicated structure or increase in weight and cost.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は自動車用エンジンの冷却ファン等に利用できる
粘性流体継手に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a viscous fluid coupling that can be used in a cooling fan of an automobile engine, etc.

(従来の技術) 従来も粘性流体継手は種々提案されているがその1例を
第7図について説明する。
(Prior Art) Various viscous fluid couplings have been proposed in the past, and one example will be described with reference to FIG. 7.

第7図において、ロータ1はシャフト2(入力軸)に固
定され、ケース3又はケース3及びカバー4(出力軸)
との間に作動室5a又は5bを形成し、その中に粘性流
体を満たすことで入力側より出力側へトルクを伝達する
ものである。6は貯蔵室、7は温度感応部材でロッド8
を介してバルブ9に連設されており、温度感応部材7の
感知する温度にて回転し、ロッド8を介してバルブ9を
開閉することにより、作動室5及び貯蔵室6間の粘性流
体を制御し、入力側から出力側へのトルク伝達を制御す
る。しかし、前記第7図に示す従来のものは、停止時、
粘性流体は重力により継手内下方に溜まるため、第9図
の如く貯蔵室6はもとより作動室5も粘性流体に満たさ
れることになり、再始動時に作動室5に満たされた粘性
流体により、入力側から出力2    ゛ 側へトルク伝達が行なわれ、作動室5より貯蔵室6へ粘
性流体が回収されるまでの時間、ファンが高速で回ると
いう、いわゆるつれ回り現象が発生する。
In FIG. 7, rotor 1 is fixed to shaft 2 (input shaft), and case 3 or case 3 and cover 4 (output shaft)
A working chamber 5a or 5b is formed between the two, and torque is transmitted from the input side to the output side by filling the working chamber 5a or 5b with viscous fluid. 6 is a storage chamber, 7 is a temperature sensitive member, and rod 8
The viscous fluid between the working chamber 5 and the storage chamber 6 is connected to the valve 9 via the rod 8, and rotates at the temperature detected by the temperature sensitive member 7, and opens and closes the valve 9 via the rod 8. control and control the torque transmission from the input side to the output side. However, in the conventional device shown in FIG. 7, when stopped,
Since the viscous fluid accumulates in the lower part of the joint due to gravity, not only the storage chamber 6 but also the working chamber 5 are filled with viscous fluid as shown in Fig. 9. When restarting, the viscous fluid filled in the working chamber 5 prevents the input. Torque is transmitted from the output side to the output 2'' side, and a so-called drag phenomenon occurs in which the fan rotates at high speed until the viscous fluid is collected from the working chamber 5 to the storage chamber 6.

この欠点を防止するため従来も、第8図の如く貯蔵室6
の他にロータ1の背面に相当する位置に第2貯蔵室6′
を設け、作動室5a又は5bを集約した作動室5を設け
ることで、停止時の粘性流体を貯蔵室6、作動室5及び
貯蔵室6′に蓄え、停止時の液面高さhを従来品に対し
第2貯蔵室6′の容量だけ低くし、従来の問題を解消す
るようにしたものが提案されている。
In order to prevent this drawback, conventionally, as shown in FIG.
In addition, a second storage chamber 6' is provided at a position corresponding to the back surface of the rotor 1.
By providing a working chamber 5 in which the working chambers 5a or 5b are integrated, the viscous fluid at the time of stoppage is stored in the storage chamber 6, the working chamber 5, and the storeroom 6', and the liquid level height h at the time of stoppage is lower than that of the conventional one. It has been proposed that the capacity of the second storage chamber 6' is lower than that of the product, thereby solving the conventional problems.

(発明が解決しようとする問題点) 前記第7図に示す粘性流体継手では、停止時に液面高さ
が高くなり、作動室5に満たされた粘性流体により、入
力側から出力側へトルク伝達が行なわれ、作動室5より
貯蔵室6へ粘性流体が回収されるまでの時間、ファンが
高速で回る、いわゆるつれ回り現象が発生する。
(Problems to be Solved by the Invention) In the viscous fluid coupling shown in FIG. 7, the liquid level increases when stopped, and the viscous fluid filling the working chamber 5 transmits torque from the input side to the output side. During this period, the fan rotates at high speed until the viscous fluid is collected from the working chamber 5 to the storage chamber 6, a so-called drag phenomenon.

第8図の従来の粘性流体継手では、第7図の場合の問題
点は解決できるものの、雰囲気温度に対する出力が3段
階に切替わる制御が難かしく、オン、オフの2段階制御
のみとなる。その結果オンによる稼動率が大きく、オン
、オフの切替時に発生するファンの騒音、損失馬力大に
よるエンジンの出力低下、燃費低下環の問題があった。
Although the conventional viscous fluid coupling shown in FIG. 8 can solve the problem in the case shown in FIG. 7, it is difficult to control the output to be switched in three stages depending on the ambient temperature, and only two-stage control is possible: on and off. As a result, there were problems such as a high operating rate when the switch was turned on, fan noise generated when switching between on and off, a reduction in engine output due to a large horsepower loss, and a reduction in fuel efficiency.

本発明は前記従来の問題点を解決するために提案された
ものである。
The present invention has been proposed to solve the above-mentioned conventional problems.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) このため本発明は、粘性流体継手において、貯蔵室の、
ロータ及び作動室に対し相対する位置に第2貯蔵室を設
け、前記ロータと出力部材間に位置し、前記貯蔵室を形
成するよう該出力部材に固定されると共に、前記貯蔵室
から作動室への粘性流体の流入量を制御するディバイダ
プレートを設け、該ディバイダプレートにオイル通路孔
を形成し、該オイル通路孔を開閉するバルブを設け、該
オイル通路孔とバルブの中抜孔とで形成される重合開口
の温度に対する面積が高温時より低温時が小となるよう
に構成してなるもので、これを問題点解決のための手段
とするものである。
(Means for Solving the Problems) Therefore, the present invention provides a viscous fluid coupling with
A second storage chamber is provided at a position opposite to the rotor and the working chamber, and is located between the rotor and the output member, is fixed to the output member to form the storage chamber, and is connected to the working chamber from the storage chamber. A divider plate is provided for controlling the inflow amount of viscous fluid, an oil passage hole is formed in the divider plate, a valve is provided for opening and closing the oil passage hole, and the oil passage hole is formed by the hollow hole of the valve. This structure is such that the area of the overlapping openings relative to the temperature is smaller at low temperatures than at high temperatures, and this is used as a means to solve the problem.

(作用) 作動が開始すると、温度感応部材の感応によりバルブは
回動変位し、中抜孔とオイル通路孔により形成される重
合開口面積を増減し、貯蔵室から作動室への粘性流体の
流入量を制御する。
(Function) When the operation starts, the valve is rotated in response to the temperature sensitive member, increasing or decreasing the overlapping opening area formed by the hollow hole and the oil passage hole, and increasing the amount of viscous fluid flowing from the storage chamber to the working chamber. control.

つまり前記重合開口面積が大きい場合には、粘性流体は
作動室へ多量に流入して入力側からのトルク伝達も大き
くなる。また重合開口面積が小さい場合には、粘性流体
は作動室へ少量しか流入せず、入力側からのトルク伝達
は小さいものになる。このように温度感応部材の感知す
る温度に対する特性を線形にすることが可能になり、必
要に応じて最小限の出力に抑えることで、ファンの騒音
大、損失馬力大及び燃費の低下を解消できる。
In other words, when the overlapping opening area is large, a large amount of viscous fluid flows into the working chamber, and torque transmission from the input side also becomes large. Further, when the overlapping opening area is small, only a small amount of viscous fluid flows into the working chamber, and the torque transmission from the input side becomes small. In this way, it is possible to make the characteristics of the temperature sensed by the temperature-sensitive member linear, and by reducing the output to the minimum level as necessary, it is possible to eliminate large fan noise, large horsepower losses, and reduced fuel efficiency. .

(実施例) 以下本発明を図面の実施例について説明すると、第1図
は本発明の実施例を示す。第1図においてロータ1はシ
ャフト2(入力軸)に係止されており、その外周には回
転方向に応じた歯切りが形成されている。ケース3はベ
アリングIOを介してシャフト2に回転自在に支持され
ており、かつカバー4(出力軸)にネジ12により係止
されている。またケース3はロータ1との間に第2貯蔵
室6′を形成している。11はディバイダプレートでカ
バー4にネジ13により係止されており、貯蔵室6を形
成すると共に、ロータ1との間にラビリンスによる作動
室5を形成している。またバルブ9はロッド8を介して
温度感応部材7に係止されており、温度感応部材7の温
度に対する動きにより回動変位し、ディバイダプレート
11のオイル通路孔14とバルブ9の中抜孔20により
重合開口を形成し、該重合開口面積を増減させることで
貯蔵室6と作動室5の間のシリコンオイル(粘性流体)
の流入量を制御し、入力側から出力側へのトルク伝達を
制御するようにしている。
(Embodiments) The present invention will be described below with reference to embodiments of the drawings. FIG. 1 shows an embodiment of the present invention. In FIG. 1, a rotor 1 is locked to a shaft 2 (input shaft), and a gear cutout corresponding to the direction of rotation is formed on the outer periphery of the rotor 1. The case 3 is rotatably supported by the shaft 2 via a bearing IO, and is locked to a cover 4 (output shaft) by a screw 12. Further, the case 3 forms a second storage chamber 6' between the case 3 and the rotor 1. A divider plate 11 is fixed to the cover 4 by screws 13, and forms a storage chamber 6 and an operating chamber 5 between it and the rotor 1 by a labyrinth. Further, the valve 9 is locked to the temperature sensitive member 7 via the rod 8, and is rotated by the movement of the temperature sensitive member 7 with respect to the temperature, and the valve 9 is rotated by the oil passage hole 14 of the divider plate 11 and the hollow hole 20 of the valve 9. Silicone oil (viscous fluid) between the storage chamber 6 and the working chamber 5 is formed by forming a polymerization opening and increasing or decreasing the area of the polymerization opening.
The amount of inflow is controlled, and the torque transmission from the input side to the output side is controlled.

停止時シリコンオイルは重力により、第4図の如く貯蔵
室61作動室5及び第2貯蔵室6′に蓄えられる。次い
で作動を開始した時、シリコンオイルは回転の遠心力に
より粘性流体継手内に円周状に広がり、作動室5と第2
貯蔵室6′から貯蔵室6へ回収される。この時第2貯蔵
室6′から回収されるシリコンオイルは、わずかなトル
ク伝達で貯蔵室6へ回収される。また作動室5から回収
されるシリコンオイルは、第2貯蔵室6′の容量だけ第
4図のh′で示す如〈従来に比べて少ないため、貯蔵室
6への回収時間も早く、なおかつトルク伝達を小さくす
ることができる。以上より粘性流体継手の始動時に発生
するつれ回り現象を解消することができる。
When the engine is stopped, the silicone oil is stored in the storage chamber 61, the working chamber 5, and the second storage chamber 6' by gravity, as shown in FIG. Next, when the operation starts, the silicone oil spreads in the viscous fluid joint in a circumferential manner due to the centrifugal force of rotation, and the silicone oil spreads in the viscous fluid joint in a circumferential manner, causing the working chamber 5 and the second
It is collected into the storage room 6 from the storage room 6'. At this time, the silicone oil recovered from the second storage chamber 6' is recovered to the storage chamber 6 with a slight torque transmission. In addition, the silicone oil recovered from the working chamber 5 is smaller than the conventional one by the capacity of the second storage chamber 6', as shown by h' in FIG. Transmission can be reduced. As described above, it is possible to eliminate the drag phenomenon that occurs when starting up a viscous fluid joint.

次に作動が開始し、温度感応部材7の温度感応によりバ
ルブ9は回動変位を行い、中抜孔20とオイル通路孔1
4により形成される重合開口面積を増減し、貯蔵室6か
ら作動室5へのシリコンオイル流入量を制御する。つま
り該重合開口面積が大きい場合には、シリコンオイルは
作動室5へ多量に流入して入力側からのトルク伝達も大
きくなる。また該重合開口面積が小さい場合には、シリ
コンオイルは作動室5へ少量しか流入せず、入力側から
のトルク伝達は小さいものになる。この様に温度感応部
材7の感知する温度によりトルク伝達を制御し、出力回
転数の温度感応部材7の感知する温度に対する特性を第
3図の如く線形にすることが可能となり、必要に応じて
最小限の出力に抑えることで、ファン騒音大、損失馬力
大及び燃費の低下を解消することができる。
Next, the operation starts, and the valve 9 performs a rotational displacement due to the temperature sensitivity of the temperature sensitive member 7, and the hollow hole 20 and the oil passage hole 1 are rotated.
The amount of silicone oil flowing from the storage chamber 6 to the working chamber 5 is controlled by increasing or decreasing the area of the polymerization opening formed by the storage chamber 6 . In other words, when the overlapping opening area is large, a large amount of silicone oil flows into the working chamber 5, and the torque transmission from the input side also becomes large. Further, when the overlapping opening area is small, only a small amount of silicone oil flows into the working chamber 5, and the torque transmission from the input side becomes small. In this way, it is possible to control torque transmission according to the temperature sensed by the temperature sensitive member 7, and to make the characteristic of the output rotation speed relative to the temperature sensed by the temperature sensitive member 7 linear as shown in Fig. 3. By suppressing the output to the minimum level, it is possible to eliminate large fan noise, large horsepower loss, and reduction in fuel efficiency.

また、ディバイダプレート11に設けたオイル通路孔1
4の形状を、前述の中抜孔20と同等形状としてバルブ
9にて開閉する手段をとっても同様の効果が得られるこ
とは明白である。ここで第2図についてオイル通路孔1
4と中抜孔20との関係について詳細に説明すると、オ
イル通路孔14はディバイダプレート11上に形成され
た半径方向に伸びる長方形状の穴であり、バルブ9には
該孔14の位置、形状に対応して一辺が傾斜した台形状
の中抜孔20が形成しである。中抜孔20は傾斜した一
辺に2段のスロープを有し、半径方向内側にある1段目
のスロープ21は半径方向に対して傾斜が緩く、かつ短
い。また外側にある2段目のスロープ22は、1段目の
スロープ21に比し傾斜が強(、しかも長い。
In addition, the oil passage hole 1 provided in the divider plate 11
It is obvious that the same effect can be obtained even if the shape of the hole 4 is made to be the same shape as the hollow hole 20 described above and the valve 9 is used to open and close the valve 9. Here, regarding Fig. 2, oil passage hole 1
4 and the hollow hole 20. The oil passage hole 14 is a rectangular hole formed on the divider plate 11 and extending in the radial direction. Correspondingly, a trapezoidal hollow hole 20 with one side inclined is formed. The hollow hole 20 has two slopes on one inclined side, and the first slope 21 located on the inside in the radial direction has a gentle slope in the radial direction and is short. Moreover, the slope 22 of the second stage on the outside is steeper (and longer) than the slope 21 of the first stage.

さて周囲温度が低い時、即ちバルブ9が第2図のf81
位置にある時は、中抜孔20はオイル通路孔14と重合
せず、バルブ9が該孔14を塞いでいる。温度感応部材
7が低温時における温度上昇を感知してバルブ9を(b
1位置まで回転させると、1段目のスロープ21がオイ
ル通路孔14の外縁と交叉し、中抜孔20と孔14が重
合する部分において開口23を形成する。また1段目の
スロープ21は傾斜が緩いので低温時における開口23
のバルブ9の回転角に対する、即ち温度上昇に対する面
積増加率は小となる。更に周囲温度が上昇して温度領域
に達すると、2段面のスロープ22がオイル通路孔14
の外縁と交叉し、開口23の面積増加率が大となる。
Now, when the ambient temperature is low, that is, the valve 9 is set to f81 in Fig. 2.
When in this position, the hollow hole 20 does not overlap the oil passage hole 14, and the valve 9 closes the hole 14. The temperature sensitive member 7 senses the temperature rise at low temperature and turns the valve 9 on (b
When rotated to the 1st position, the first stage slope 21 crosses the outer edge of the oil passage hole 14, and an opening 23 is formed at the portion where the hollow hole 20 and the hole 14 overlap. In addition, since the first stage slope 21 has a gentle slope, the opening 21 is
The area increase rate with respect to the rotation angle of the valve 9, that is, with respect to the temperature rise, becomes small. When the ambient temperature further rises and reaches the temperature range, the slope 22 of the two-step surface will close to the oil passage hole 14.
crosses the outer edge of the opening 23, and the area increase rate of the opening 23 becomes large.

第2図の(C1の位置は、高温時においてオイル通路孔
14の全体が中抜孔20に表われた状態を示している。
The position C1 in FIG. 2 shows a state in which the entire oil passage hole 14 is exposed as the hollow hole 20 at high temperatures.

更に第1図の様に、作動室5と第2貯蔵室6′とを分離
する仕切板16をロータ1の第2貯蔵室6′側に設け、
その外周にオリフィス孔17を形成することで、第2貯
蔵室6′から貯蔵室6へ回収するシリコンオイルの流量
を制御し、始動時に発生するつれ回り現象の低減を促進
することができる。なお、ロータ1に設けられた圧抜き
孔15は再始動時の第2貯蔵室からのシリコンオイルの
回収を、より円滑にするものであり、本発明では極めて
重要である。圧抜き孔15の位置は粘性流体継手が回転
中のシリコンオイルの液面より内周、つまりシリコンオ
イルに浸されない位置に設け、作動中の作動室5から第
2貯蔵室6′への洩れの無いようにする必要がある。ま
た仕切板16を設けた場合、圧抜き孔IBが必要である
ことは言うまでもない。この圧抜き孔18が圧抜き孔1
5より内周にある場合のみ、圧抜き孔15は回転中のシ
リコンオイルの液面より内周にある必要はない。一方圧
抜き孔18が圧抜き孔15より外周にある場合、圧抜き
孔18は回転中のシリコンオイル液面より内周で、かつ
停止中のシリコンオイル液面より外周にあることが望ま
しい。
Furthermore, as shown in FIG. 1, a partition plate 16 is provided on the second storage chamber 6' side of the rotor 1 to separate the working chamber 5 and the second storage chamber 6'.
By forming the orifice hole 17 on the outer periphery, it is possible to control the flow rate of the silicone oil recovered from the second storage chamber 6' to the storage chamber 6, and to promote reduction of the drag phenomenon that occurs during startup. Note that the pressure relief hole 15 provided in the rotor 1 facilitates recovery of silicone oil from the second storage chamber at the time of restart, and is extremely important in the present invention. The pressure relief hole 15 is located at a position where the viscous fluid joint is inner than the liquid level of the rotating silicone oil, that is, at a position where it is not immersed in the silicone oil, to prevent leakage from the working chamber 5 to the second storage chamber 6' during operation. It is necessary to make sure that there is no such thing. Further, when the partition plate 16 is provided, it goes without saying that a pressure relief hole IB is required. This pressure relief hole 18 is the pressure relief hole 1
5, the pressure relief hole 15 does not need to be located inner than the liquid level of the rotating silicone oil. On the other hand, when the pressure relief hole 18 is located on the outer periphery of the pressure relief hole 15, it is desirable that the pressure relief hole 18 be located on the inner periphery of the rotating silicone oil liquid level and on the outer periphery of the stopped silicone oil liquid level.

また中抜孔20は、ディバイダプレート11あるいはパ
ルプ9のいづれに形成してもよく、また第6図に示す様
な各種の形状でも同等の効果が得られるものである。
Further, the hollow holes 20 may be formed in either the divider plate 11 or the pulp 9, and the same effect can be obtained with various shapes as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した如く本発明は構成されているので、
停止時粘性流体は貯蔵室、作動室及び第2貯蔵室に蓄え
ることができる。従って液面高さh′は第2貯蔵室の容
量に応じ低くすることができ、低温時における始動時の
ファン騒音、ヒータ効き不良及びエンジン暖機性の問題
を解決できる。第5図は本発明Aと従来Bとの低温時特
性線図を示し、NPは入力回転数、Nfは出力回転数で
ある。時間経過後はA、Bとも回転数も低く騒音の問題
はないが、始動直後は従来Bでは回転数が大きく、前述
の問題が発生する。本発明Aでは始動直後でも前述のよ
うな問題は殆どない程度の回転数である。
Since the present invention is configured as explained in detail above,
During shutdown, the viscous fluid can be stored in the storage chamber, the working chamber, and the second storage chamber. Therefore, the liquid level height h' can be lowered according to the capacity of the second storage chamber, and problems such as fan noise during startup, poor heater effectiveness, and engine warm-up at low temperatures can be solved. FIG. 5 shows a characteristic diagram at low temperature of the present invention A and conventional B, where NP is the input rotation speed and Nf is the output rotation speed. After time has elapsed, both A and B have a low rotational speed and there is no noise problem, but immediately after starting, conventional B has a high rotational speed and the above-mentioned problem occurs. In the present invention A, the rotation speed is such that there is almost no problem as described above even immediately after starting.

また本発明では温度の高低に応じてオイル通路孔と中抜
孔で形成される重合開口面積を増減させ、貯蔵室から作
動室への粘性流体の流入量を制御するため、入力側から
出力側へのトルク伝達を、貯蔵室から作動室への粘性流
体の流入量に応じた能力で行なうこととなり、従来のオ
ン、オフ2段階の制御に対し、連続的で線形な制御が可
能となり、必要に応じて最小限のトルク伝達を暫時行う
ことで従来の問題点を解消できる。
In addition, in the present invention, the area of the overlapping opening formed by the oil passage hole and the hollow hole is increased or decreased depending on the temperature, and in order to control the amount of viscous fluid flowing from the storage chamber to the working chamber, from the input side to the output side. Torque transmission is performed with a capacity that corresponds to the amount of viscous fluid flowing from the storage chamber to the working chamber.This enables continuous and linear control, as opposed to the conventional two-step on/off control, and allows The conventional problems can be solved by temporarily transmitting the minimum amount of torque accordingly.

従って本発明では、従来技術に対し、構造は複雑になる
ことな(、重量増加及びコストを抑えられ、車両搭載等
の周辺部への影響も小さい上、同等以上の性能を発揮す
ることができる。
Therefore, in the present invention, compared to the conventional technology, the structure is not complicated (the increase in weight and cost can be suppressed, the influence on the surrounding parts such as when mounted on a vehicle is small, and the performance is equivalent to or higher than that of the conventional technology. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す粘性流体継手の側断面図
、第2図(al (bl Telは夫々第1図における
オイル通路孔とバルブにおける中抜孔との関係を示す説
明図、第3図は本発明と従来との温度感応部材感知温度
と出力回転数との関係を示す線図、第4図は第1図にお
ける停止時の液面高さを示す説明図、第5図は本発明と
従来とにおける低温時始動特性線図、第6図はバルブの
中抜孔の種々の形状を示す説明図、第7図及び第8図は
夫々従来の粘性流体継手を示す側断面図、第9図は第7
図における停止時の液面高さを示す説明図である。 図の主要部分の説明 1−ロータ    2−シャフト(人力軸)3−ケース
    4−カバー(出力軸)5−作動室    6−
貯蔵室 7一温度感応部材 8−ロンド 9−パルプ    11−・ディバイダプレート14−
オイル通路孔 2〇−中抜孔 1 を 第1図 +2  1’1 第2図 第3図 潔浅感応部材歴w口温度(°C) 第4図 第は 図
FIG. 1 is a side sectional view of a viscous fluid joint showing an embodiment of the present invention, and FIG. Fig. 3 is a diagram showing the relationship between the detected temperature of the temperature sensitive member and the output rotation speed of the present invention and the conventional one, Fig. 4 is an explanatory diagram showing the liquid level height at the time of stop in Fig. 1, and Fig. 5 is Low-temperature starting characteristic diagrams for the present invention and the conventional one; FIG. 6 is an explanatory diagram showing various shapes of hollow holes in the valve; FIGS. 7 and 8 are side sectional views showing conventional viscous fluid couplings, respectively; Figure 9 is the 7th
It is an explanatory view showing the liquid level height at the time of stop in a figure. Explanation of the main parts of the diagram 1 - Rotor 2 - Shaft (human power shaft) 3 - Case 4 - Cover (output shaft) 5 - Working chamber 6 -
Storage chamber 7 - Temperature sensitive member 8 - Rondo 9 - Pulp 11 - Divider plate 14 -
Oil passage hole 20-hollow hole 1 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 粘性流体継手において、貯蔵室の、ロータ及び作動室に
対し相対する位置に第2貯蔵室を設け、前記ロータと出
力部材間に位置し、前記貯蔵室を形成するよう該出力部
材に固定されると共に、前記貯蔵室から作動室への粘性
流体の流入量を制御するディバイダプレートを設け、該
ディバイダプレートにオイル通路孔を形成し、該オイル
通路孔を開閉するバルブを設け、該オイル通路孔とバル
ブの中抜孔とで形成される重合開口の温度に対する面積
が高温時より低温時が小となるように構成したことを特
徴とする粘性流体継手。
In the viscous fluid coupling, a second storage chamber is provided at a position opposite to the rotor and the working chamber of the storage chamber, and is located between the rotor and the output member and is fixed to the output member to form the storage chamber. In addition, a divider plate is provided to control the amount of viscous fluid flowing into the working chamber from the storage chamber, an oil passage hole is formed in the divider plate, a valve is provided for opening and closing the oil passage hole, and the oil passage hole and A viscous fluid joint characterized in that the area of the overlapping opening formed by the hollow hole of the valve with respect to temperature is smaller at low temperatures than at high temperatures.
JP62013860A 1987-01-23 1987-01-23 Viscous fluid coupling Expired - Fee Related JP2629689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013860A JP2629689B2 (en) 1987-01-23 1987-01-23 Viscous fluid coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013860A JP2629689B2 (en) 1987-01-23 1987-01-23 Viscous fluid coupling

Publications (2)

Publication Number Publication Date
JPS63180729A true JPS63180729A (en) 1988-07-25
JP2629689B2 JP2629689B2 (en) 1997-07-09

Family

ID=11845016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013860A Expired - Fee Related JP2629689B2 (en) 1987-01-23 1987-01-23 Viscous fluid coupling

Country Status (1)

Country Link
JP (1) JP2629689B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296036U (en) * 1989-01-20 1990-07-31
JPH02150432U (en) * 1989-01-20 1990-12-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048653A (en) * 1983-08-29 1985-03-16 Nec Corp Howler signal transmission system
JPS61108531U (en) * 1984-12-20 1986-07-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048653A (en) * 1983-08-29 1985-03-16 Nec Corp Howler signal transmission system
JPS61108531U (en) * 1984-12-20 1986-07-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296036U (en) * 1989-01-20 1990-07-31
JPH02150432U (en) * 1989-01-20 1990-12-26

Also Published As

Publication number Publication date
JP2629689B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
KR920001660B1 (en) Thermo sensitive hydraulic fan coupling
JPS63152732A (en) Temperature sensing fluid type fan coupling device
US3262528A (en) Variable fluid torque coupling
KR940001372Y1 (en) Temperature controlled fluid friction coupling
JPS62194038A (en) Temperature sensing, fluid type fan coupling device
JPH0356328B2 (en)
JPS63180729A (en) Viscous fluid coupling
JP4931096B2 (en) Temperature-sensitive fluid type fan and coupling device
US4627524A (en) Viscous fluid coupling device
JPS62196428A (en) Viscous fluid coupling
JPH0623784Y2 (en) Viscous fluid fitting
JP2536504B2 (en) Viscous fluid fitting
JPS59190521A (en) Viscous fluid joint
JPH04290657A (en) Torque converter
JPH04105641U (en) fluid coupling
JPH0229227Y2 (en)
JPS63180727A (en) Viscous fluid coupling
JP2951994B2 (en) Fluid coupling transmission
JPH02150515A (en) Viscous fluid coupling
JP3216151B2 (en) Viscous fluid coupling
JPS60241534A (en) Temperature corresponding type fluid fan coupling apparatus
JPH0238022Y2 (en)
JP3221631B2 (en) Temperature sensitive fluid type fan coupling device
JPH0558832U (en) Variable capacity water pump
KR930004565B1 (en) Temperrature-sensitive type hydraulic fan coupling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees