JPS6318024B2 - - Google Patents

Info

Publication number
JPS6318024B2
JPS6318024B2 JP55072277A JP7227780A JPS6318024B2 JP S6318024 B2 JPS6318024 B2 JP S6318024B2 JP 55072277 A JP55072277 A JP 55072277A JP 7227780 A JP7227780 A JP 7227780A JP S6318024 B2 JPS6318024 B2 JP S6318024B2
Authority
JP
Japan
Prior art keywords
fuel
activated carbon
fuel vapor
flow
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072277A
Other languages
Japanese (ja)
Other versions
JPS56168816A (en
Inventor
Junji Mizuno
Akira Fukami
Kunio Okamoto
Kenichi Hanaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP7227780A priority Critical patent/JPS56168816A/en
Priority to US06/256,664 priority patent/US4386947A/en
Publication of JPS56168816A publication Critical patent/JPS56168816A/en
Publication of JPS6318024B2 publication Critical patent/JPS6318024B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 本発明は、自動車、オートバイ等に使われる燃
料蒸発防止装置に関し、詳細にはそれに用いる吸
着剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel evaporation prevention device used in automobiles, motorcycles, etc., and specifically relates to an adsorbent used therein.

例えば、自動車用燃料蒸発防止装置の吸着剤と
しては従来から一般に粒状活性炭が使用されてき
た。しかし、粒状活性炭の場合、各々が粒子であ
り、これを容器内に充填した場合、互いに部分接
触することになる。ところが、自動車用燃料蒸発
防止装置は車体に直接取付けられるため、車輛運
転時における車体の振動がそのまま上記容器に伝
わる。このため容器内の粒状活性炭が互いに擦れ
合い、粉末化を起こし、ひいては機能の劣化等
数々の弊害を招くことがある。
For example, granular activated carbon has conventionally been generally used as an adsorbent for fuel evaporation prevention devices for automobiles. However, in the case of granular activated carbon, each particle is a particle, and when the particles are filled into a container, they come into partial contact with each other. However, since the automobile fuel evaporation prevention device is directly attached to the vehicle body, vibrations of the vehicle body during vehicle operation are directly transmitted to the container. As a result, the granular activated carbon in the container rubs against each other and becomes powder, which can lead to a number of problems such as functional deterioration.

以上の理由により、本発明者は一体成形品であ
るモノリス構造の活性炭を吸着剤として用いるこ
とを考えた。
For the above reasons, the present inventor considered using activated carbon having a monolithic structure, which is an integrally molded product, as an adsorbent.

上記モノリス構造の活性炭は第1図に示すよう
に各々の通気用通路が互いに隔壁を介して隔置さ
れた状態で上端面から下端面へと通じている構造
になつている。このため、これを吸着剤として用
いた場合、各々の通気通路が短いため「吹き抜
け」現象が現われ易く、モノリス構造の活性炭自
身、吸着能力が十分にあるにもかかわらず、車輛
の燃料タンク等から発生する燃料蒸気を回収しき
れず大気へ放出されてしまう恐れが多分にある。
As shown in FIG. 1, the monolith-structured activated carbon has a structure in which each ventilation passage communicates from the upper end surface to the lower end surface while being spaced apart from each other via a partition wall. For this reason, when this is used as an adsorbent, the "blow-through" phenomenon tends to occur because each ventilation passage is short, and even though the monolithic activated carbon itself has sufficient adsorption capacity, it is difficult to absorb water from vehicle fuel tanks, etc. There is a high risk that the generated fuel vapor will not be fully recovered and will be released into the atmosphere.

本発明は吸着剤としてのモノリス構造の活性炭
を複数個積層し、この積層体を、その内部を流れ
る燃料蒸気に乱れが生じるよう構成することによ
り、燃料蒸気の吸着ならびに脱離作用を促して軽
量、高性能な燃料蒸発防止装置を提供することを
目的とする。
In the present invention, a plurality of monolithic activated carbons are stacked as adsorbents, and this stack is structured so that turbulence occurs in the fuel vapor flowing inside the stack, thereby promoting adsorption and desorption of fuel vapor, thereby reducing weight. The purpose is to provide a high-performance fuel evaporation prevention device.

以下に本発明の実施例を示す。第2図および第
3図において、1は燃料タンクに通ずる燃料蒸気
導入管、2は内燃機関の吸気管のスロツトル弁上
流に通ずる混合気導出管、3a,4a,5aはチ
エツク弁、3b,4b,5bはチエツク弁用スプ
リング、6a,6bは不織布等の耐燃料劣化性を
有した材料よりなる通気性フイルタ、7a,7
b,7cは通気性フイルタで上記フイルタ6a,
6bと同材料よりなる。8は容器、9a,9b,
9c,9dは多数の通路が隔壁により隔置された
モノリス構造を有した活性炭、10は蓋、11は
大気開放口、12は空間部である。
Examples of the present invention are shown below. In Figures 2 and 3, 1 is a fuel vapor introduction pipe leading to the fuel tank, 2 is a mixture outlet pipe leading upstream of the throttle valve of the intake pipe of the internal combustion engine, 3a, 4a, 5a are check valves, 3b, 4b , 5b is a check valve spring; 6a, 6b are breathable filters made of a material having fuel deterioration resistance such as nonwoven fabric; 7a, 7;
b and 7c are air permeable filters, which are similar to the filters 6a and 7c.
Made of the same material as 6b. 8 is a container, 9a, 9b,
9c and 9d are activated carbon having a monolithic structure in which a large number of passages are separated by partition walls, 10 is a lid, 11 is an air opening, and 12 is a space.

上記活性炭9a〜9dは同じ形状、同じ大き
さ、かつ同じ数の通路を有しており、これら通路
どうしが互いに連通するごとく積み重ねられてお
り、かつ各々の通路の配列方向(平面からみた配
列方向)が互いに異なるようにしてある。そし
て、このように構成された積層体Aの両端面上に
前記フイルタ6a,6bを付け、樹脂製容器8に
入れてある。また、燃料蒸気導入管1、ベース1
3,14等を備えた樹脂製の蓋10が容器8に溶
着してある。フイルタ6a,6bは脱離用空気に
混じつた異物が積層体A内ひいては機関燃焼室内
へ入いらないようにする働きをする。また、蓋1
0に兼ね備えられたスペーサ10aは空間部12
を形成し、かつ容器8とともに積層体Aをしつか
りと固定する働きを兼ねる。フイルタ7a〜7c
は活性炭9a〜9dを通る流れを一時的に乱す働
きとともに、上述のフイルタ6a,bの働きをも
果す。さらに、活性炭9a〜9dの通路の配列方
向を異ならせることは、積層体A内の流れをより
乱す働きを果す。
The activated carbons 9a to 9d have the same shape, the same size, and the same number of passages, and are stacked so that these passages communicate with each other. ) are made to be different from each other. The filters 6a and 6b are attached to both end faces of the laminate A constructed as described above, and the laminated body A is placed in a resin container 8. In addition, fuel vapor introduction pipe 1, base 1
A lid 10 made of resin and having parts 3, 14, etc. is welded to the container 8. The filters 6a and 6b function to prevent foreign matter mixed in the desorbing air from entering the stack A and, furthermore, the engine combustion chamber. Also, lid 1
The spacer 10a combined with the spacer 12
It also serves to firmly fix the laminate A together with the container 8. Filters 7a to 7c
serves to temporarily disturb the flow passing through the activated carbons 9a to 9d, and also serves as the filters 6a, b described above. Furthermore, differentiating the arrangement direction of the passages of the activated carbons 9a to 9d serves to further disrupt the flow within the stacked body A.

上記活性炭9a〜9dの製造方法は次のようで
ある。
The method for manufacturing the activated carbons 9a to 9d is as follows.

200メツシユの石炭系活性炭粉末1Kgにメチル
セルロース100gを加え、よく混合してこれを第
1原料とする。水溶性イミド系樹脂を40%含有す
る水容性ワニス(残部60%は水)500gに水950c.c.
を加え混合する。これを第1溶液する。ニーダ内
で上記第1原料に上記第1溶液を除々に加えよく
混合し、さらに混練機で良く混練した後、モノリ
ス構造成型用の型をセツトした押し出し機に上記
混練材料を入れ、この材料をモノリス成型用型か
ら押し出すことにより、モノリス状の活性炭を成
型する。次に、得られたモノリス活性炭を60℃で
8時間乾燥して、さらに12℃/Hrの昇温スピー
ドで120℃まで昇温し、この120℃で5時間保持し
十分に乾燥させる。最後にこのモノリス活性炭を
窒素雰囲気において270℃で2時間加熱すること
により、十分に熱硬化したモノリス構造の活性炭
を得た。
Add 100 g of methyl cellulose to 1 kg of 200 mesh coal-based activated carbon powder, mix well, and use this as the first raw material. Water-soluble varnish containing 40% water-soluble imide resin (the remaining 60% is water) and 950 c.c. of water.
Add and mix. This is used as the first solution. The first solution is gradually added to the first raw material in a kneader, and the mixture is thoroughly mixed.Then, the kneaded material is put into an extruder equipped with a mold for forming a monolith structure, and the material is Monolith-shaped activated carbon is molded by extruding it from a monolith mold. Next, the obtained monolithic activated carbon is dried at 60°C for 8 hours, further heated to 120°C at a rate of 12°C/Hr, and kept at 120°C for 5 hours to be thoroughly dried. Finally, this monolithic activated carbon was heated at 270° C. for 2 hours in a nitrogen atmosphere to obtain activated carbon with a monolithic structure that was sufficiently thermoset.

上記構成において、燃料タンクで発生した燃料
蒸気は燃料蒸気導入管1を通り、チエツク弁4a
を経て空間部12へ流入する。ここでフイルタ6
aがあるため、空間部12に均一に広がり、やが
てフイルタ6aを通つて活性炭9a〜9d内へ流
れ、この際に吸着、保持される。
In the above configuration, the fuel vapor generated in the fuel tank passes through the fuel vapor introduction pipe 1, and passes through the check valve 4a.
It flows into the space 12 through the. Here filter 6
Because of the presence of carbon a, it spreads uniformly in the space 12, and eventually flows into the activated carbons 9a to 9d through the filter 6a, where it is adsorbed and held.

一方、機関がある条件、即ち脱離された燃料蒸
気が混合気として脱離用空気とともに機関吸引部
へ入つても良い条件を満たしながら運転されてい
る時、脱離用空気が脱離用空気取入口11より機
関の負圧により導かれ、フイルタ6bを通つて活
性炭9a〜9d内へ流れる。この際、吸着、保持
されていた燃料蒸気を脱離させ、活性炭9a〜9
dの吸着能を再生させた後、混合気としてフイル
タ6aを通り、チエツク弁5aを通つて混合気導
出管2より機関吸引部を経て燃焼室内へ導びかれ
燃焼する。
On the other hand, when the engine is operated under certain conditions, i.e., conditions in which the desorbed fuel vapor can enter the engine suction section together with the desorbing air as a mixture, the desorbing air becomes the desorbing air. It is led from the intake port 11 by the negative pressure of the engine and flows into the activated carbons 9a to 9d through the filter 6b. At this time, the adsorbed and retained fuel vapor is desorbed and activated carbon 9a to 9
After the adsorption capacity of d is regenerated, the air-fuel mixture passes through the filter 6a, passes through the check valve 5a, is guided from the air-fuel mixture outlet pipe 2 into the combustion chamber via the engine suction section, and is combusted.

ところで、活性炭9a〜9dにおける燃料蒸気
の広がりは「拡散」と「流れ」が考えられるが、
この広がり方を支配しているのは「流れ」であ
る。このため、上記モノリス構造の活性炭を単体
で使用すると、その活性炭の構造上、「流れ」は
層流域へ移ろうとする。さらに、燃料蒸気及び脱
離用空気の流速は遅いので、より「流れ」は層流
域へ助長されるようになる。なお、計算によつて
もRe数は数十〜数百レベルの層流域となる。こ
れは、活性炭の通路の径によつて値が異なつてく
るが、Re数はほぼこの範囲内であることが判つ
た。
By the way, the spread of fuel vapor in the activated carbons 9a to 9d can be thought of as "diffusion" or "flow".
What controls this way of spreading is "flow." Therefore, when the monolithic activated carbon is used alone, the "flow" tends to shift to the laminar region due to the structure of the activated carbon. Furthermore, since the flow velocity of the fuel vapor and desorption air is slow, the "flow" is further promoted to the laminar region. In addition, even according to the calculation, the Re number is in the laminar region of several tens to hundreds of levels. Although this value varies depending on the diameter of the activated carbon passage, it was found that the Re number was approximately within this range.

上述の理由により、第4図に示すように、モノ
リス構造の活性炭内では、流れをミクロ的に観た
場合、「流れ」の向きは壁に沿うy方向が主にな
り、吸着、脱離作用に有効な壁αに向うX方向の
流れがあまり存在せず、前述したように「吹き抜
け」現象が顕著に現われることが判明した。
For the reasons mentioned above, as shown in Figure 4, when the flow is viewed microscopically in activated carbon with a monolithic structure, the direction of the "flow" is mainly in the y direction along the wall, and adsorption and desorption effects occur. It was found that there was not much flow in the X direction toward the wall α, which is effective for the flow, and that the "blow-through" phenomenon as described above appeared prominently.

本発明は上述の「流れ」が層流域のままモノリ
ス構造の活性炭内を流れないように一時的に「流
れ」を乱し、吸着、脱離作用の向上を図つたもの
である。第2図の積層体Aの一部を拡大して断面
を表わす第5図で説明すると、例として燃料蒸気
をとると、フイルタ6aを通過した燃料蒸気は活
性炭9aの通路内に流入する。そして、除々に
「層流」に移つて行くが、フイルタ7aがあり、
かつ活性炭9aと9bとの通路の配列が揃つてい
ないため、この領域で「流れ」が乱され、吸着に
有効なX方向の流れが増し、結果として吸着作用
を向上させる。上述のことを繰り返して行く内に
燃料蒸気は吸着保持される。なお、脱離作用空気
が流れた場合も同様であり、吸着保持された燃料
蒸気は脱離される。
The present invention aims to improve the adsorption and desorption effects by temporarily disrupting the above-mentioned "flow" so that it does not flow through the monolithic activated carbon in a laminar region. To explain this with reference to FIG. 5, which shows an enlarged cross section of a part of the stacked body A in FIG. 2, taking fuel vapor as an example, the fuel vapor that has passed through the filter 6a flows into the passage of the activated carbon 9a. Then, it gradually shifts to "laminar flow", but there is a filter 7a,
Moreover, since the passages of the activated carbons 9a and 9b are not aligned, the "flow" is disturbed in this region, and the flow in the X direction, which is effective for adsorption, increases, resulting in an improved adsorption effect. As the above steps are repeated, fuel vapor is adsorbed and retained. The same applies when the desorption air flows, and the adsorbed and retained fuel vapor is desorbed.

以上のように本発明は、前述したモノリス構造
の活性炭の「吹き抜け」現象を防ぐとともに、吸
着剤としてのモノリス活性炭を有効に利用でき、
軽量、高性能な燃料蒸発防止装置を提供できる。
As described above, the present invention prevents the above-described "blow-through" phenomenon of monolithic activated carbon, and also makes it possible to effectively utilize monolithic activated carbon as an adsorbent.
A lightweight, high-performance fuel evaporation prevention device can be provided.

なお、実験の結果、同量のモノリス構造の活性
炭を用いて、単体の場合と本発明による場合の吸
着率の比較を第8図に示す。
As a result of the experiment, FIG. 8 shows a comparison of the adsorption rates between the monolithic activated carbon and the present invention using the same amount of monolithic activated carbon.

第6図は複数の活性炭9a,9b……の通路の
形状、大きさ、数を全て同じに設定し、通路配列
方向が互いに同一となるごとく複数の活性炭を積
層し、かつこの積層間に通気性フイルタ7a,7
b…を介在せしめた本発明の他の実施例を示すも
のである。この実施例によれば、フイルタ7a,
7bによつて活性炭の通路内の流れに乱れが生じ
る。
Figure 6 shows a plurality of activated carbons 9a, 9b, etc. whose passages have the same shape, size, and number, are stacked so that the passages are arranged in the same direction, and ventilation is provided between the stacked layers. gender filters 7a, 7
Fig. 3 shows another embodiment of the present invention in which b... is interposed. According to this embodiment, the filters 7a,
7b causes turbulence in the flow of activated carbon in the passage.

第7図は複数の活性炭9a,9b…の通路の大
きさを互いに変えるとともに、その通路の配列方
向を互いに変えた本発明の他の実施例を示すもの
である。この実施例によれば、通路の大きさの違
い、通路の配列方向の違いによつて活性炭の通路
内の流れに乱れが生じる。
FIG. 7 shows another embodiment of the present invention in which the sizes of the passages of a plurality of activated carbons 9a, 9b, . . . are mutually different, and the directions in which the passages are arranged are mutually different. According to this embodiment, the flow of activated carbon within the passages is disturbed due to the difference in the size of the passages and the difference in the arrangement direction of the passages.

本発明は上記の各実施例に限定されず、以下の
ごとく種々変形可能である。
The present invention is not limited to the above embodiments, but can be modified in various ways as described below.

(1) 第5図では複数の活性炭9a,9bの通路が
少しづつずれた構成となつているが、このよう
な構成ではフイルタ6a,7aがなくても燃料
蒸気、脱離空気の流れに乱れを生じさせること
ができる。
(1) In Fig. 5, the passages of the plurality of activated carbons 9a and 9b are slightly staggered, but with such a configuration, even without the filters 6a and 7a, there is no disturbance in the flow of fuel vapor and desorbed air. can be caused.

(2) 複数の活性炭の通路の大きさを互いに異なる
ように構成し、かつその通路の大きさが活性炭
の積層方向に向つて大、小、大、小と交互に異
なるように活性炭を積層し、かつそれぞれの通
路の中心を同心としても流れに乱れを生じさせ
ることができる。
(2) The activated carbons are stacked so that the passage sizes of the plurality of activated carbons are different from each other, and the sizes of the passages are alternately large, small, large, and small in the stacking direction of the activated carbon. , and even if the centers of the respective passages are concentric, turbulence can be caused in the flow.

(3) 燃料蒸発発生源としては、燃料タンクの他に
気化器のフロート室がある。
(3) In addition to the fuel tank, sources of fuel evaporation include the float chamber of the carburetor.

(4) 複数の活性炭の個々の高さ寸法は互いに異な
つていても勿論よい。
(4) Of course, the individual height dimensions of the plurality of activated carbons may be different from each other.

以上詳述したごとく、本発明においては、モノ
リス構造の活性炭を複数個積み重ね、かつこの積
層体をその通路内の流れに乱れが生じる構成とし
たから、 (1) 複数のモノリス構造の活性炭の通路内の流れ
の層流化を防げ、燃料蒸気の吸着、脱離作用を
向上できる。
As detailed above, in the present invention, a plurality of monolithic activated carbons are stacked, and this stacked body is configured to cause turbulence in the flow in the passages. (1) A plurality of monolithic activated carbon passages. This prevents the flow from becoming laminar and improves the adsorption and desorption effects of fuel vapor.

(2) 「吹き抜け」現象が防げ、吸着剤としてのモ
ノリス構造の活性炭を有効に使用できる。
(2) The "blow-through" phenomenon can be prevented, and activated carbon with a monolithic structure can be used effectively as an adsorbent.

(3) 一体のモノリス構造であるので、振動等が生
じても粉末化することはない。
(3) Since it has an integrated monolith structure, it will not turn into powder even if vibrations occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供するモノリス構造の
活性炭を示す一部断面斜視図、第2図は本発明の
一実施例を示す部分断面図、第3図は第2図の積
層体を示す一部断面斜視図、第4図および第5図
は本発明の作用の説明に供するモノリス構造の活
性炭の通路における燃料蒸気の流れ状態を示す断
面図、第6図および第7図は本発明の他の実施例
における積層体を示す一部断面斜視図、第8図は
本発明の効果の説明に供する特性図である。 6a,7a,7b,7c,7d……フイルタ、
9a,9b,9c,9d……活性炭。
FIG. 1 is a partially sectional perspective view showing a monolith-structured activated carbon used to explain the present invention, FIG. 2 is a partially sectional view showing an embodiment of the present invention, and FIG. 3 is a laminate shown in FIG. 2. A partially sectional perspective view, FIGS. 4 and 5 are cross-sectional views showing the flow state of fuel vapor in a channel of activated carbon having a monolith structure, and FIGS. FIG. 8, a partially cross-sectional perspective view showing a laminate in another embodiment, is a characteristic diagram for explaining the effects of the present invention. 6a, 7a, 7b, 7c, 7d...filter,
9a, 9b, 9c, 9d... activated carbon.

Claims (1)

【特許請求の範囲】 1 燃料蒸気発生源よりの燃料蒸気を吸着せしめ
るとともに、この吸着した燃料を内燃機関に導く
ようにした燃料蒸発防止装置において、多数の通
路を隔壁により隔置したモノリス構造の複数の活
性炭を備え、この複数の活性炭を、互いの通路が
連通するように直列関係に積層し、この積層体
を、この積層体内部の通路を通る燃料蒸気に乱れ
が生じるよう構成してなることを特徴とする燃料
蒸発防止装置。 2 前記積層体において、その複数の活性炭の積
層間に通気フイルターが介在されていることによ
り前記積層体の通る燃料蒸気の流れに乱れが生じ
るようになつていることを特徴とする特許請求の
範囲1記載の燃料蒸発防止装置。 3 前記複数の活性炭の通路群のピツチがそれぞ
れ互いに異なることにより、前記積層体を通る燃
料蒸気の流れに乱れが生じるようになつているこ
とを特徴とする特許請求の範囲1または2記載の
燃料蒸発防止装置。 4 前記複数の活性炭の通路群の配列方向がそれ
ぞれ互いに異なることにより、前記積層体を通る
燃料蒸気の流れに乱れが生じるようになつている
ことを特徴とする特許請求の範囲1記載の燃料蒸
発防止装置。
[Claims] 1. A fuel evaporation prevention device that adsorbs fuel vapor from a fuel vapor source and guides the adsorbed fuel to an internal combustion engine, which has a monolithic structure in which a number of passages are separated by partition walls. The activated carbon is provided with a plurality of activated carbons, the plurality of activated carbons are stacked in series so that their passages communicate with each other, and the stack is configured such that turbulence occurs in the fuel vapor passing through the passages inside the stack. A fuel evaporation prevention device characterized by: 2. Claims characterized in that in the laminate, a ventilation filter is interposed between the plurality of layers of activated carbon, so that turbulence occurs in the flow of fuel vapor passing through the laminate. 1. The fuel evaporation prevention device according to 1. 3. The fuel according to claim 1 or 2, characterized in that the pitches of the plurality of activated carbon passage groups are different from each other, so that turbulence occurs in the flow of fuel vapor passing through the stacked body. Evaporation prevention device. 4. The fuel evaporator according to claim 1, wherein the arrangement directions of the plurality of activated carbon passage groups are different from each other, so that turbulence occurs in the flow of fuel vapor passing through the stacked body. Prevention device.
JP7227780A 1980-04-25 1980-05-29 Device for preventing evaporation of fuel Granted JPS56168816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7227780A JPS56168816A (en) 1980-05-29 1980-05-29 Device for preventing evaporation of fuel
US06/256,664 US4386947A (en) 1980-04-25 1981-04-22 Apparatus for adsorbing fuel vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227780A JPS56168816A (en) 1980-05-29 1980-05-29 Device for preventing evaporation of fuel

Publications (2)

Publication Number Publication Date
JPS56168816A JPS56168816A (en) 1981-12-25
JPS6318024B2 true JPS6318024B2 (en) 1988-04-15

Family

ID=13484622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227780A Granted JPS56168816A (en) 1980-04-25 1980-05-29 Device for preventing evaporation of fuel

Country Status (1)

Country Link
JP (1) JPS56168816A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693389B2 (en) * 1995-07-06 2005-09-07 株式会社デンソー Canister
KR19990027844A (en) * 1997-09-30 1999-04-15 윤종용 Air inflow device of semiconductor equipment and chemical contamination removal method

Also Published As

Publication number Publication date
JPS56168816A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
US4386947A (en) Apparatus for adsorbing fuel vapor
US6503301B2 (en) Fuel vapor treatment canister
US4381929A (en) Apparatus for adsorbing fuel vapor
US3730158A (en) Canister for evaporation loss control
JP3892385B2 (en) Canister filter
JP2003193917A (en) Evaporated fuel adsorbent and air cleaner
US20120006504A1 (en) Shaped heat storage materials
JPS629744B2 (en)
JP5976381B2 (en) Evaporative fuel processing equipment
JP5450213B2 (en) Canister
JP6376106B2 (en) Canister
JP3337398B2 (en) Adsorbent for evaporative fuel processing apparatus and method for producing the same
JP6762689B2 (en) Evaporative fuel processing equipment
US20020073847A1 (en) Cell within a cell monolith structure for an evaporative emissions hydrocarbon scrubber
JP2013011250A (en) Fuel vapor processing apparatus
JPS6318024B2 (en)
JP2017218908A (en) Evaporated fuel treatment device
US11473535B2 (en) Evaporated fuel treatment device
JP7303241B2 (en) canister
JP2019124171A (en) Evaporated fuel treatment device
JPH084605A (en) Evaporated fuel processing device
JPH053737Y2 (en)
JPS622287Y2 (en)
JPS59226263A (en) Vaporized fuel adsorbing device
JPS6231185B2 (en)