JPS63179945A - Reinforced rubber composition and production thereof - Google Patents

Reinforced rubber composition and production thereof

Info

Publication number
JPS63179945A
JPS63179945A JP1200587A JP1200587A JPS63179945A JP S63179945 A JPS63179945 A JP S63179945A JP 1200587 A JP1200587 A JP 1200587A JP 1200587 A JP1200587 A JP 1200587A JP S63179945 A JPS63179945 A JP S63179945A
Authority
JP
Japan
Prior art keywords
rubber composition
parts
coupling agent
weight
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1200587A
Other languages
Japanese (ja)
Other versions
JPH0588860B2 (en
Inventor
Kunio Oda
小田 邦雄
Hideo Kurihara
秀夫 栗原
Takeshi Tanabe
健 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1200587A priority Critical patent/JPS63179945A/en
Priority to DE8787308206T priority patent/DE3773608D1/en
Priority to EP87308206A priority patent/EP0265070B1/en
Priority to US07/097,101 priority patent/US5006603A/en
Publication of JPS63179945A publication Critical patent/JPS63179945A/en
Priority to US07/437,811 priority patent/US5049610A/en
Publication of JPH0588860B2 publication Critical patent/JPH0588860B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rubber composition having excellent productivity and processability and giving a vulcanized product having excellent mechanical properties, by kneading and extruding an ethylene-propylene-diene copolymer rubber, short fibers of a polyamide and a coupling agent at a temperature above a specific level. CONSTITUTION:(A) 100pts.wt. of an ethylene-propylene-diene copolymer rubber (preferably having a Mooney viscosity of 5-80 and an iodine value of 4-30) is compounded with (B) 2-100pts.wt. of fine short fibers of a thermoplastic polyamide (preferably short fibers having an average diameter of 0.05-0.8mum and fiber length of 10mum and made of nylon 6, nylon 66, etc., having a melting point of 180-260 deg.C) and (C) 0.2-5pts.wt. (based on 100pts.wt. of A+B) of a coupling agent (preferably silane coupling agent, etc.). The mixture is kneaded at a temperature above the melting point of the component B and extruded to obtain a reinforced rubber composition wherein the short fibers of the component B are embedded in the component A and the component A is grafted to the polyamide of the component B at the surface of the short fiber via the component C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生産性及び加工性に優れ、しかも加硫物の力
学的性質に優れた新規な強化ゴム組成物及びその製造方
法に関するもので、本発明の強化ゴム組成物は、自動車
用ゴム部品、工業用ゴム製品、及びゴム製品一般の製造
に利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel reinforced rubber composition with excellent productivity and processability as well as excellent mechanical properties of the vulcanizate, and a method for producing the same. The reinforced rubber composition of the present invention is used for manufacturing rubber parts for automobiles, industrial rubber products, and rubber products in general.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

エチレン・プロピレン・ジエン共重合体であるEPDM
ゴムは、その優れた耐熱性及び耐候性のため、工業用ゴ
ム製品、例えば耐熱ゴムホース、耐熱ゴムベルト、防振
ゴム、スポンジゴム等の材料として広範囲に使用されて
いる。通常のEPDMゴムを上記製品の製造材料に供す
る時、その製品の種類に応じて種々の補強剤が配合され
る。このような補強剤としては、例えば、カーボンブラ
ンク、シリカ、炭酸マグネシウム、けい酸マグネシウム
等の無機補強剤、フェノールホルムアルデヒド樹脂、ポ
リアミド繊維、アラミド繊維、ポリエステル繊維等の有
機補強剤が用いられている。
EPDM is an ethylene-propylene-diene copolymer
Due to its excellent heat resistance and weather resistance, rubber is widely used as a material for industrial rubber products such as heat-resistant rubber hoses, heat-resistant rubber belts, vibration-proof rubber, and sponge rubber. When ordinary EPDM rubber is used as a manufacturing material for the above-mentioned products, various reinforcing agents are added depending on the type of product. Examples of such reinforcing agents include inorganic reinforcing agents such as carbon blank, silica, magnesium carbonate, and magnesium silicate, and organic reinforcing agents such as phenol formaldehyde resin, polyamide fibers, aramid fibers, and polyester fibers.

上記補強剤が配合されたEPDMゴム組成物は、未加硫
時のグリーン強度が増大し、加硫物も高弾性率を示すが
、その効果を大きくするためには多量の補強剤を配合し
なくてはならない。しかし、上記補強剤を多量に配合す
ると、流動性及びロール加工性が悪くなり、また押出成
形時の押出物の表面平滑性が低下し、従って生産性が落
ち、実用的価値が減少する。また、上記有機補強剤の内
、有機繊維を補強剤として用いる場合は、該有機繊維と
EPDMゴムとの接着性若しくは密着性を高めるために
、上記有機繊維にRFL処理を施すのが通例であるが、
未だ適切なRFL処理法は開発されていない。
EPDM rubber compositions containing the above-mentioned reinforcing agents have increased green strength when unvulcanized, and the vulcanized product also exhibits a high elastic modulus, but in order to increase this effect, a large amount of reinforcing agents must be blended. Must-have. However, when a large amount of the above-mentioned reinforcing agent is blended, the fluidity and roll processability deteriorate, and the surface smoothness of the extrudate during extrusion molding also decreases, resulting in a decrease in productivity and a decrease in practical value. Furthermore, among the organic reinforcing agents, when organic fibers are used as reinforcing agents, it is customary to subject the organic fibers to RFL treatment in order to improve the adhesiveness or adhesion between the organic fibers and the EPDM rubber. but,
No suitable RFL processing method has yet been developed.

上述の理由によりEPDMゴムに上記補強剤を多量に配
合することはできないため、EPDMゴムのグリーン強
度を充分に大きくすることができない。そのため、押出
用ゴム製品の製造工程では、その途中で半加硫という面
倒な工程を組み入れたり、型くずれ防止用のマンドレル
を挿入したり、特別な加硫設備を必要とし、工程が複雑
化し、コストアンプの原因となる。
For the reasons mentioned above, it is not possible to incorporate a large amount of the reinforcing agent into EPDM rubber, and therefore it is not possible to sufficiently increase the green strength of EPDM rubber. For this reason, the manufacturing process for extruded rubber products requires the cumbersome process of semi-vulcanization, the insertion of a mandrel to prevent deformation, and special vulcanization equipment, making the process complex and costly. cause the amplifier.

また、適切なRFL処理法が無いため、有機繊維とEP
DMゴムとの界面結合が弱く、加硫物の引張試験におい
ては、その伸張過程で上記有機繊維の界面近傍でボイド
が発生し、その結果、引張強度が低下し、破断伸びが減
少する。
In addition, since there is no appropriate RFL treatment method, organic fibers and EP
The interfacial bond with the DM rubber is weak, and in the tensile test of the vulcanizate, voids occur near the interface of the organic fiber during the elongation process, resulting in a decrease in tensile strength and elongation at break.

また、補強効果の低い無機補強剤、例えばシリカ、炭酸
マグネシウム、けい酸マグネシウム、炭酸カルシウム、
クレー、アルミナ等の補強剤を配合したEPDMゴム組
成物では、グリーン強度が小さいために、中空形状製品
或いは複雑な断面形状を有する押出製品を製造するには
、特別な技術及び設備を必要とし、自ずから製品の形状
にも限界が生ずる。
Inorganic reinforcing agents with low reinforcing effects, such as silica, magnesium carbonate, magnesium silicate, calcium carbonate,
EPDM rubber compositions containing reinforcing agents such as clay and alumina have low green strength, so special technology and equipment are required to produce hollow-shaped products or extruded products with complex cross-sectional shapes. Naturally, there are limits to the shape of the product.

更ニ、EPDMゴム組成物のグリーン強度を高める方法
として、エチレン成分含有比の高いEPDMゴムを配合
することが公知であるが、該EPDMゴムの配合により
、上記グリーン強度はたかだか2倍程度増加するに過ぎ
ない。また、その配合による結果、エチレン成分の結晶
化による耐寒性の低下、理由は不明だが耐亀裂成長性の
低下等の欠点が生じる。
Further, as a method of increasing the green strength of an EPDM rubber composition, it is known to blend EPDM rubber with a high ethylene component content ratio, but by blending the EPDM rubber, the green strength increases by at most about twice. It's nothing more than that. Moreover, as a result of the combination, disadvantages such as a decrease in cold resistance due to crystallization of the ethylene component and a decrease in crack growth resistance for unknown reasons arise.

更にまた、下記■〜■に示すように、ゴム組成物及び樹
脂組成物として種々のものが公知であるが、これらのも
のは、生産性及び加工性を満たし、且つ加硫物及び成形
品の良好な力学的性質等を満たし得るものではない。
Furthermore, as shown in (■) to (■) below, various rubber compositions and resin compositions are known, but these satisfy productivity and processability, and are suitable for forming vulcanizates and molded products. It cannot satisfy good mechanical properties.

■特開昭60−139729号公報には、粘着付与剤、
加硫可能な合成ゴム、アミド基を有する熱可塑性ポリマ
ー、ノボラック型フェノール樹脂、及びホルムアルデヒ
ド供与体を必須成分とする組成物が開示されている。こ
の組成物は、具体的には上記公報の実施例13から明ら
かなように、粘着付与剤、EPDM、6−ナイロン短繊
維状物、ノボラック型フェノール樹脂、及びヘキサメチ
レンテトラミンを必須成分とし、上記EPDMと上記6
−ナイロン短繊維状物とがノボラック型フェノール樹脂
を介してグラフトしているものである。
■Unexamined Japanese Patent Publication No. 60-139729 discloses tackifier,
A composition containing as essential components a vulcanizable synthetic rubber, a thermoplastic polymer having an amide group, a novolak type phenolic resin, and a formaldehyde donor is disclosed. Specifically, as is clear from Example 13 of the above-mentioned publication, this composition contains a tackifier, EPDM, 6-nylon short fibers, novolak type phenolic resin, and hexamethylenetetramine as essential components, and contains the above-mentioned EPDM and above 6
- Short nylon fibers are grafted via a novolac type phenolic resin.

■特開昭61−120855号公報には、ポリフェニレ
ンエーテル、ポリアミド、及びシラン誘導体を必須成分
とする組成物が開示されている。
(2) JP-A-61-120855 discloses a composition containing polyphenylene ether, polyamide, and a silane derivative as essential components.

この樹脂組成物においては、シラン誘導体を介してポリ
フェニレンエーテルとポリアミドとのグラフト反応生成
物の存在が推測されるが、ポリフェニレンエーテル及び
ポリアミドの何れも短繊維状物ではなく、この樹脂組成
物に含まれる50重量%以下のゴム状高分子量ポリマー
とポリフェニレンエーテル或いはポリアミドとの間には
化学結合は存在していない。
In this resin composition, the presence of a graft reaction product between polyphenylene ether and polyamide via a silane derivative is presumed, but neither polyphenylene ether nor polyamide are short fibrous materials, and they are not included in this resin composition. There are no chemical bonds between less than 50% by weight of the rubbery high molecular weight polymer and the polyphenylene ether or polyamide.

■特開昭49−104992号公報には、エチレン・α
オレフィン・非共軛ジエン共重合体とマレイン酸無水物
の混合物を加熱して得られる附加物が開示されている。
■Unexamined Japanese Patent Publication No. 49-104992 describes ethylene α
An additive obtained by heating a mixture of an olefin/non-coterminous diene copolymer and maleic anhydride is disclosed.

■特開昭51−143061号公報には、ポリアミドを
マトリックスとし、微細な特定の重合体を分散させた、
強化された多相熱可塑性組成物が開示されている。
■Unexamined Japanese Patent Publication No. 51-143061 discloses that polyamide is used as a matrix and fine specific polymers are dispersed therein.
A reinforced multiphase thermoplastic composition is disclosed.

■特開昭54−63150号公報及び特開昭54−−6
3151号公報には、ポリアミド系樹脂、エポキシ変性
オレフィン重合体、及び滑剤を必須成分とするポリアミ
ド系樹脂組成物が開示されている。
■JP-A-54-63150 and JP-A-54-6
No. 3151 discloses a polyamide resin composition containing a polyamide resin, an epoxy-modified olefin polymer, and a lubricant as essential components.

■特開昭60−63242号公報には、Ep6MとEP
DMに芳香族ビニル単量体をグラフトした熱可塑性樹脂
との組成物が開示されている。
■Unexamined Japanese Patent Publication No. 60-63242 includes Ep6M and EP
A composition of DM with a thermoplastic resin grafted with an aromatic vinyl monomer is disclosed.

従って、本発明の目的は、上述の従来技術の問題点を解
決し、生産性及び加工性に優れ、しかも加硫物の力学的
性質に優れた強化ゴム組成物及びその製造方法を提供す
ることにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a reinforced rubber composition that has excellent productivity and processability, as well as excellent mechanical properties of the vulcanizate, and a method for producing the same. It is in.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、」−記の目的を、エチレン・プロピレン・ジ
エン共重合ゴム100重量部に、熱可塑性ポリアミドの
微細な短繊維状物2〜100重量部が埋封されており、
且つ該短繊維状物の界面において前記ポリアミドと前記
共重合ゴムとがカップリング剤0.2〜5重量部(前記
共重合ゴム及び前記ポリアミドの合計量100重量部に
対する量)を介してグラフトしていることを特徴とする
強化ゴム組成物を提供することにより達成したものであ
る。
The present invention has the object of "-", in which 2 to 100 parts by weight of fine short fibers of thermoplastic polyamide are embedded in 100 parts by weight of ethylene-propylene-diene copolymer rubber,
and the polyamide and the copolymer rubber are grafted via a coupling agent of 0.2 to 5 parts by weight (an amount based on 100 parts by weight of the total amount of the copolymer rubber and the polyamide) at the interface of the short fibrous material. This has been achieved by providing a reinforced rubber composition characterized by:

また、本発明は、上記の強化ゴム組成物の製造方法とし
て、エチレン・プロピレン・ジエン共重合ゴム、熱可塑
性ポリアミド、及びカップリング剤を上記熱可塑性ポリ
アミドが溶融する温度以上で混練し押出すことを特徴と
する強化ゴム組成物の製造方法を提供するものである。
The present invention also provides a method for producing the above-mentioned reinforced rubber composition, which includes kneading and extruding ethylene-propylene-diene copolymer rubber, a thermoplastic polyamide, and a coupling agent at a temperature higher than the melting temperature of the thermoplastic polyamide. The present invention provides a method for producing a reinforced rubber composition characterized by the following.

本発明の強化ゴム組成物は、通常の有機繊維補強剤を配
合したEPDM組成物と比較して、押出成形時の表面平
滑性に優れ、形状保持性の目安と考えられるグリーン強
度が大きいため、多量の軟化剤、可塑剤及び充填剤の配
合が可能となり、いわゆる生産性、加工性及び経済性に
優れた組成物であるといえる。
The reinforced rubber composition of the present invention has excellent surface smoothness during extrusion molding and high green strength, which is considered to be a measure of shape retention, compared to EPDM compositions containing ordinary organic fiber reinforcing agents. It is possible to incorporate large amounts of softeners, plasticizers, and fillers, and it can be said that the composition is excellent in productivity, processability, and economy.

また、本発明の強化ゴム組成物の加硫物は、弾性率、例
えば100%伸長時の弾性率M、o0が、通常の有機繊
維補強剤を配合したEPDM組成物と同等であり、無機
補強剤を配合したEPDM組成物より大きい値を示す。
In addition, the vulcanizate of the reinforced rubber composition of the present invention has an elastic modulus, for example, an elastic modulus M at 100% elongation, o0, which is equivalent to that of an EPDM composition containing a normal organic fiber reinforcing agent, and an inorganic reinforced rubber composition. It shows a larger value than the EPDM composition containing the agent.

更に、本発明の強化ゴム組成物の加硫物は、引張強度が
、通常の有機繊維補強剤を配合したEPDM組成物より
大きい値を示し、補強性の大きい無機補強剤、例えばカ
ーボンブランクを配合したEPDM組成物と同等若しく
はそれ以上の値を示す。
Furthermore, the vulcanizate of the reinforced rubber composition of the present invention exhibits a tensile strength greater than that of an EPDM composition containing an ordinary organic fiber reinforcing agent, and contains an inorganic reinforcing agent with high reinforcing properties, such as carbon blank. It shows a value equivalent to or higher than that of the EPDM composition.

従って、本発明の強化ゴム組成物の加硫物は、力学的性
質に関してバランスのとれた優れた特性を有するといえ
る。
Therefore, it can be said that the vulcanizate of the reinforced rubber composition of the present invention has well-balanced and excellent mechanical properties.

以下、本発明の強化ゴム組成物について詳述する。The reinforced rubber composition of the present invention will be explained in detail below.

本発明の強化ゴム組成物に用いられるエチレン・プロピ
レン・ジエン共重合ゴム(以下、EPDMゴムという)
としては、そのムーニー粘度(ML、や4.1.00℃
)が5〜80、ヨウ素価が4〜30、エチレン単位とプ
ロピレン単位のモル比が50150〜80/20の範囲
にあるものが好ましい。
Ethylene-propylene-diene copolymer rubber (hereinafter referred to as EPDM rubber) used in the reinforced rubber composition of the present invention
As, its Mooney viscosity (ML, or 4.1.00℃
) is preferably in the range of 5 to 80, the iodine value is in the range of 4 to 30, and the molar ratio of ethylene units to propylene units is in the range of 50,150 to 80/20.

また、本発明の強化ゴム組成物に用いられる熱可塑性ポ
リアミドとしては、融点が180〜260℃の、ナイロ
ン6、ナイロン66、ナイロン12、ナイロン610、
ナイロン611、ナイロン612が好ましい。
In addition, the thermoplastic polyamides used in the reinforced rubber composition of the present invention include nylon 6, nylon 66, nylon 12, nylon 610, which have a melting point of 180 to 260°C.
Nylon 611 and nylon 612 are preferred.

本発明の強化ゴム組成物において、上記EPDMゴムに
埋封されている熱可塑性ポリアミドの微細な短繊維状物
は、繊維軸方向に分子が配列された形態で且つ断面円形
で、その平均径は0.05〜0.8μm、繊維長が10
μm以上で且つその繊維の90重量%以上が1000μ
m以下の形態で埋封されている。
In the reinforced rubber composition of the present invention, the fine short fibers of thermoplastic polyamide embedded in the EPDM rubber have molecules arranged in the fiber axis direction, have a circular cross section, and have an average diameter of 0.05-0.8μm, fiber length 10
μm or more and 90% by weight or more of the fiber is 1000 μm or more
It is embedded in the form of less than m.

上記EPDMゴムに埋封されている上記短繊維状物の割
合は、上記EPDMゴム100重量部に対して2〜10
0重量部、好ましくは3〜80重量部で、2重量部未満
であると、グリーン強度及び加硫物の弾性率が低下し、
100重量部超であると、加工性か悪くなる。
The proportion of the short fibers embedded in the EPDM rubber is 2 to 10 parts by weight based on 100 parts by weight of the EPDM rubber.
If it is less than 0 parts by weight, preferably 3 to 80 parts by weight, the green strength and the elastic modulus of the vulcanizate will decrease,
If it exceeds 100 parts by weight, processability will be poor.

また、本発明の強化ゴム組成物に用いられるカツブリン
グ剤としては、シランカップリング剤、チタネート系カ
ップリング剤、不飽和カルボン酸、又はそれらの混合物
が好ましい。
Further, as the coupling agent used in the reinforced rubber composition of the present invention, a silane coupling agent, a titanate coupling agent, an unsaturated carboxylic acid, or a mixture thereof is preferable.

上記シランカップリング剤としては、例えば、ビニルト
リス(β−メトキシエトキシ)シラン、ビニルトリエト
キシシラン、T−メタクリロキシプロピルトリメトキシ
シラン、β−(3,4−、Iポキシシクロヘキシル)エ
チルトリメトキシシラン、T−グリシドキシプロピルト
リメトキシシラン、γ−グリシドキシプロビルメチルジ
ェトキシシラン、N−β−(アミノエチル)−γ−アミ
ノプロピルトリメトキシシラン、N−β−(アミノエチ
ル)−γ−アミノプロピルメチルジメトキシシラン、γ
−アミノプロピルトリエトキシシラン、N−フェニル−
γ−アミノプロピルトリメトキシシラン、T〜メルカプ
トプロピルトリメトキシシラン等が挙げられ、特にアミ
ン基、メルカプト基、ビニル基を有するシランカップリ
ング剤が好適に使用できる。
Examples of the silane coupling agent include vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane, T-methacryloxypropyltrimethoxysilane, β-(3,4-,I-poxycyclohexyl)ethyltrimethoxysilane, T-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyljethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ- Aminopropylmethyldimethoxysilane, γ
-aminopropyltriethoxysilane, N-phenyl-
Examples include γ-aminopropyltrimethoxysilane, T to mercaptopropyltrimethoxysilane, and particularly silane coupling agents having an amine group, mercapto group, or vinyl group can be preferably used.

また、上記チタネート系カップリング剤としては、例え
ば、イソプロピルトリイソステアロイルチタネート、イ
ソプロピルトリ (N−アミノエチル−アミノエチル)
チタネート、テトラ(2,2−ジアリルオキシメチル−
1−ブチル)ビス(ジトリデシル)ホスファイトチタネ
ート、ビス(ジオクチルパイロホスフェート)オキシア
セテートチタネート、イソプロピルトリオクタノイルチ
タネート、イソプロピルジメタクリルイソステアロイル
チクネート、イソプロピルイソステアロイルジアクリル
チタネート等が挙げられ、その中でもアミノ基、ビニル
基を有するチタネート系力・7プリング剤が好適に使用
できる。
Further, examples of the titanate coupling agent include isopropyltriisostearoyl titanate, isopropyltri(N-aminoethyl-aminoethyl)
Titanate, tetra(2,2-diallyloxymethyl-
Examples include 1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, isopropyltrioctanoyltitanate, isopropyldimethacrylyisostearoyltichnate, isopropylisostearoyldiacryltitanate, etc. Among them, amino A titanate-based pulling agent having a vinyl group or a vinyl group can be suitably used.

また、上記不飽和カルボン酸としては、α、β不飽和カ
ルボン酸、脂環式不飽和カルボン酸、アルケニルカルボ
ン酸、及びこれらの誘導体、例えば、アクリル酸、メタ
アクリル酸、マレイン酸、フマル酸、イタコン酸、ビニ
ル安息香酸、ビニルフタル酸、無水マレイン酸、無水イ
タコン酸、エンド−ビシクロ(2,2,1> −5−ヘ
プテン−2,3−カルボン酸、シス−4−シクロヘキセ
ン−1,2−カルボン酸、オクタデセニルコハク酸等、
及びこれらの無水物、エステル、金属塩等の誘導体が挙
げられる。これらの内、マレイン酸、フマル酸、イタコ
ン酸、ビニル安息香酸、ビニルフタル酸、無水マレイン
酸、無水イタコン酸が好適に使用できる。
In addition, the unsaturated carboxylic acids include α, β unsaturated carboxylic acids, alicyclic unsaturated carboxylic acids, alkenyl carboxylic acids, and derivatives thereof, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, Itaconic acid, vinylbenzoic acid, vinyl phthalic acid, maleic anhydride, itaconic anhydride, endo-bicyclo(2,2,1>-5-heptene-2,3-carboxylic acid, cis-4-cyclohexene-1,2- Carboxylic acid, octadecenyl succinic acid, etc.
and derivatives thereof such as anhydrides, esters, and metal salts. Among these, maleic acid, fumaric acid, itaconic acid, vinylbenzoic acid, vinyl phthalic acid, maleic anhydride, and itaconic anhydride can be preferably used.

上記カップリング剤の使用量は、前記EPDMゴム及び
前記ポリアミドの合計量100重量部に対して0.2〜
5重量部、好ましくは0.3〜3重量部である。カップ
リング剤の種類によっても異なるが、カップリング剤の
使用量が前記範囲より少ないと、前記EPDMゴムと前
記ポリアミドの結合数、所謂グラフト率が小さくなり、
ポリアミド短繊維状物の径が太くなる。また多いと、ポ
リアミド短繊維状物の繊維長が短くなり、ゴム配合物の
補強効果が減少する。
The amount of the coupling agent used is 0.2 to 100 parts by weight in total of the EPDM rubber and the polyamide.
5 parts by weight, preferably 0.3 to 3 parts by weight. Although it varies depending on the type of coupling agent, if the amount of the coupling agent used is less than the above range, the number of bonds between the EPDM rubber and the polyamide, the so-called graft ratio, will decrease.
The diameter of the short polyamide fibers increases. If the amount is too large, the fiber length of the short polyamide fibers becomes short, and the reinforcing effect of the rubber compound decreases.

また、本発明の強化ゴム組成物においては、前記EPD
Mゴム連続相中に埋封されている前記熱可塑性ポリアミ
ドの微細な短繊維状物の重量に対する」1記ポリアミド
にグラフト結合しているEPDMゴムの重量の割合(グ
ラフト結合しているEPDMゴム/熱可塑性ポリアミド
の微細な短繊維状物)で示されるグラフト率が2〜20
重量%となるように、繊維状物を形成する上記ポリアミ
ドとEPDMゴムとがカップリング剤を介してグラフト
結合していることが好ましい。
Further, in the reinforced rubber composition of the present invention, the EPD
1 Ratio of the weight of the EPDM rubber grafted to the polyamide (grafted EPDM rubber/ Grafting ratio expressed by fine short fibers of thermoplastic polyamide is 2 to 20
It is preferable that the polyamide forming the fibrous material and the EPDM rubber are graft-bonded via a coupling agent such that the amount of the polyamide is % by weight.

また、本発明の強化ゴム組成物には、任意成分として加
硫可能なゴム、無機充填剤、軟化剤等を配合することが
できる。
Further, the reinforced rubber composition of the present invention may contain vulcanizable rubber, inorganic fillers, softeners, etc. as optional components.

上記加硫可能なゴムとしては、天然ゴム、イソプレンゴ
ム、ブタジェンゴム、スチレンブタジェンゴム、ニトリ
ルゴム、ブチルゴム等を挙げることができ、これらの加
硫可能なゴムを配合した場合は、前記EPDMゴムと上
記加硫可能なゴムとの合計量100重量部に対して2〜
100重量部の前記熱可塑性ポリアミドの微細な短繊維
状物が含まれていることが好ましい。
Examples of the above-mentioned vulcanizable rubber include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, nitrile rubber, butyl rubber, etc. When these vulcanizable rubbers are blended, they can be mixed with the above-mentioned EPDM rubber. 2 to 100 parts by weight of the total amount of the above vulcanizable rubber
Preferably, 100 parts by weight of fine short fibers of the thermoplastic polyamide are included.

また、上記無機充填剤としては、カーボンブランク、無
水ケイ酸、含水ケイ酸、或いは合成ケイ酸塩のようなケ
イ酸化合物、炭酸カルシウム、りレー等を挙げることが
でき、その配合量は、前記EPDMゴム100重量部に
対して300重量部以下とすることが好ましい。
Further, examples of the inorganic filler include carbon blank, anhydrous silicic acid, hydrated silicic acid, silicate compounds such as synthetic silicates, calcium carbonate, relay, etc. The amount is preferably 300 parts by weight or less based on 100 parts by weight of EPDM rubber.

また、上記軟化剤としては、パラフィン系プロセス油、
ナフテン系プロセス油、芳香族系プロセス油、石油樹脂
、重合した高沸点強芳香族系油、パラフィン、流動パラ
フィン、ホワイトオイル等の鉱物油系軟化剤、綿実油、
なたね油、パーム油、ロジン、パインタール等の植物油
系軟化剤、黒サブ、白サブ等のザブ、リシノール酸、バ
ルミチン酸、ステアリン酸、ラウリン酸等の脂肪酸、ス
テアリン酸バリウム、ステアリン酸カルシウム、ステア
リン酸亜鉛等の脂肪酸塩を挙げることができる。
In addition, as the above-mentioned softening agent, paraffin-based process oil,
Naphthenic process oil, aromatic process oil, petroleum resin, polymerized high boiling point strong aromatic oil, paraffin, liquid paraffin, mineral oil softener such as white oil, cottonseed oil,
Vegetable oil-based softeners such as rapeseed oil, palm oil, rosin, and pine tar; sabu such as black and white sabu; fatty acids such as ricinoleic acid, balmitic acid, stearic acid, and lauric acid; barium stearate, calcium stearate, and zinc stearate. Examples include fatty acid salts such as

また、本発明の強化ゴム組成物には、硫黄、含硫黄化合
物等の加硫剤、ジクミルペルオキシド、ジターシャリブ
チルペルオキシド等の有機ペルオキシド、及び有機加硫
促進剤、例えばアルデヒド・アンモニア類、アルデヒド
アミン類、グアニジン類、チオウレア類、チアゾール類
、チウラム類、ジチオカルバミン酸塩類、ジチオフォス
フェート類等の加硫促進剤を配合することができる。
The reinforced rubber composition of the present invention also contains sulfur, vulcanizing agents such as sulfur-containing compounds, organic peroxides such as dicumyl peroxide and ditertiary butyl peroxide, and organic vulcanization accelerators such as aldehydes, ammonias, and aldehydes. Vulcanization accelerators such as amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates, and dithiophosphates can be blended.

尚、本発明の強化ゴム組成物において、同種若しくは異
種のEPDMゴムを混合、配合した配合ゴム組成物も、
前記熱可塑性ポリアミドの短繊維状物が上記配合ゴム組
成物のゴム成分100重量部当たり2〜100重量部埋
封されている場合は、本発明の強化ゴム組成物と同等の
性能を有するので、その配合方法の如何を問わず、この
ような組成物も本発明の強化ゴム組成物の範晴にある。
In addition, in the reinforced rubber composition of the present invention, a compounded rubber composition in which EPDM rubbers of the same type or different types are mixed and compounded may also be used.
When 2 to 100 parts by weight of the short fibers of the thermoplastic polyamide are embedded per 100 parts by weight of the rubber component of the compounded rubber composition, the performance is equivalent to that of the reinforced rubber composition of the present invention. Regardless of the blending method used, such compositions also fall within the scope of the reinforced rubber compositions of the present invention.

上述の本発明の強化ゴム組成物は、前述の本発明の強化
ゴム組成物の製造方法、例えば次の方法により、効率良
く且つ品質の安定した状態で製造することができる。
The above-described reinforced rubber composition of the present invention can be produced efficiently and with stable quality by the above-described method for producing a reinforced rubber composition of the present invention, for example, the following method.

前記EPDMゴム100重量部、前記ポリアミド2〜1
00重量部、該EPDMゴム及び該ポリアミドの合計量
100重量部に対して0.2〜5重量部の前記カップリ
ング剤、及び20重量部以下の粘着付与剤、更に必要に
応じ5重量部以下の老化防止剤を加えた混合物を、上記
ポリアミドが溶融する温度以上の温度で、バンバリーミ
キサ−、ロール、又は押出機等を用いて好ましくは1〜
30分間混練し、得られた混練物を上記ポリアミドが溶
融する温度以上で且つ好ましくは280°C以下の温度
で押出し、次いで押出物を巻取り、本発明の強化ゴム組
成物を得る。
100 parts by weight of the EPDM rubber, 2 to 1 parts by weight of the polyamide
00 parts by weight, 0.2 to 5 parts by weight of the coupling agent and 20 parts by weight or less of a tackifier, and further 5 parts by weight or less as necessary, based on 100 parts by weight of the total amount of the EPDM rubber and the polyamide. A mixture containing an anti-aging agent of 1 to 1 is mixed using a Banbury mixer, a roll, or an extruder at a temperature higher than the melting temperature of the polyamide.
After kneading for 30 minutes, the resulting kneaded product is extruded at a temperature above the melting temperature of the polyamide and preferably below 280°C, and then the extrudate is wound up to obtain the reinforced rubber composition of the present invention.

また、加硫可能なゴム、無機充填剤、及び軟化剤等の前
記した任意成分は、必要に応じて上記混合物に適宜加え
られる。
Further, the above-mentioned optional components such as vulcanizable rubber, inorganic filler, and softener are appropriately added to the above mixture as necessary.

上記の本発明の方法により、前記EPDMゴムを連続相
とし、前記ポリアミドを微細な短繊維状物として前記E
PDMゴム中に分散させることができ、且つ該短繊維状
物の界面において前記ポリアミドと前記EPDMゴムと
を前記カップリング剤を介してグラフト結合させること
ができる。このようにして得られた本発明の強化ゴム組
成物においては、前記ポリアミドの微細な短繊維状物が
、断面が円形状で、平均径が0.05〜0.8μmであ
り、繊維長が10μm以上で且つその繊維の90重量%
以上が1000μm以下の形態で前記EPDMゴム中に
埋封されている。
According to the method of the present invention, the EPDM rubber is used as a continuous phase, and the polyamide is used as a fine short fibrous material.
It can be dispersed in PDM rubber, and the polyamide and the EPDM rubber can be graft-bonded via the coupling agent at the interface of the short fibrous material. In the thus obtained reinforced rubber composition of the present invention, the fine short fibers of the polyamide have a circular cross section, an average diameter of 0.05 to 0.8 μm, and a fiber length of 10 μm or more and 90% by weight of the fiber
The above particles are embedded in the EPDM rubber in the form of 1000 μm or less.

本発明の方法においては、カップリング剤は前もって熱
可塑性ポリアミドに溶融ブレンドしておいても、上記ポ
リアミドの表面に(−1着させておいても、EPDMゴ
ムに分散させておいても、また混練時に添加しても、い
ずれの方法を用いても良く、また上記手法を組合せて用
いても良い。
In the method of the present invention, the coupling agent can be melt-blended in advance with the thermoplastic polyamide, deposited on the surface of the polyamide, or dispersed in the EPDM rubber. It may be added during kneading, any method may be used, or a combination of the above methods may be used.

また、本発明の方法においては、EPDMゴムを熱可塑
性ポリアミド100重量部に対して2〜50重量部、カ
ップリング剤を熱可塑性ポリアミド及びEPDMゴムの
合計N100重量部に対して0.2〜5重量部添加して
、上記ポリアミドが溶融する温度以上で混練し、更にE
PDMを追加、必要ならばカップリング剤を追加して混
練し、上記ポリアミドが溶融する温度以上で押出しても
良い。
Furthermore, in the method of the present invention, the EPDM rubber is used in an amount of 2 to 50 parts by weight per 100 parts by weight of the thermoplastic polyamide, and the coupling agent is added in an amount of 0.2 to 5 parts by weight per 100 parts by weight of the total N of the thermoplastic polyamide and EPDM rubber. Part by weight is added, kneaded at a temperature higher than the temperature at which the polyamide melts, and further E
PDM may be added, and if necessary, a coupling agent may be added and kneaded, followed by extrusion at a temperature higher than the temperature at which the polyamide melts.

〔実施例〕〔Example〕

以下、実施例及び比較例により、本発明の強化ゴム組成
物及びその製造方法を更に詳しく説明する。尚、実施例
及び比較例において用いた原料名、商品名及び製造会社
名を後記表=1にまとめて示す。また、以下の記載にお
いて、部は重量部を示す。
EXAMPLES Hereinafter, the reinforced rubber composition of the present invention and its manufacturing method will be explained in more detail with reference to Examples and Comparative Examples. The raw material names, product names, and manufacturing company names used in Examples and Comparative Examples are summarized in Table 1 below. Moreover, in the following description, parts indicate parts by weight.

実施例1 150℃に調整したバンバリーミキサ−にEP−33を
100部、1030u (ナイロン6)を5部、タマノ
ル510を2部、ツクラックG1を1部、及びKBM6
03を0.5部投入し、10分間混練した。この間にミ
キサー内の温度は240℃まで上昇し、1030uは溶
融し、EP−33中に細かく分散し、その分散粒子の界
面にはBP−33がグラフト結合していた。得られた混
練物を内径2鶴のダイを用いて、押出機から押出した後
、ドラフト比20で巻取り、ロールにより圧延し、本発
明の強化ゴム組成物を得た。
Example 1 In a Banbury mixer adjusted to 150°C, 100 parts of EP-33, 5 parts of 1030u (nylon 6), 2 parts of Tamanol 510, 1 part of Tsuklak G1, and KBM6 were added.
0.5 part of 03 was added and kneaded for 10 minutes. During this time, the temperature inside the mixer rose to 240°C, and 1030u was melted and finely dispersed in EP-33, and BP-33 was graft-bonded to the interface of the dispersed particles. The obtained kneaded product was extruded from an extruder using a die with an inner diameter of 2 mm, then wound up at a draft ratio of 20 and rolled with rolls to obtain a reinforced rubber composition of the present invention.

得られた強化ゴム組成物の分析を次のようにして行った
The obtained reinforced rubber composition was analyzed as follows.

強化ゴム組成物2gをトルエン200mff1に室温或
いは80℃で添加し、強化ゴム組成物中のゴム分を熔解
させ、得られたスラリーを遠心分離して溶液部分と沈澱
部分とに分けた。
2 g of the reinforced rubber composition was added to 200 mff1 of toluene at room temperature or 80° C. to melt the rubber component in the reinforced rubber composition, and the resulting slurry was centrifuged to separate into a solution portion and a precipitate portion.

沈澱部分について、前記のトルエン溶解、遠心分離の操
作を7回繰り返し行った後、沈澱部分を乾燥してナイロ
ン繊維状物を得た。得られたナイロン繊維状物の形状及
び繊維径を、繊維状物400本について10,000倍
の倍率で走査型電子顕微鏡を用いて測定した。
After repeating the above-described toluene dissolution and centrifugation operations for the precipitated portion seven times, the precipitated portion was dried to obtain a nylon fibrous material. The shape and fiber diameter of the obtained nylon fibrous materials were measured using a scanning electron microscope at a magnification of 10,000 times for 400 fibrous materials.

また、前記ナイロン繊維状物をフェノールとオルソジク
ロロベンゼンの混合溶媒に溶解させて、IHの核磁気共
鳴スペクトル(NMR)で分析し、NMRチャートから
ナイロンに起因するNH基に隣接するメチレン基のピー
ク、ゴムに起因するメチル基のピークについて、それら
の面積を求め、ナイロンとゴムのモル比及びグラフト率
を算出した。
In addition, the nylon fibrous material was dissolved in a mixed solvent of phenol and orthodichlorobenzene, and analyzed by IH nuclear magnetic resonance spectrum (NMR), and the NMR chart showed a peak of methylene groups adjacent to NH groups originating from nylon, The areas of the peaks of methyl groups caused by rubber were determined, and the molar ratio of nylon to rubber and the grafting rate were calculated.

実施例2 1030uの使用量を50重量部及びKBM603の使
用量を1重量部に変更した以外は実施例1と同様にして
本発明の強化ゴム組成物を得た。
Example 2 A reinforced rubber composition of the present invention was obtained in the same manner as in Example 1, except that the amount of 1030u used was changed to 50 parts by weight and the amount of KBM603 used was changed to 1 part by weight.

得られた強化ゴム組成物の分析は実施例1と同一の操作
で行った。
The obtained reinforced rubber composition was analyzed in the same manner as in Example 1.

実施例3 1030uの使用量を80重量部に変、更し且つKBC
1003を1重量部添加した以外は実施例2と同様にし
て本発明の強化ゴム組成物を得た。
Example 3 The amount of 1030u used was changed to 80 parts by weight, and KBC
A reinforced rubber composition of the present invention was obtained in the same manner as in Example 2 except that 1 part by weight of 1003 was added.

得られた強化ゴム組成物の分析は実施例1と同一の操作
で行った。
The obtained reinforced rubber composition was analyzed in the same manner as in Example 1.

比較例I KBM603の使用量を0.1重量部に変更した以外は
実施例2と同様にしてゴム組成物を得た。
Comparative Example I A rubber composition was obtained in the same manner as in Example 2 except that the amount of KBM603 used was changed to 0.1 parts by weight.

得られたゴム組成物の分析は実施例1と同一の操作で行
った。
The obtained rubber composition was analyzed in the same manner as in Example 1.

実施例4 EP33を100重量部、タマノル510を2重量部、
及びツクランクG1を1重量部を10インチロールで混
合した。得られた混合物と1030uとKBM603と
KBM803を103:5o:o、s:o、5の供給比
で65鰭混練押出機(池具鉄工製)に連続供給した。ス
クリュー先端部、ヘッド及びノズルの温度は250℃に
設定し、吐出量は16kg/hrであった。得られた吐
出物を50顛押出機(日本製鋼製)に供給し、250℃
の温度で紡糸を行い、ドラフト比15、巻取速度45m
/n+inで巻取り、60龍可塑化押出機(三葉製作所
製)に供給し、本発明の強化ゴム組成物を得た。この時
、可塑化温度は120℃であった。
Example 4 100 parts by weight of EP33, 2 parts by weight of Tamanol 510,
and 1 part by weight of Tsurank G1 were mixed using a 10-inch roll. The obtained mixture, 1030u, KBM603, and KBM803 were continuously fed to a 65-fin kneading extruder (manufactured by Ikegu Iron Works) at a feed ratio of 103:5o:o, s:o, and 5. The temperature of the screw tip, head, and nozzle was set at 250° C., and the discharge rate was 16 kg/hr. The obtained extrudate was fed to a 50-frame extruder (manufactured by Nippon Steel) and heated at 250°C.
Spinning was carried out at a temperature of , draft ratio 15, winding speed 45 m.
/n+in and supplied to a 60-Ryu plasticizing extruder (manufactured by Mitsuha Seisakusho) to obtain a reinforced rubber composition of the present invention. At this time, the plasticizing temperature was 120°C.

得られたゴム組成物の分析は実施例1と同一の操作で行
った。
The obtained rubber composition was analyzed in the same manner as in Example 1.

実施例5〜6 カップリング剤の種類と使用量を変更したー(実施例5
においてはプレンアクトKR44を1重量部使用し、実
施例6においてはKBM603を0゜5重量部使用した
)以外は実施例4と同様にして本発明の強化ゴム組成物
をそれぞれ得た。得られたゴム組成物の分析は実施例1
と同一の操作で行った。
Examples 5 to 6 The type and amount of coupling agent used were changed (Example 5
Reinforced rubber compositions of the present invention were obtained in the same manner as in Example 4, except that 1 part by weight of Prenact KR44 was used in Example 6, and 0.5 parts by weight of KBM603 was used in Example 6. Analysis of the obtained rubber composition is shown in Example 1.
The same procedure was used.

実施例7 EP33を100重量部、タソキロールEP20を2重
量部、及びナラガードXL−1を1重量部を10インチ
ロールで混合した。その混合物と2020uとKBM6
03とプレンアクトKR7を103=50:0.5:0
.5の供給比で30■2軸混練押出機(中釜製作所製)
に連続供給した。
Example 7 100 parts by weight of EP33, 2 parts by weight of Tasoquirol EP20, and 1 part by weight of Naragard XL-1 were mixed using a 10-inch roll. The mixture, 2020u and KBM6
03 and plain act KR7 103 = 50:0.5:0
.. 30■ Twin-screw kneading extruder (manufactured by Nakagama Seisakusho) with a feed ratio of 5
was continuously supplied.

スクリュー先端部、ヘッド及びノズルの温度は270°
Cに設定し、吐出量は5kg/hrであった。押出機内
で混練された原料は、断面が円形であるノズル(L/D
=2、D=2龍φ、10穴)を通して押出され、ドラフ
ト比15で巻取られた。巻取物を10インチロールで可
塑化し、本発明の強化ゴム組成物を得た。得られたゴム
組成物の分析は実施例1と同一の操作で行った。
The temperature of the screw tip, head and nozzle is 270°
C, and the discharge amount was 5 kg/hr. The raw materials kneaded in the extruder are passed through a nozzle (L/D
= 2, D = 2 dragon φ, 10 holes) and wound up at a draft ratio of 15. The rolled material was plasticized using a 10-inch roll to obtain a reinforced rubber composition of the present invention. The obtained rubber composition was analyzed in the same manner as in Example 1.

実施例8 EP33の代わりにBP43を用いた以外は実施例7と
同様にして本発明の強化ゴム組成物を得た。得られたゴ
ム組成物の分析は実施例1と同一の操作で行った。
Example 8 A reinforced rubber composition of the present invention was obtained in the same manner as in Example 7 except that BP43 was used instead of EP33. The obtained rubber composition was analyzed in the same manner as in Example 1.

実施例9 カップリング剤の種類と使用量を変更した(KBM60
3を1重量部及び無水マレイン酸を1重量部使用した)
以外は実施例日と同様にして木発明の強化ゴム組成物を
得た。得られたゴム組成物の分析は実施例1と同一の操
作で行った。
Example 9 The type and amount of coupling agent used were changed (KBM60
(1 part by weight of 3 and 1 part by weight of maleic anhydride were used)
Except for this, a reinforced rubber composition according to the invention was obtained in the same manner as on the day of the example. The obtained rubber composition was analyzed in the same manner as in Example 1.

実施例10 カップリング剤の種類と添加量を変更したくブレンアク
トKR44を1重量部及び無水マレイン酸を1重量部使
用した)以外は実施例7と同様にして本発明の強化ゴム
組成物を得た。得られたゴム組成物の分析は実施例1と
同一の操作で行った。
Example 10 A reinforced rubber composition of the present invention was prepared in the same manner as in Example 7, except that 1 part by weight of Brenact KR44 and 1 part by weight of maleic anhydride were used to change the type and amount of the coupling agent added. Obtained. The obtained rubber composition was analyzed in the same manner as in Example 1.

上述の実施例1〜10及び比較例1における原料の組成
比、及び得られた強化ゴム組成物の分析結果をまとめて
後記表−2に示す。
The composition ratios of the raw materials in Examples 1 to 10 and Comparative Example 1 and the analysis results of the obtained reinforced rubber compositions are summarized in Table 2 below.

次に、本発明の強化ゴム組成物の優れた性質を下記実施
例(試験例)により明らかにする。
Next, the excellent properties of the reinforced rubber composition of the present invention will be clarified by the following examples (test examples).

実施例11 実施例1で得られた強化ゴム組成物65.1部、BP2
2 40部、HAFカーボンブラック50部、ナフテン
系プロセス油(コウモレソクス2号、日本石油製)25
部、亜鉛華5部、及びステアリン酸1部をバンバリーミ
キサ−により5分間混練した。混練スタート時のミキザ
ー内の温度は60°Cであり、ローター回転数は75R
PMとした。
Example 11 65.1 parts of the reinforced rubber composition obtained in Example 1, BP2
2 40 parts, HAF carbon black 50 parts, naphthenic process oil (Koumoresox No. 2, manufactured by Nippon Oil) 25
1 part, 5 parts of zinc white, and 1 part of stearic acid were kneaded for 5 minutes using a Banbury mixer. The temperature inside the mixer at the start of kneading was 60°C, and the rotor rotation speed was 75R.
It was designated as PM.

得られた混練物に、該混練物のゴム成分100部に対し
て、加硫促進剤T 31.5部、加硫促進剤Mo2S部
、及び硫黄1.5部を10インチロールにより配合し、
未加硫ゴム配合物を調製した。
To the obtained kneaded material, 31.5 parts of vulcanization accelerator T, 1.5 parts of vulcanization accelerator Mo2S, and 1.5 parts of sulfur were blended with 100 parts of the rubber component of the kneaded material using a 10-inch roll,
An unvulcanized rubber compound was prepared.

この未加硫ゴム配合物の物性、及び該配合物の加硫物の
物性を次のようにして測定した。
The physical properties of this unvulcanized rubber compound and the physical properties of a vulcanized product of this compound were measured as follows.

上記配合物の剪断粘度ηaとダイスウェル比はキャビロ
グラフ(東洋精機製)を用いて測定し、またその時の押
出物の表面の視覚観察により、表面平滑性を調べた。測
定条件は、温度100°C1剪断速度1005ec−’
、キャピラリーのL/D(1龍φ)であった。
The shear viscosity ηa and die swell ratio of the above formulation were measured using a cavilograph (manufactured by Toyo Seiki), and the surface smoothness of the extrudate was visually observed. The measurement conditions were: temperature 100°C, shear rate 1005ec-'
, the capillary L/D (1 dragon φ).

また、上記配合物のロール加工性は、ロールによるシー
トの分出しによる平滑性と、ロールへの巻き付き性によ
り判断した。
Further, the roll processability of the above-mentioned compound was judged based on the smoothness of the sheet obtained by dispensing the sheet with a roll and the ability to wrap the sheet around the roll.

ロールにより2.3■の厚さのシートを作成し、ホント
プレス用金型(150龍×150關×20顛t)に入れ
、80°C×60分(グリーン強度測定用、未加硫シー
ト)若しくは160’CX30分(加硫物々性測定用)
の条件で試料作製を行った。
Create a sheet with a thickness of 2.3 cm using a roll, place it in a real press mold (150 mm x 150 mm x 20 tons), and place it at 80°C for 60 minutes (for green strength measurement, unvulcanized sheet). ) or 160'CX 30 minutes (for measuring properties of vulcanized materials)
Samples were prepared under the following conditions.

上記未加硫シートの列理と平行方向に、JIS1号ダン
ベルにより打抜き、その試験片で引張試験を行い、引張
強度(グリーン強度)を測定した。
The unvulcanized sheet was punched out using a JIS No. 1 dumbbell in a direction parallel to the grain, and a tensile test was performed on the test piece to measure the tensile strength (green strength).

測定温度は22℃、引張速度100 ++m/min 
、標点間距離20鮮とした。伸張過程での最大応力をグ
リーン強度とした。
Measurement temperature was 22℃, tensile speed 100 ++ m/min
, the distance between gauges was set at 20 brightness. The maximum stress during the stretching process was defined as the green strength.

加硫シートについては、JIS  K6301の規定に
従って測定を行った。常温引張試験においては、シート
の列理と平行な方向にJISI号ダンベルに打抜き、試
験片とし、耐熱老化試験においては、上記1号ダンヘル
をギヤ一式老化試験機により150℃、72時間の空気
雰囲気下に晒した後、各々のダンベルについて上記引張
試験と同一の方法で測定を行った。
Regarding the vulcanized sheet, measurements were performed according to the regulations of JIS K6301. In the normal temperature tensile test, a JISI dumbbell was punched in a direction parallel to the grain of the sheet to form a test piece, and in the heat aging test, the No. 1 dumbbell was punched in an air atmosphere at 150°C for 72 hours using a gear aging tester. After being exposed to water, each dumbbell was measured in the same manner as the tensile test above.

引裂試験においては、加硫シートの列理と垂直な方向に
、B型試験片を打抜き、引張試験機により引裂強度TR
(Kgf/cm)を測定した。
In the tear test, a B-type test piece was punched out in the direction perpendicular to the grain of the vulcanized sheet, and the tear strength TR was measured using a tensile tester.
(Kgf/cm) was measured.

実施例12 実施例1で得られた強化ゴム組成物の代わりに実施例2
で得られた強化ゴム組成物を61.6部配合し、BP2
2を600部配した以外は実施例11と同様にして未加
硫ゴム配合物を調製した。この未加硫ゴム配合物の物性
、及び該配合物の加硫物の物性を実施例11と同様にし
て測定した。
Example 12 Example 2 was used instead of the reinforced rubber composition obtained in Example 1.
61.6 parts of the reinforced rubber composition obtained in BP2
An unvulcanized rubber compound was prepared in the same manner as in Example 11, except that 600 parts of No. 2 was added. The physical properties of this unvulcanized rubber compound and the physical properties of the vulcanized product of this compound were measured in the same manner as in Example 11.

実施例13 実施例1で得られた強化ゴム組成物の代わりに実施例3
で得られた強化ゴム組成物を185重量部配合し、EP
22を配合しなかった以外は実施例11と同様にして未
加硫ゴム配合物を調製した。
Example 13 Example 3 was used instead of the reinforced rubber composition obtained in Example 1.
185 parts by weight of the reinforced rubber composition obtained in EP
An unvulcanized rubber compound was prepared in the same manner as in Example 11 except that No. 22 was not blended.

この未加硫ゴム配合物の物性、及び該配合物の加硫物の
物性を実施例11と同様にして測定した。
The physical properties of this unvulcanized rubber compound and the physical properties of the vulcanized product of this compound were measured in the same manner as in Example 11.

実施例14 実施例1で得られた強化ゴム組成物の代わりに実施例7
で得られた強化ゴム組成物を30.8部配合し、BP2
2を800部配した以外は実施例11と同様にして未加
硫ゴム配合物を調製した。この未加硫ゴム配合物の物性
、及び該配合物の加硫物の物性を実施例11と同様にし
て測定した。
Example 14 Example 7 was used instead of the reinforced rubber composition obtained in Example 1.
30.8 parts of the reinforced rubber composition obtained in BP2
An unvulcanized rubber compound was prepared in the same manner as in Example 11, except that 800 parts of No. 2 was added. The physical properties of this unvulcanized rubber compound and the physical properties of the vulcanized product of this compound were measured in the same manner as in Example 11.

実施例15 実施例1で得られた強化ゴム組成物の代わりに実施例9
で得られた強化ゴム組成物を311部配し、EP22を
800部配した以外は実施例11と同様にして未加硫ゴ
ム配合物を調製した。この未加硫ゴム配合物の物性、及
び該配合物の加硫物の物性を実施例11と同様にして測
定した。
Example 15 Example 9 was used instead of the reinforced rubber composition obtained in Example 1.
An unvulcanized rubber compound was prepared in the same manner as in Example 11, except that 311 parts of the reinforced rubber composition obtained in 1 and 800 parts of EP22 were used. The physical properties of this unvulcanized rubber compound and the physical properties of the vulcanized product of this compound were measured in the same manner as in Example 11.

比較例2 強化ゴム組成物は配合せず、EP22を100部配合し
た以外は実施例11と同様にして未加硫ゴム配合物を調
製した。この未加硫ゴム配合物の物性、及び該配合物の
加硫物の物性を実施例11と同様にして測定した。
Comparative Example 2 An unvulcanized rubber compound was prepared in the same manner as in Example 11, except that 100 parts of EP22 was blended without the reinforcing rubber composition. The physical properties of this unvulcanized rubber compound and the physical properties of the vulcanized product of this compound were measured in the same manner as in Example 11.

上述の実施例11〜15及び比較例2でそれぞれ得られ
た未加硫ゴム配合物の物性、及び該配合物の加硫物の物
性の測定結果をまとめて下記表−3に示す。
The measurement results of the physical properties of the unvulcanized rubber compound obtained in Examples 11 to 15 and Comparative Example 2 and the physical properties of the vulcanized product of the compound are summarized in Table 3 below.

表−1 〔発明の効果〕 本発明の強化ゴム組成物は、生産性及び加工性に優れ、
しかも加硫物の力学的性質に優れたものである。
Table 1 [Effects of the invention] The reinforced rubber composition of the present invention has excellent productivity and processability,
Furthermore, the vulcanizate has excellent mechanical properties.

即ち、本発明の強化ゴム組成物は、未加硫時の流動性、
ロール加工性に優れ、押出し物の表面も滑らかであり、
グリーン強度が高く、形状保持性に優れているので、生
産性及び加工性に優れたものであり、また、その加硫物
は、例えば高弾性率を示し強伸度が大きく、引裂抵抗が
大きく、特に耐熱老化特性においては従来のEPDM組
成物からは予測できない程優れたものである。
That is, the reinforced rubber composition of the present invention has fluidity when unvulcanized,
It has excellent roll processability and the surface of the extruded product is smooth.
It has high green strength and excellent shape retention, so it has excellent productivity and processability.In addition, its vulcanizate has, for example, a high modulus of elasticity, high strength and elongation, and high tear resistance. In particular, the heat aging resistance properties are far superior to those of conventional EPDM compositions.

また、本発明の強化ゴム組成物は、前述の性質及び押出
し時のダイスウェルが小さいことから、複雑な形状をも
つゴム押出製品、自動車用ラジェーターホース、ヒータ
ーホース、工業用耐熱ベルト、耐熱ホース、耐熱ロール
、高温に晒されるゴム部品の製造に好適に使用できる。
In addition, the reinforced rubber composition of the present invention has the above-mentioned properties and a small die swell during extrusion, so it can be used for rubber extrusion products with complicated shapes, automotive radiator hoses, heater hoses, industrial heat-resistant belts, heat-resistant hoses, etc. It can be suitably used for manufacturing heat-resistant rolls and rubber parts exposed to high temperatures.

また、本発明の製造方法によれば、上記の本発明の強化
ゴム組成物を効率良く且つ品質の安定し3ま た状態で製造することができる。
Further, according to the production method of the present invention, the above-mentioned reinforced rubber composition of the present invention can be produced efficiently and with stable quality.

Claims (4)

【特許請求の範囲】[Claims] (1)エチレン・プロピレン・ジエン共重合ゴム100
重量部に、熱可塑性ポリアミドの微細な短繊維状物2〜
100重量部が埋封されており、且つ該短繊維状物の界
面において前記ポリアミドと前記共重合ゴムとがカップ
リング剤0.2〜5重量部(前記共重合ゴム及び前記ポ
リアミドの合計量100重量部に対する量)を介してグ
ラフトしていることを特徴とする強化ゴム組成物。
(1) Ethylene-propylene-diene copolymer rubber 100
2 to 2 parts by weight of fine short fibers of thermoplastic polyamide
100 parts by weight of the coupling agent is embedded in the polyamide and the copolymer rubber at the interface of the short fibrous material (the total amount of the copolymer rubber and the polyamide is 100 parts by weight). 1. A reinforced rubber composition characterized in that the composition is grafted in a proportion (based on parts by weight).
(2)カップリング剤が、シランカップリング剤、チタ
ネート系カップリング剤、不飽和カルボン酸、又はそれ
らの混合物である特許請求の範囲第(1)項記載の強化
ゴム組成物。
(2) The reinforced rubber composition according to claim (1), wherein the coupling agent is a silane coupling agent, a titanate coupling agent, an unsaturated carboxylic acid, or a mixture thereof.
(3)エチレン・プロピレン・ジエン共重合ゴム、熱可
塑性ポリアミド、及びカップリング剤を上記熱可塑性ポ
リアミドが溶融する温度以上で混練し押出すことを特徴
とする強化ゴム組成物の製造方法。
(3) A method for producing a reinforced rubber composition, which comprises kneading and extruding an ethylene-propylene-diene copolymer rubber, a thermoplastic polyamide, and a coupling agent at a temperature higher than the temperature at which the thermoplastic polyamide melts.
(4)カップリング剤が、シランカップリング剤、チタ
ネート系カップリング剤、不飽和カルボン酸、又はそれ
らの混合物である特許請求の範囲第(3)項記載の強化
ゴム組成物の製造方法。
(4) The method for producing a reinforced rubber composition according to claim (3), wherein the coupling agent is a silane coupling agent, a titanate coupling agent, an unsaturated carboxylic acid, or a mixture thereof.
JP1200587A 1986-09-26 1987-01-21 Reinforced rubber composition and production thereof Granted JPS63179945A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1200587A JPS63179945A (en) 1987-01-21 1987-01-21 Reinforced rubber composition and production thereof
DE8787308206T DE3773608D1 (en) 1986-09-26 1987-09-16 FIBER REINFORCED RUBBER MIXTURE, METHOD FOR THE PRODUCTION AND USE THEREOF.
EP87308206A EP0265070B1 (en) 1986-09-26 1987-09-16 Fiber-reinforced rubber composition and production process and use thereof
US07/097,101 US5006603A (en) 1986-09-26 1987-09-16 Fiber-reinforced rubber composition and production process and use thereof
US07/437,811 US5049610A (en) 1986-09-26 1989-11-17 Fiber-reinforced rubber composition and production process and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200587A JPS63179945A (en) 1987-01-21 1987-01-21 Reinforced rubber composition and production thereof

Publications (2)

Publication Number Publication Date
JPS63179945A true JPS63179945A (en) 1988-07-23
JPH0588860B2 JPH0588860B2 (en) 1993-12-24

Family

ID=11793467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200587A Granted JPS63179945A (en) 1986-09-26 1987-01-21 Reinforced rubber composition and production thereof

Country Status (1)

Country Link
JP (1) JPS63179945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534426A (en) * 2000-05-22 2003-11-18 ソシエテ ド テクノロジー ミシュラン Composition for tire tread and method for producing the same
WO2004039881A1 (en) * 2002-10-29 2004-05-13 Yazaki Corporation Polyolefin resin composition and processes for the production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594636A (en) * 1982-06-30 1984-01-11 Fujikura Rubber Ltd Rubber composition containing short fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594636A (en) * 1982-06-30 1984-01-11 Fujikura Rubber Ltd Rubber composition containing short fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534426A (en) * 2000-05-22 2003-11-18 ソシエテ ド テクノロジー ミシュラン Composition for tire tread and method for producing the same
WO2004039881A1 (en) * 2002-10-29 2004-05-13 Yazaki Corporation Polyolefin resin composition and processes for the production thereof
JP2004149635A (en) * 2002-10-29 2004-05-27 Daimaru Sangyo Kk Polyolefin resin composition and method for producing the same
KR100730421B1 (en) * 2002-10-29 2007-06-19 야자키 소교 가부시키가이샤 Polyolefin resin composition and method of producing the same

Also Published As

Publication number Publication date
JPH0588860B2 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US5049610A (en) Fiber-reinforced rubber composition and production process and use thereof
EP0150598B1 (en) Production of reinforced rubber composition
JP2006169523A (en) Multi-stage manufacturing method of peroxide-curable hxnbr-polyamide thermoplastic resin vulcanizate
US4703086A (en) Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
JPH0277459A (en) Fiber-reinforced polypropylene composition having high melt flow
JPH07278360A (en) Fiber-reinforced elastomer and its production
JPH083325A (en) Material comprising combination of thermoplastic elastomer and vulcanized elastomer
US4619962A (en) Thermoplastic polymer compositions
JPS63179945A (en) Reinforced rubber composition and production thereof
JPH02281001A (en) Reinforced rubber composition and its production
JP4479124B2 (en) Rubber composition
US5234997A (en) Fiber-reinforced chlorinated polyethylene composition and process for production thereof
JPH0987434A (en) Rubber composition for transmission belt
JP2007031569A (en) Rubber composition
KR100380761B1 (en) Rubber composition for bead insulation
JPH0369941B2 (en)
JPH01104636A (en) Resin composition
JPH01252645A (en) Polymer alloy composition and its production
JP2002265714A (en) Rubber composition
JPH01252639A (en) Reinforced rubber composition and its production
WO1986003761A1 (en) Polyolefinic elastomer compositions, production process and articles obtained from said compositions
JPH0518340B2 (en)
JPS63179946A (en) Rubber composition
JP2959301B2 (en) Thermoplastic resin composition
JPH07330960A (en) Belt cushion rubber composition