JPS63180413A - Machine tool - Google Patents

Machine tool

Info

Publication number
JPS63180413A
JPS63180413A JP1196487A JP1196487A JPS63180413A JP S63180413 A JPS63180413 A JP S63180413A JP 1196487 A JP1196487 A JP 1196487A JP 1196487 A JP1196487 A JP 1196487A JP S63180413 A JPS63180413 A JP S63180413A
Authority
JP
Japan
Prior art keywords
workpiece
cutting tool
cutting
axis
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1196487A
Other languages
Japanese (ja)
Inventor
Shozo Aoshima
青島 祥造
Takao Fukunaga
孝夫 福永
Kunio Hirota
広田 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1196487A priority Critical patent/JPS63180413A/en
Publication of JPS63180413A publication Critical patent/JPS63180413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

PURPOSE:To enable high-precise machining of a shaftform workpiece, to provide an increased life for a tool, and to improve machining efficiency, by a method wherein down cut machining is applied on a workpiece, rotated by a workpiece rotating mechanism, by means of a cutting tool rotated by a tool rotating mechanism. CONSTITUTION:When the surroundings of a workpiece 5 is intended to be axially cut with high roundness, by rotating a rotary disc approximately in a 90 deg. arc, a cutting tool 11 having a cutting blade 18 for the outer periphery of an end surface and a cutting blade 19 for an outer diameter surface is rotated at a rotation speed V around an axis SO, belonging a one plane A1 containing an axis S1, around which the workpiece 5 is rotated, and paralleling the axis S1, together with a cut arbot 20. The cutting tool 11 is fed at a feed speed V2 in a direction, extending in parallel to the axis S1 of the workpiece 5, in a state to bring the cutting blade 19 into parallel contact with the workpiece 5. In which case, since the workpiece 5 is rotated in the same direction as that of the cutting tool 11 at a contact part between the cutting tool 11 and the workpiece 5, down-cut machining is applied on the workpiece 5 by means of a number of cutting blades 18 and 19 of the cutting tool 11.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、軸体およびネジ軸等の軸形の被加工物を加工
するための工作機械に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a machine tool for machining shaft-shaped workpieces such as shaft bodies and screw shafts.

「従来の技術」 従来、軸形の被加工物の周りを加工する工作機械として
は旋盤が使用されていたが、バイトに大きな負荷が加わ
って高能率な加工を行うことができないと共に、バイト
の寿命が短いものであった。
``Conventional technology'' Conventionally, lathes have been used as machine tools for machining around shaft-shaped workpieces. It had a short lifespan.

更に、軸形の被加工物の軸受嵌合部分を加工する場合に
おいて、旋盤を使用した仕上げ加工を行うときには、バ
イトが被加工物の外周を螺線状に加工することになり、
ミクロ的には被加工物の外周番こ連続した溝が形成され
るので、その溝を伝わって潤滑油が流出することにより
、油切れを生ずることがある0次に、研削慇によって仕
上げ加工を行うときには、研削砥石が被加工物の外周に
螺線状にかつ断続的に接触することにより、砥粉が被加
工物に突きささり被加工物の組合せ部品である相手側を
削り取ってしまう問題点が有った。
Furthermore, when machining the bearing fitting part of a shaft-shaped workpiece, when finishing using a lathe, the cutting tool will process the outer periphery of the workpiece in a spiral shape.
Microscopically, continuous grooves are formed on the outer circumference of the workpiece, so lubricating oil may flow through these grooves, causing oil depletion. When grinding, the problem is that the grinding wheel contacts the outer periphery of the workpiece in a spiral manner and intermittently, causing the abrasive powder to penetrate the workpiece and scrape off the mating part of the workpiece. There was.

「発明が解決しようとする問題点」 本発明は、上記の問題点を解決するためになされたもの
であり、軸形の被加工物を高精度に加工することができ
ると共に、切削工具の野命が永く、加工能率の良い工作
機械を提供することを目的とする6 「問題点を解決するための手段」 しかして、本発明によれば、一軸線の周りに一方向にの
み回転するようにウオーム歯車機構のような非可逆的回
転伝達機構を介して動力源に連結された被加工物回転a
格と、回転中の前記被加工物に対して接近することによ
りその被加工物にダウンカット加工を施すように被加工
物の回転速度よりも大きな回転速度で第二の軸線の周り
に一方向に回転切削工具を回転させるための工具回転機
構と、前記回転切削工具を前記被加工物に対し任意の方
向より係合し得るように前記被加工物に対する前記回転
切削工具の係合関係を変更操作すると共に被加工物と回
転切削工具とを互いに接近離隔させるための手段と、よ
り構成されたことを特徴とする工作機械が提供される。
"Problems to be Solved by the Invention" The present invention has been made to solve the above-mentioned problems, and it is possible to machine shaft-shaped workpieces with high precision, and it also improves the cutting tool industry. Aim to provide a machine tool with a long life and high machining efficiency 6 "Means for solving the problems" According to the present invention, the machine tool rotates only in one direction around one axis. The workpiece rotation a is connected to a power source via an irreversible rotation transmission mechanism such as a worm gear mechanism.
and in one direction around a second axis at a rotational speed greater than the rotational speed of the workpiece so as to approach the rotating workpiece and perform a downcut on the workpiece. a tool rotation mechanism for rotating a rotary cutting tool; and changing the engagement relationship of the rotary cutting tool with respect to the workpiece so that the rotary cutting tool can be engaged with the workpiece from any direction. A machine tool is provided comprising means for operating and moving a workpiece and a rotary cutting tool toward and away from each other.

「作用」 上記構成によれば、第二の軸線の周りに回転する切削工
具により、一軸線の周りに回転する被加工物が切削加工
される。また、被加工物は、非可逆的回転伝達機構を介
して動力源により回転されるから、被加工物に対して切
削工具から加えられる捩れ力が動力源に伝えられること
がない。
"Operation" According to the above configuration, the workpiece that rotates around one axis is cut by the cutting tool that rotates around the second axis. Furthermore, since the workpiece is rotated by the power source via the irreversible rotation transmission mechanism, the torsional force applied from the cutting tool to the workpiece is not transmitted to the power source.

「実施例」 次に、本発明の実施例を第1図から第4図および第6図
について説明する。
"Example" Next, an example of the present invention will be described with reference to FIGS. 1 to 4 and 6.

第1図に示された工作機械は、端部に駆動ブロック体2
および支承ブロック体3を有する機枠1を備えている0
機枠1の上には案内往復台4が往復動可能に配置されて
いる。ブロック2.3には、加工される軸形の被加工物
5に対する取付部材6および7がそれぞれ設けられてい
る。取付部材6は、駆動用モータ8により非可逆的回転
伝達機構をなすところの、ウオーム9およびウォームホ
イール10を介して駆動されている。その取付部材6は
チャックであって、種々の直径の異なる被加工物5を支
持することができる。他方の取付部材7は、先端が針状
に形成されており、被加工物5の端面に形成されるセン
タ一孔を介してその被加工物5を回転可能に支承する。
The machine tool shown in FIG. 1 has a drive block body 2 at the end.
and a machine frame 1 having a bearing block body 3
A guide carriage 4 is arranged on the machine frame 1 so as to be able to reciprocate. The block 2.3 is provided with attachment members 6 and 7, respectively, for the shaft-shaped workpiece 5 to be machined. The mounting member 6 is driven by a drive motor 8 via a worm 9 and a worm wheel 10, which constitute an irreversible rotation transmission mechanism. The mounting member 6 is a chuck and can support workpieces 5 of various different diameters. The other attachment member 7 has a needle-shaped tip and rotatably supports the workpiece 5 through a center hole formed in the end surface of the workpiece 5.

従って、被加工物5は1両取付部材6,7の中心軸線の
周りに、動力源をなす駆動用モータ8により比較的低速
で一方向に回転されるようになっており、端面外周およ
び外径tこ切れ刃を有する回転切削工具11により被加
工物5に付加される回転力によって被加工物が回転され
ないように構成されている。なお、ウォーム9およびウ
オームホイール10はハーモニックドライブに代えるこ
とも可能である。
Therefore, the workpiece 5 is rotated in one direction around the center axis of the one-car mounting members 6 and 7 at a relatively low speed by the drive motor 8 serving as the power source, and The workpiece is configured so that the workpiece is not rotated by the rotational force applied to the workpiece 5 by the rotary cutting tool 11 having a cutting edge having a diameter of t. Note that the worm 9 and the worm wheel 10 can be replaced with a harmonic drive.

切削工具11は、工具台12を介して案内往復台4の上
に前進後退可能に取付けられ、被加工物5に対して互い
に接近離隔可能にされている。工具台12は、案内往復
台4上に設けられた送りモータ(図示せず)および送り
機m(図示せず)により往復動される前後送り台12m
、その前後送り台12a上に設けられた回転割出し機構
(図示せず)により回動割出しされる回動板13、およ
びその回動板13上に設けられた上下駆動機構(図示せ
ず)によって上下動される昇降板14を備えており、昇
降板14には、切削工具11を偏心取付部材16を介し
て被加工物5より充分に大きな回転、速度で回転させる
ための駆動用モータ15が取付けられている。切削工具
11は、工具台12に対して回動板13により左右に約
180°の回動運動をすることが可能にされており、ま
た昇降板14により昇降可能にされて切削工具11を被
加工物5に対し任意の方向より係合し得るように前記被
加工物に対する前記回転切削工具の係合関係を変更操作
可能にされている0機枠1の端部には送りモータ17が
取付けられており、案内往復台4は周知のポールナツト
機構等を介して送りモータ17により機枠1の長手方向
に往復動されるように構成されている。
The cutting tools 11 are mounted on the guide carriage 4 through a tool stand 12 so as to be able to move forward and backward, and are able to move toward and away from each other with respect to the workpiece 5 . The tool stand 12 includes a front and rear feed table 12m that is reciprocated by a feed motor (not shown) provided on the guide carriage 4 and a feeder m (not shown).
, a rotary plate 13 that is rotatably indexed by a rotary indexing mechanism (not shown) provided on the forward and backward feed table 12a, and a vertical drive mechanism (not shown) provided on the rotary plate 13. ), and the lifting plate 14 is equipped with a drive motor for rotating the cutting tool 11 at a sufficiently larger rotation and speed than the workpiece 5 via the eccentric mounting member 16. 15 is installed. The cutting tool 11 is allowed to rotate approximately 180 degrees left and right with respect to the tool stand 12 by a rotating plate 13, and is also movable up and down by an elevating plate 14 to cover the cutting tool 11. A feed motor 17 is attached to the end of the machine frame 1, which is operable to change the engagement relationship of the rotary cutting tool with the workpiece so that it can engage the workpiece 5 from any direction. The guide carriage 4 is configured to be reciprocated in the longitudinal direction of the machine frame 1 by a feed motor 17 via a well-known pole nut mechanism or the like.

「作動」 上記構成において、被加工物5の周りを軸方向へ高い真
円度で切削したい場合には、回転板13が第1図図示の
位置から約90°回動されることにより、第2図(a)
、 (b)に示された第1の加工態様のごとく、端面外
周の切れ刃18および外径面の切れ刃19を有する切削
工具11は、被加工物5が回転される軸線S1を含む一
平面A1に属し、かつ前記軸線Slと平行な軸線SOの
周りにアーム20と共に回転速度vOで回転される。そ
して、切削工具11は、外周面の切れ刃19が被加工物
5と平行に接触しながら、被加工物5の軸線$1と平行
な方向へ、送り速度V2により送られる。
"Operation" In the above configuration, when it is desired to cut the workpiece 5 with high roundness in the axial direction, the rotary plate 13 is rotated approximately 90 degrees from the position shown in FIG. Figure 2 (a)
As shown in the first machining mode shown in FIG. It is rotated together with the arm 20 at a rotational speed vO around an axis SO that belongs to the plane A1 and is parallel to the axis Sl. Then, the cutting tool 11 is sent in a direction parallel to the axis $1 of the workpiece 5 at a feed rate V2 while the cutting edge 19 on the outer peripheral surface contacts the workpiece 5 in parallel.

なおこの場合において、前記切削工具11の軸線SOは
、被加工物5の軸線S1を含む一平面A1に属し、かつ
軸線S1と鋭角な一定角度で交わるようにされ、切削工
具11はその軸線SOの周りに回転速度vOで回転され
てもよい、その場合には、切削工具11がその軸線SO
の方向へ、送り速度v2により送られる。このようにす
ることにより、被加工物5の外周をテーパ状に形成する
ことができる。
In this case, the axis SO of the cutting tool 11 belongs to a plane A1 that includes the axis S1 of the workpiece 5, and intersects the axis S1 at an acute angle, and the cutting tool 11 may be rotated with a rotational speed vO about the axis SO, in which case the cutting tool 11
It is sent in the direction of at a feed rate v2. By doing so, the outer periphery of the workpiece 5 can be formed into a tapered shape.

切削工具11の回転速度■0は被加工物5の回転速度■
1より充分に大きく、被加工物5の回転速度V1は切削
工具11の送り速度V2よりは大きいものである。また
、切削工具11の回転方向は、被加工物5の回転方向と
は逆方向である。この第1の加工態様によれば、第2図
(b)に示されるように、切削工具11と被加工物5と
の接触部分においては、被加工物5が切削工具11と同
じ方向に移動回転するため、被加工物5が切削工具11
の多数の切れ刃18.19によりダウンカット加工され
る。そのダウンカット加工によれば、切削工具11の切
れ刃18.19による切削力の方向が被加工物5を押え
る向きに働くので、アッパーカット加工に比べ被加工物
5に大きな負荷が加えられないため被加工物5の固定方
法が比較的に簡単でよい、また、切削工具11に高い送
りをかけることができる。更に、ダウンカット加工では
、切削工具11により被加工物5を最初から大きく切込
むことができるため、切削工具11の切れ刃18.19
が被加工物5の上を滑ることなく切込みが始まることに
なり、滑りによる摩擦が無いため、切れ刃18.19の
寿命が長くなる。また、切削工具11は多数の切れ刃1
8.19を有するので、単一の切れ刃を持つバイトより
も寿命が長くなる。
The rotational speed of the cutting tool 11■0 is the rotational speed of the workpiece 5■
1, and the rotation speed V1 of the workpiece 5 is larger than the feed speed V2 of the cutting tool 11. Further, the direction of rotation of the cutting tool 11 is opposite to the direction of rotation of the workpiece 5. According to this first processing mode, as shown in FIG. 2(b), at the contact portion between the cutting tool 11 and the workpiece 5, the workpiece 5 moves in the same direction as the cutting tool 11. Because the workpiece 5 rotates, the cutting tool 11
Down-cut processing is performed using a large number of cutting edges 18 and 19. According to the downcut machining, the direction of the cutting force by the cutting edges 18 and 19 of the cutting tool 11 acts in a direction to press down the workpiece 5, so a large load is not applied to the workpiece 5 compared to the uppercut machining. Therefore, the method for fixing the workpiece 5 is relatively simple, and the cutting tool 11 can be fed at a high rate. Furthermore, in the down-cut machining, the cutting tool 11 can make a large cut into the workpiece 5 from the beginning, so the cutting edge 18, 19 of the cutting tool 11
Since the cutting starts without sliding on the workpiece 5, and there is no friction due to sliding, the life of the cutting edge 18, 19 is extended. Further, the cutting tool 11 has a large number of cutting edges 1.
8.19, it has a longer life than a cutting tool with a single cutting edge.

第3図(a)、 (b)、 (c)に示される第2の加
工態様においては、切削工具11は、被加工物5が回転
される軸&iSLを含む一平面A1と平行な平面A2内
に属し、かつその軸線S1と直角に交わる軸線SOの周
りに、被加工物5の回転速度■1よりも充分に大きな回
転速度vOで回転される。切削工具11は端面外周およ
び外径面にそれぞれ切れ刃18.19を有している。端
面外周の切れ刃18は鈍角をもって円錐状に形成され、
軸線SOが垂直平面B1と鈍角で交わるようにされても
よい、切削工具11は軸線SOの周りに反時計方向に回
転されており、被加工物5は軸線S1の周りに逆方向の
時計方向に回転されているため、切削工具11と被加工
物5は接触部分においては同じ方向へ運動し、切削工具
11の切れ刃18.19の切削力が被加工物5に押える
ように働くので、被加工物5にダウンカット加工が施さ
れる。そして、回転する切削工具11をその軸線SOと
直角方向に送り速度V2で送ることにより、被加工物5
の周りが主に切削工具11の端面外周の切れ刃18によ
り所望長さに渡って切削される。
In the second machining mode shown in FIGS. 3(a), (b), and (c), the cutting tool 11 operates on a plane A2 parallel to a plane A1 including the axis &iSL around which the workpiece 5 is rotated. The workpiece 5 is rotated at a rotational speed vO that is sufficiently larger than the rotational speed 1 of the workpiece 5 around an axis SO that belongs to the workpiece 5 and intersects at right angles with the axis S1 thereof. The cutting tool 11 has cutting edges 18 and 19 on the outer periphery of the end face and on the outer diameter surface, respectively. The cutting edge 18 on the outer periphery of the end face is formed into a conical shape with an obtuse angle,
The cutting tool 11 is rotated counterclockwise about the axis SO, and the workpiece 5 is rotated counterclockwise about the axis S1, which may be arranged so that the axis SO intersects the vertical plane B1 at an obtuse angle. Since the cutting tool 11 and the workpiece 5 move in the same direction at the contact portion, the cutting force of the cutting edges 18 and 19 of the cutting tool 11 acts to press the workpiece 5. A down cut process is performed on the workpiece 5. Then, by feeding the rotating cutting tool 11 in a direction perpendicular to its axis SO at a feed rate V2, the workpiece 5 is
is cut to a desired length mainly by the cutting edge 18 on the outer periphery of the end surface of the cutting tool 11.

第4図(a)、 (b)に示された第3加工態様におい
ては、端面外周および外径面に切れ刃18.19を有す
る切削工具11は、被加工物5が回転される軸線S1と
少し離れた略平行な軸線SO上に、被加工物5と相対し
て配置される。被加工物5は第1図の駆動ブロック体2
の取付部材6に取付けて回転され、切削工具11は駆動
用モータ15の回転力に基づいて回転される。切削工具
11の回転速度vOは、被加工物らの回転速度v1より
も充分に大きくされる。また、切削工具11の回転方向
は図示の第3の加工態様においては時計方向であり、被
加工物5の回転方向は逆方向の反時計方向である。そし
て、切削工具11は被加工物5の回転速度v1より小さ
な送り速度V2で両軸線So、SLと直角方向に送られ
ることにより、端面切削が進行し、切削工具11におけ
る端面外周の切れ刃18が、被加工物5の端面の最外周
から中心位置まで送られたとき、回転する被加工物5の
端面全体に、端面切削が完了する。そして、切削工具1
1と被加工物5との接触部分においては、切削工具11
の切れ刃18.19による切削力が被加工物5を押える
ように山くので、被加工物5にダウンカット加工が施さ
れる。
In the third machining mode shown in FIGS. 4(a) and 4(b), the cutting tool 11 having cutting edges 18 and 19 on the outer periphery of the end face and the outer diameter surface is cut along the axis S1 around which the workpiece 5 is rotated. The workpiece 5 is disposed facing the workpiece 5 on an axis SO that is slightly apart and substantially parallel to the workpiece 5 . The workpiece 5 is the drive block body 2 in FIG.
The cutting tool 11 is mounted on the mounting member 6 and rotated, and the cutting tool 11 is rotated based on the rotational force of the drive motor 15. The rotational speed vO of the cutting tool 11 is made sufficiently larger than the rotational speed v1 of the workpieces. Further, the rotation direction of the cutting tool 11 is clockwise in the illustrated third processing mode, and the rotation direction of the workpiece 5 is the opposite direction, counterclockwise. Then, the cutting tool 11 is fed in a direction perpendicular to both axes So and SL at a feed rate V2 smaller than the rotation speed v1 of the workpiece 5, so that end face cutting progresses, and the cutting edge 18 on the outer periphery of the end face of the cutting tool 11 is fed from the outermost periphery of the end face of the workpiece 5 to the center position, the end face cutting is completed on the entire end face of the rotating workpiece 5. And cutting tool 1
1 and the workpiece 5, the cutting tool 11
Since the cutting force exerted by the cutting edges 18 and 19 increases so as to press down the workpiece 5, the workpiece 5 is subjected to a down-cut process.

被加工物5の端面に直角な穴51に内面削り加工を施し
たい場合には第6図に示された第4の加工態様による。
When it is desired to machine the inner surface of the hole 51 perpendicular to the end surface of the workpiece 5, the fourth processing mode shown in FIG. 6 is used.

この加工R様においては、端面外周および外径面に切れ
刃18.19を有する切削工具11は、被加工物5が回
転される軸線S1と略同−若しくは平行な軸線So上に
、被加工物5と相対して配置される。被加工物5は第1
図の駆動ブロック体2の取付部材6に取付けて回転され
、切削工具11は駆動用モータ15の回転力に基づいて
回転される。切削工具11の回転速度vOは、被加工物
5の回転速度■1よりも充分大きくされる。また、切削
工具11の回転方向は被加工物5の回転方向と同一方向
である。切削工具11は被加工物5の回転速度■1より
小さな送り速度v2で両軸線So、SLと平行方向に送
られることにより、内面切削が進行する。そして、切削
工具11と被加工物5との接触部分においては、切削工
具11の切れ刃18.19による切削力が被加工物5を
押えるように働くので、被加工物5にダウンカット加工
が施される。
In this process R, the cutting tool 11 having cutting edges 18 and 19 on the outer periphery of the end face and the outer diameter surface is placed on the axis So that is approximately the same as or parallel to the axis S1 around which the workpiece 5 is rotated. It is placed opposite object 5. Workpiece 5 is the first
The cutting tool 11 is attached to the attachment member 6 of the illustrated drive block body 2 and rotated, and the cutting tool 11 is rotated based on the rotational force of the drive motor 15. The rotational speed vO of the cutting tool 11 is made sufficiently larger than the rotational speed 1 of the workpiece 5. Further, the rotational direction of the cutting tool 11 is the same as the rotational direction of the workpiece 5. The cutting tool 11 is fed in a direction parallel to both axes So and SL at a feed rate v2 smaller than the rotational speed ■1 of the workpiece 5, thereby progressing the internal cutting. At the contact portion between the cutting tool 11 and the workpiece 5, the cutting force by the cutting edges 18 and 19 of the cutting tool 11 acts to press down the workpiece 5, so that the workpiece 5 is subjected to down-cut machining. administered.

「数値的性能例」 第5図(b)に示された加工条件により切削実験が行わ
れたところ、第5図(a)に示される測定結果が得られ
た。第5図(b)において、加工番号1〜7の切削実験
に供された被加工物の材質はアルミニウムであり、加工
法はダウンカット加工とアッパカット加工の2種類が対
比された。第5図(b)の加工面の欄において「外周」
と表記されているのは、第2図に示された第1の加工態
様の如く切削工具11の端面外周の切れ刃18により被
加工物5の周りを軸線S1の方向に円形に切削加工する
場合をいい、「外径」と表記されているのは、第3図に
示された第2の加工態様の如く切削工具11の外径面の
切れ刃19により被加工物5の周りを軸線S1の方向に
円形に切削加工する場合をいう。
"Numerical Performance Example" When a cutting experiment was conducted under the processing conditions shown in FIG. 5(b), the measurement results shown in FIG. 5(a) were obtained. In FIG. 5(b), the material of the workpieces subjected to the cutting experiments with machining numbers 1 to 7 was aluminum, and two types of machining methods were compared: down cut machining and upper cut machining. "Outer periphery" in the column of machined surface in Fig. 5 (b)
The expression “ ” means that the circumference of the workpiece 5 is circularly cut in the direction of the axis S1 using the cutting edge 18 on the outer periphery of the end surface of the cutting tool 11 as in the first processing mode shown in FIG. The expression "outer diameter" refers to the case where the cutting edge 19 on the outer diameter surface of the cutting tool 11 cuts around the workpiece 5 along the axis, as in the second machining mode shown in FIG. This refers to the case of circular cutting in the direction of S1.

また、加工面の欄において、「端面」と表記されている
のは、第4図に示された第3の加工態様の如く被加工物
5の端面を切削加工する場合をいう。
In addition, in the column of machined surfaces, the expression "end face" refers to the case where the end face of the workpiece 5 is cut as in the third processing mode shown in FIG. 4.

第5図(b)の加工番号8〜13の切削実験に供された
被加工物は難削材であるステンレスであり、湿式とは切
削油を使用した切削加工法であることを示す。
The workpieces used in the cutting experiments with machining numbers 8 to 13 in FIG. 5(b) were made of stainless steel, which is a difficult-to-cut material, and the wet method indicates a cutting method using cutting oil.

この切削実験の結果第5図(a)に示す測定結果が得ら
れ、真円度とは仕上加工された被加工物の中心と真円の
中心とのずれをμ輪重値により平均値の範囲で示した測
定値であり、小さな値を取るほど真円度が高いことを示
す。また、面粗度とは被加工物の表面の凹凸の高さをμ
輪重値により平均値の範囲で示した測定値である。第5
図(、)に示されるごとく、本発明のごとくダウンカッ
ト加工を施す場合は、真円度および面粗度が双方共に比
較例として示すアッパカット加工による場合より、優れ
ているという測定結果が得られた。
As a result of this cutting experiment, the measurement results shown in Figure 5 (a) were obtained, and roundness is the deviation between the center of the finished workpiece and the center of the perfect circle, which is calculated by the average value using the μ wheel weight value. These are measured values expressed as a range, and the smaller the value, the higher the roundness. In addition, surface roughness refers to the height of the unevenness on the surface of the workpiece.
These are measured values shown in the average range based on wheel load values. Fifth
As shown in the figure (,), when performing down-cut processing as in the present invention, the measurement results show that both roundness and surface roughness are superior to those using upper-cut processing shown as a comparative example. It was done.

「効果J 以上述べたように、本発明の工作機械は上記の構成を有
するものであり、被加工物回転機構により回転される被
加工物を、工具回転機構により回転される切削工具によ
り切削するものであるから、被加工物に加わる負荷が小
さくしかも衝撃的に加わらないので、切削時の振動が少
なく、軸形の被加工物を高精度に加工することができる
と共に、切削工具の寿命が永く、加工能率が良い、また
、被加工物にダウンカット加工を施すようにしているか
ら、難切削材の加工を高精度に行なうことができ、しか
も簡単な構成の機枠にすることができ、更に、切削工具
を被加工物に対して任意の方向より係合し得るように構
成されているため、所望の形状に被加工物を加工するこ
とができるなどの、数々の優れた効果がある。
"Effect J" As described above, the machine tool of the present invention has the above configuration, and the workpiece rotated by the workpiece rotation mechanism is cut by the cutting tool rotated by the tool rotation mechanism. Since the load applied to the workpiece is small and not impactful, there is less vibration during cutting, making it possible to machine shaft-shaped workpieces with high precision, and extending the life of the cutting tool. It has a long lifespan and high machining efficiency, and because the workpiece is down-cut, it is possible to process difficult-to-cut materials with high precision, and the machine frame can be constructed with a simple structure. Furthermore, since the cutting tool is configured so that it can be engaged with the workpiece from any direction, it has many excellent effects such as being able to machine the workpiece into a desired shape. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の工作機械を示す斜視図、第2
図((L)、 (b)は第1の加工態様を示す斜視図お
よび正面図、第3図(a)、 (b)、 (C)は第2
の加工態様を示す斜視図、正面図、および側面図、第4
図(a)、 (b)は第3の加工態様を示す斜視図、お
よび正面図、第5図(a)、 (b)は数値的性能例に
おける測定結果および加工条件を示すチャート、第6図
は第4の加工態様を示す斜視図である。 1080機枠、 21.、駆動ブロック体、 30.。 支承ブロック体、 411.案内往復台、 510.被
加工物、 6,7.、、取付部材、 890.駆動用モ
ータ、  911.ウオーム、  10.、、ウオーム
ホイール、 11 、、、切削工具、 12.、、工具
台、13、、、回動板、 14.、、昇降板、 15.
、、駆動用モータ、 17 、、、送りモータ、 18
,1911.切れ刃、 20 、、、アーバ。 v!2図 (b)■O>ゞ・>V2 第3図 (b)          (c ) 第4図 (b) 〈−一
Fig. 1 is a perspective view showing a machine tool according to an embodiment of the present invention;
Figures ((L), (b) are perspective views and front views showing the first processing mode, Figures 3(a), (b), and (C) are the second processing mode).
A perspective view, a front view, and a side view showing the processing mode of
Figures (a) and (b) are perspective views and front views showing the third processing mode, Figures 5 (a) and (b) are charts showing measurement results and processing conditions in numerical performance examples, and Figure 6. The figure is a perspective view showing a fourth processing mode. 1080 aircraft slots, 21. , drive block body, 30. . Supporting block body, 411. Guide carriage, 510. Workpiece, 6,7. ,, mounting member, 890. Drive motor, 911. Warm, 10. ,,worm wheel, 11,,,cutting tool, 12. ,,Tool stand, 13,,, Rotating plate, 14. ,,lifting plate, 15.
,,drive motor, 17 ,,feed motor, 18
, 1911. Cutting edge, 20, arbor. v! Figure 2 (b) ■O>ゞ・>V2 Figure 3 (b) (c) Figure 4 (b) <-1

Claims (1)

【特許請求の範囲】[Claims] (1)一軸線の周りに一方向にのみ回転するようにウォ
ーム歯車機構のような非可逆的回転伝達機構を介して動
力源に連結された被加工物回転機構と、 回転中の前記被加工物に対して接近することによりその
被加工物にダウンカット加工を施すように被加工物の回
転速度よりも大きな回転速度で第二の軸線の周りに一方
向に回転切削工具を回転させるための工具回転機構と、 前記回転切削工具を前記被加工物に対し任意の方向より
係合し得るように前記被加工物に対する前記回転切削工
具の係合関係を変更操作すると共に、被加工物と回転切
削工具とを互いに接近離隔させるための手段と、 より構成されたことを特徴とする工作機械。
(1) A workpiece rotation mechanism connected to a power source via an irreversible rotation transmission mechanism such as a worm gear mechanism so as to rotate only in one direction around one axis, and the workpiece being rotated. For rotating a rotary cutting tool in one direction around a second axis at a rotational speed greater than the rotational speed of the workpiece so as to apply a downcut to the workpiece by approaching the workpiece. a tool rotation mechanism; changing the engagement relationship of the rotary cutting tool with the workpiece so that the rotary cutting tool can engage the workpiece from any direction; A machine tool comprising: a means for moving a cutting tool close to and away from each other;
JP1196487A 1987-01-21 1987-01-21 Machine tool Pending JPS63180413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196487A JPS63180413A (en) 1987-01-21 1987-01-21 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196487A JPS63180413A (en) 1987-01-21 1987-01-21 Machine tool

Publications (1)

Publication Number Publication Date
JPS63180413A true JPS63180413A (en) 1988-07-25

Family

ID=11792301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196487A Pending JPS63180413A (en) 1987-01-21 1987-01-21 Machine tool

Country Status (1)

Country Link
JP (1) JPS63180413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311218A (en) * 1989-05-24 1990-12-26 Fanuc Ltd Tapping method
JPH048423A (en) * 1990-04-26 1992-01-13 Fanuc Ltd Tapping method
KR100775969B1 (en) 2007-03-29 2007-11-15 티아이씨볼스크류(주) Lapping device of screw for ball screw
JP2014046450A (en) * 2012-09-04 2014-03-17 Thk Co Ltd Helical groove working method, screw shaft to be formed by the method, and rolling element screw device having the screw shaft
CN104942383A (en) * 2015-06-16 2015-09-30 象山华洋机床附件厂 Cutting device for thread cutting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311218A (en) * 1989-05-24 1990-12-26 Fanuc Ltd Tapping method
JPH048423A (en) * 1990-04-26 1992-01-13 Fanuc Ltd Tapping method
KR100775969B1 (en) 2007-03-29 2007-11-15 티아이씨볼스크류(주) Lapping device of screw for ball screw
JP2014046450A (en) * 2012-09-04 2014-03-17 Thk Co Ltd Helical groove working method, screw shaft to be formed by the method, and rolling element screw device having the screw shaft
CN104942383A (en) * 2015-06-16 2015-09-30 象山华洋机床附件厂 Cutting device for thread cutting

Similar Documents

Publication Publication Date Title
KR101443776B1 (en) Device for cutting bar-shaped or tubular workpieces
JPH03178735A (en) Three phase crankshaft machining
JP3180327B2 (en) Cutter with guide roller, grinding tool with guide roller, cutting device, grinding device and processing machine
JPH058002Y2 (en)
CN105127788B (en) A kind of milling machine
JPS63180413A (en) Machine tool
CN2900057Y (en) Pipe rotary driver
JPH0565287B2 (en)
CN2535172Y (en) Rotary-cutting pipe-cutting machine
KR20190045210A (en) Machining methods and turning devices for machining rotating symmetrical surfaces of workpieces
CN105598535A (en) Whirlwind milling device
CN210475583U (en) Eccentric shaft machining tool
CN210081454U (en) Face grinds blade disc and has frock of face mill blade disc
JPH0533201Y2 (en)
TWI317310B (en) Gantry type machine tool
CN111014827B (en) Hand-held quick chamfering machine
JPS63267101A (en) Cutting method for rotary tool
JPS6232045B2 (en)
CN219853201U (en) Center frame for numerical control lathe
CN211193497U (en) Grinding wheel dresser
JP6831604B1 (en) Cylindrical grinder
CN210756354U (en) Machine tool for machining inner arc surface of large-size workpiece
CN109290943B (en) Tool for grinding oil groove of main shaft sleeve
JP2536352Y2 (en) Groove processing equipment
CN107755831A (en) A kind of high milling with whirling cutter device of precision