JPS63179314A - Measuring method for inclination error of reflecting surface of polygon mirror - Google Patents

Measuring method for inclination error of reflecting surface of polygon mirror

Info

Publication number
JPS63179314A
JPS63179314A JP1088487A JP1088487A JPS63179314A JP S63179314 A JPS63179314 A JP S63179314A JP 1088487 A JP1088487 A JP 1088487A JP 1088487 A JP1088487 A JP 1088487A JP S63179314 A JPS63179314 A JP S63179314A
Authority
JP
Japan
Prior art keywords
polygon mirror
error
light
inclination
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1088487A
Other languages
Japanese (ja)
Inventor
Masahiro Ono
大野 政博
Yuji Matsui
祐二 松井
Kiyoshi Shindo
新藤 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP1088487A priority Critical patent/JPS63179314A/en
Publication of JPS63179314A publication Critical patent/JPS63179314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To easily measure an inclination error while improving measurement accuracy by entering and refracting measurement light from a surface opposite the bottom surface of a polygon mirror and reflecting it by the bottom surface and a reflecting surface, and thus measuring the inclination error. CONSTITUTION:Luminous flux from a light source S after being passed through focus glass G1 provided with the mark of an autocollimator 10, a half-mirror, and an objective 6 is incident on the surface 1j opposite the bottom surface 1i of the polygon mirror 1 with a refractive index (n). This incident light is reflected by a refracting rear surface 1i and the reflecting surface 1a, and projected through a surface 1j. The angle of projection of this projection light deviates by an angle 2ntheta symmetrically about the optical axis according to the inclination error angle theta of a surface 1a as compared with when theta=0 deg.. Then the projection light is passed through a half-mirror to form its image on an image formation focus glass surface G2 and the split width T of a mark image Z is 4ntheta; and the error angle theta is measured from a measured quantity larger than that when only the reflecting surface is utilized, so the error in reflecting surface inclination is easily measured while the measurement accuracy is improved.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明はポリゴンミラーの底面に対する1反射面の倒れ
誤差、いわゆるピラミッド誤差を測定するポリゴンミラ
ーの反射面の倒れ誤差測定方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Purpose of the Invention (Industrial Application Field) The present invention is an improvement of a method for measuring inclination error of a reflecting surface of a polygon mirror, which measures inclination error of one reflecting surface with respect to the bottom surface of a polygon mirror, so-called pyramid error. Regarding.

(従来の技術) 従来から、レーザースキャナー、レーザープリンタ等の
走査式光学装置には、第4図に示すようなポリゴンミラ
ー1が用いられているが、各反射面1a〜1hの底面1
1に対する倒れ誤差にバラツキがあると、たとえば、レ
ーザープリンタでは、主走査方向に直交する副走査方向
の走査ライン間隔にバラツキを生じて、印字が歪む等の
減少を生じ。
(Prior Art) Conventionally, a polygon mirror 1 as shown in FIG. 4 has been used in scanning optical devices such as laser scanners and laser printers.
For example, in a laser printer, if there is variation in the inclination error with respect to 1, there will be variation in the scanning line interval in the sub-scanning direction perpendicular to the main-scanning direction, resulting in distortion of printed characters and other reductions.

好ましくない結果を生じる。produce undesirable results.

そこで、従来から、ポリゴンミラー1の製作段階で、各
反射面1a”lhの底面11に対する倒れ誤差を測定し
ている。第5図は従来のポリゴンミラー1の反射面の倒
れ誤差を測定する測定方法の一例を説明するための説明
図であって、その第5図において、2はロータリーテー
ブル、3はそのロータリーテーブル2にセットされたレ
ベリングテーブルであり、水平出しをしてポリゴンミラ
ー1をレベリングテーブル3に載置し、ロータリーテー
ブル2をゆっくりと回転させ、振れ測定具4を用いてそ
のポリゴンミラー1の上下方向の振れを確認する。そし
て、その振れがほとんどない状態で、測定光学系5とし
てのたとえばオートコリメータ−からの測定光を反射面
1a”lhに向かって出射する。
Therefore, conventionally, the inclination error of each reflective surface 1a"lh with respect to the bottom surface 11 has been measured at the manufacturing stage of the polygon mirror 1. FIG. FIG. 5 is an explanatory diagram for explaining an example of the method, in which 2 is a rotary table, 3 is a leveling table set on the rotary table 2, and the polygon mirror 1 is leveled by leveling it. The rotary table 2 is placed on the table 3, and the rotary table 2 is slowly rotated, and the vertical deflection of the polygon mirror 1 is confirmed using the deflection measuring tool 4.Then, with almost no deflection, the measuring optical system 5 For example, measurement light from an autocollimator is emitted toward the reflective surface 1a''lh.

そのオートコリメーターは、たとえば、第6図に示すよ
うに、光源S、コンデンサレンズL、焦点ガラスG1、
半透過プリズムR1対物レンズ6、焦点ガラスG2、接
眼レンズEを備えており、焦点ガラスG1と焦点ガラス
G、とは光学的に共役位置に配置され、対物レンズ6の
焦点Fの位置にある。
For example, as shown in FIG. 6, the autocollimator includes a light source S, a condenser lens L, a focusing glass G1,
The semi-transparent prism R1 includes an objective lens 6, a focus glass G2, and an eyepiece E. The focus glass G1 and the focus glass G are arranged in an optically conjugate position, and are located at the focal point F of the objective lens 6.

焦点ガラスG、にはマークが設けられており。A mark is provided on the focusing glass G.

焦点ガラスG2にはレチクルとしての十字線と目盛とが
設けられており、たとえば1反射面1aに倒れ誤差がな
いときには、対物レンズ6から出射された測定光Pは反
射面1aで反射されて焦点ガラスG2の十字線の交点に
結像し、その交点にマークの像が形成される。仮りに、
反射面1aの倒れ誤差がθであるとすると、対物レンズ
6から出射された測定光Pの反射方向が、倒れ誤差θが
ないと考えた場合の反射方向に対して角度にして2θ変
化する。その反射面1aで反射された反射光は、対物レ
ンズ6によって焦点ガラスG、上に結像され、その結像
は十字線の交点から距離Δだけ変位した位置に生じる。
The focusing glass G2 is provided with a crosshair as a reticle and a scale. For example, when there is no tilt error on one reflecting surface 1a, the measurement light P emitted from the objective lens 6 is reflected on the reflecting surface 1a and focused. An image is formed at the intersection of the crosshairs on the glass G2, and an image of the mark is formed at the intersection. If,
Assuming that the tilt error of the reflective surface 1a is θ, the reflection direction of the measurement light P emitted from the objective lens 6 changes by 2θ in angle with respect to the reflection direction when it is assumed that there is no tilt error θ. The reflected light reflected by the reflective surface 1a is imaged by the objective lens 6 onto the focusing glass G, and the image is formed at a position displaced by a distance Δ from the intersection of the crosshairs.

ここで、対物レンズ6の焦点距離をfとすると、距離Δ
と焦点距離fと倒れ誤差θとの間には、 Δ=2・f・θ  ・・・■ の関係式が成立する。なお、倒れ誤差θの単位はラジア
ンである。
Here, if the focal length of the objective lens 6 is f, then the distance Δ
The relational expression Δ=2·f·θ...■ holds true between the focal length f and the tilting error θ. Note that the unit of the inclination error θ is radian.

したがって、距離Δがいくらであるかを接眼レンズEを
通して測定すれば、倒れ誤差を測定できることになる。
Therefore, if the distance Δ is measured through the eyepiece E, the tilting error can be measured.

なお、その第6図において、符号P′は反射面1aで反
射されて対物レンズ6の中心を通る主光線である。
In FIG. 6, reference numeral P' indicates a chief ray that is reflected by the reflecting surface 1a and passes through the center of the objective lens 6.

(発明が解決しようとする問題点) ところが、その従来のオートコリメーターを用いて倒れ
誤差を測定する測定方法は、測定精度が小さいという問
題点がある。たとえば、大型サイズ(A、サイズ)のレ
ーザープリンタに用いられるポリゴンミラー1では、倒
れ誤差θが1秒以内であることが要請されるが、焦点距
離fが500mmの対物レンズ6を用いて測定を行なう
ことにした場合、1秒の倒れ誤差θが距離Δとして約7
μmになり、実際問題として1秒以下の角度誤差の測定
が困難である。また、ロータリーテーブル2に高精度の
ものを必要とすると共に、ポリゴンミラー1の振れの測
定等を行なわなければならないために、測定に入るまで
の準備に時間がかかるという問題点がある。
(Problems to be Solved by the Invention) However, the conventional measurement method of measuring the inclination error using an autocollimator has a problem in that the measurement accuracy is low. For example, a polygon mirror 1 used in a large size (A, size) laser printer is required to have a tilting error θ of 1 second or less, but measurement is performed using an objective lens 6 with a focal length f of 500 mm. If you decide to do this, the fall error θ for 1 second will be approximately 7 as the distance Δ.
As a practical matter, it is difficult to measure an angular error of 1 second or less. Furthermore, since the rotary table 2 needs to be of high precision and the deflection of the polygon mirror 1 must be measured, it takes time to prepare for the measurement.

そこで、本発明の目的は、測定請度の向上を図りつつ手
軽にポリゴンミラーの反射面の倒れ誤差を測定できるポ
リゴンミラーの反射面の倒れ誤差測定方法を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for measuring inclination error of a reflective surface of a polygon mirror, which can easily measure the inclination error of a reflective surface of a polygon mirror while improving measurement reliability.

発明の構成 (問題点を解決するための手段) 本発明に係るポリゴンミラーの反射面の倒れ誤差測定方
法の特徴は、ポリゴンミラーの底面に対する反射面の倒
れ誤差を測定する測定光学系から出射された測定光を、
屈折の法則に従ってポリゴンミラーの底面の対向面より
内部に導き、その底面及び反射面で反射させることによ
って、その底面に対するその反射面の倒れ誤差を測定す
るようにしたところにある。
Structure of the Invention (Means for Solving Problems) A feature of the method for measuring the inclination error of the reflective surface of a polygon mirror according to the present invention is that the method for measuring the inclination error of the reflective surface of the polygon mirror with respect to the bottom surface of the polygon mirror is characterized in that a measurement light,
In accordance with the law of refraction, the beam is introduced into the interior of the polygon mirror from the opposite surface of the bottom surface, and is reflected by the bottom surface and the reflective surface, thereby measuring the inclination error of the reflective surface with respect to the bottom surface.

(実施例) 第1図は1本発明に係るポリゴンミラーの底面に対する
反射面の倒れ誤差の測定方法の説明図であって、測定光
学系5としてのオートコリメーター10をポリゴンミラ
ー1の底面1iに対向する対向面1jに向けてセットす
る。オートコリメーター10の対物レンズ6から出射さ
れた測定光Pは、対向面1jに向かって直進し、ポリゴ
ンミラー1に進入する際に屈折する。ここで、第2図に
示すようにポリゴンミラー1の屈折率をnとし、Piを
対物レンズ6の主光軸を通る光線、P2を対物レンズ1
1の一側位置を通る光線、P3を対物レンズ6の主光軸
を境にその一側位置と対称な他側位置を通る光線とする
(Example) FIG. 1 is an explanatory diagram of a method for measuring the inclination error of a reflective surface with respect to the bottom surface of a polygon mirror 1 according to the present invention, in which an autocollimator 10 as a measuring optical system 5 is Set it toward the facing surface 1j facing the. The measurement light P emitted from the objective lens 6 of the autocollimator 10 travels straight toward the opposing surface 1j and is refracted when entering the polygon mirror 1. Here, as shown in FIG. 2, the refractive index of the polygon mirror 1 is n, Pi is the ray passing through the main optical axis of the objective lens 6, and P2 is the ray passing through the main optical axis of the objective lens 1.
Let P3 be a ray of light that passes through a position on one side of objective lens 6, and a ray of light that passes through a position on the other side that is symmetrical to the position on one side with the main optical axis of objective lens 6 as a boundary.

光線P1、P、、P、の入射角をi、屈折角をrとする
と、入射角i、屈折角rをラジアン単位で表すとすると
、 sin i = n jsin r     ・・・■
ここで、たとえば、光線P、に着目し、その光線P、の
屈折光をP3いその屈折光P0の底面11による反射光
をP13.その反射光P32の反射面1aによる反射光
をP3.とすると、反射面1aが底面1iに対して直角
の場合には、底面1iで反射された反射光P32がその
反射面1aに立てた法線に対して為す入射角と反射光P
33が反射面11に立てた法線に対して為す反射角とは
、それぞれ屈折角rに等しいが、反射面1aの倒れ誤差
が底面11に対してθであるとすると、底面11で反射
された反射光P、2がその反射面1aに立てた法線Mに
対して為す入射角と反射光P3.がその反射面1aに立
てた法線Mに対して為す反射角とは、それぞれr−θで
ある。
If the incident angle of the rays P1, P, ,P is i and the refraction angle is r, then if the incident angle i and the refraction angle r are expressed in radians, then sin i = n jsin r...■
Here, for example, focusing on the light ray P, the refracted light of the light ray P is P3, and the reflected light of the refracted light P0 by the bottom surface 11 is P13. The reflected light P32 is reflected by the reflecting surface 1a as P3. Then, when the reflective surface 1a is perpendicular to the bottom surface 1i, the incident angle of the reflected light P32 reflected by the bottom surface 1i with respect to the normal to the reflective surface 1a and the reflected light P
The angle of reflection that 33 makes with respect to the normal to the reflecting surface 11 is equal to the refraction angle r, but if the tilting error of the reflecting surface 1a is θ with respect to the bottom surface 11, then the reflection angle at the bottom surface 11 is The incident angle that the reflected light P,2 makes with respect to the normal M set on the reflecting surface 1a and the reflected light P3. The angle of reflection made by the normal M to the reflecting surface 1a is r-θ.

その反射面1aで反射された反射光P3.が対向面1j
に立てた法線M′に対して為す入射角Xは1反射面1a
が底面11に対して直角である場合には、屈折角rに等
しく、かつ、その出射光P、′の出射角i′は光線P3
の入射角iに等しいが、反射面1aの倒れ誤差が底面1
1に対してθであるとすると、その反射面1aで反射さ
れた反射光P、3が対向面1jに立てた法線M′に対し
て為す入射角又は、r−20となり、 sin i ’ = n +5inX =n (sinr @cos20−cosr 1sin
20)ここで、一般にθは微小角であるため、5ini
 ’ =n ll5inr−2no” cos r=s
ini−2nθ魯cosr =sini−2no・f丁−5ini/n)”したがっ
て。
Reflected light P3 reflected by the reflective surface 1a. is the opposite surface 1j
The angle of incidence X made with respect to the normal M' set on 1 reflection surface 1a
is perpendicular to the bottom surface 11, it is equal to the refraction angle r, and the output angle i' of the output light P,' is equal to the ray P3
is equal to the incident angle i, but the inclination error of the reflective surface 1a is equal to the angle of incidence i
1, then the incident angle of the reflected light P, 3 reflected by the reflecting surface 1a with respect to the normal M' set on the opposing surface 1j, or r-20, is sin i' = n +5inX =n (sinr @cos20-cosr 1sin
20) Here, since θ is generally a small angle, 5 ini
'=n ll5inr-2no" cos r=s
therefore.

i ’ =sin−1[sin i −2nθf丁−5
ini/n) ’Jよって、入射角iが小さいときには
、出射光P、′の出射角i′は、 i ’=i−2no・・・■ となる。
i' = sin-1[sin i-2nθf-5
ini/n) 'J Therefore, when the incident angle i is small, the output angle i' of the output lights P and ' is as follows: i'=i-2no...■.

すなわち、出射角i′は、倒れ誤差0が0度であるとし
た場合の出射角iに対して2nO異なり、出射光P3′
は倒れ誤差θが0度の場合の出射光P、′の出射方向に
対して2nθ異なる方向に出射される。この第2図に示
す例の場合には、光線P4の出射光P1′も同様の方向
に出射される。
That is, the output angle i' differs by 2nO from the output angle i when the tilt error is 0 degrees, and the output light P3'
is emitted in a direction different by 2nθ from the emission direction of the emitted light P,' when the tilting error θ is 0 degrees. In the case of the example shown in FIG. 2, the emitted light P1' of the light beam P4 is also emitted in the same direction.

光線P、に着目すると、その屈折光P2□は、まず、反
射面1aで反射され、その反射光P22は、次に底面1
1で反射され、その反射光P23は屈折して出射光P2
′として、対向面1jから出射される。
Focusing on the light ray P, its refracted light P2□ is first reflected on the reflective surface 1a, and then the reflected light P22 is reflected on the bottom surface 1.
1, the reflected light P23 is refracted and becomes the output light P2.
' is emitted from the opposing surface 1j.

その出射光P2′の出射角i′は、倒れ誤差0が0度で
あるとした場合の出射角iに対して出射光P、′の場合
とは反対方向に2n(lだけ異なる。
The output angle i' of the output light P2' is different from the output angle i when the tilt error is 0 degrees by 2n(l) in the opposite direction from that of the output light P,'.

すなわち、対物レンズ6の主光軸を境に一側位置から出
射されてポリゴンミラー1の内部を通って対向面1jか
ら出射された出射光線とその他側位置から出射されてポ
リゴンミラー1の内部を通って対向面1jから出射され
た出射光線とは互いに離反する方向に出射され、その出
射方向が相反する光線はそれぞれ対物レンズ6に導かれ
て焦点ガラスG2上に別々に結像されることになり、結
果として、第3図に示すように焦点ガラスG1のマーク
の像Zがスプリットして焦点ガラスG2上に形成される
ことになる。
That is, with the principal optical axis of the objective lens 6 as a boundary, there is an emitted light beam that is emitted from one side, passes through the inside of the polygon mirror 1, and is emitted from the opposing surface 1j, and an emitted light beam that is emitted from the other side and passes through the inside of the polygon mirror 1. The outgoing light rays emitted from the opposing surface 1j are emitted in directions away from each other, and the light rays whose outgoing directions are opposite to each other are guided to the objective lens 6 and imaged separately on the focusing glass G2. As a result, as shown in FIG. 3, the image Z of the mark on the focusing glass G1 is split and formed on the focusing glass G2.

そのマークの像Zのスプリット幅Tは、焦点ガラスG2
の十字線の交点01からの距離をΔとすると、 T=2Δ−4nθ である。
The split width T of the mark image Z is the focusing glass G2.
Letting Δ be the distance from the intersection 01 of the crosshairs, T=2Δ−4nθ.

よって、接眼レンズEを除いて、そのスプリット幅Tを
測定すれば、倒れ誤差0を測定できることになり、その
測定精度は、ポリゴンミラー1の材料の屈折率nを1.
5とすれば、6fOとなり、本発明に係るポリゴンミラ
ーの反射面の倒れ誤差の測定方法によれば、従来に較べ
て測定精度が3倍に向上する。
Therefore, if the split width T is measured excluding the eyepiece E, the tilting error can be measured to be 0, and the measurement accuracy is as follows: If the refractive index n of the material of the polygon mirror 1 is 1.
5, it becomes 6fO, and according to the method for measuring the inclination error of the reflective surface of a polygon mirror according to the present invention, the measurement accuracy is improved three times compared to the conventional method.

また、本発明に係るポリゴンミラーの反射面の倒れ誤差
測定方法によれば、測定用定盤にポリゴンミラー1を載
置し、オートコリメータによってスプリットの像2を@
*するようにすれば、倒れ誤差0の測定ができるので、
従来の811定方法のように面倒な測定準備を行なう必
要がなく手軽に測定を行なうことができる。
Further, according to the method for measuring inclination error of a reflective surface of a polygon mirror according to the present invention, the polygon mirror 1 is placed on a measurement surface plate, and the split image 2 is
*If you do this, you can measure with zero fall error, so
Unlike the conventional 811 determination method, there is no need to make troublesome measurement preparations, and the measurement can be easily performed.

なお、以上、実施例においては、本発明に係る測定方法
をオートコリメータを用いて測定を行なう方法に適用し
た場合について説明したが、本発明に係る測定方法はフ
ィゾー干渉計等の干渉計を用いて測定を行なう場合にも
適用できるものである。
In addition, in the examples above, the case where the measurement method according to the present invention is applied to a method of performing measurement using an autocollimator has been explained, but the measurement method according to the present invention is also applicable to a method using an interferometer such as a Fizeau interferometer. It can also be applied when measurements are made.

発明の効果 本発明に係るポリゴンミラーの反射面の倒れ誤差測定方
法の特徴は、ポリゴンミラーの底面に対する反射面の倒
れ誤差を測定する測定光学系から出射された測定光を、
屈折の法則に従ってポリゴンミラーの底面の対向面より
内部に導き、その底面及び反射面で反射させることによ
って、その底面に対するその反射面の倒れ誤差を測定す
るようにしたから、測定精度の向上を図りつつ手軽にポ
リゴンミラーの反射面の倒れ誤差を測定できるという効
果を奏する。
Effects of the Invention The feature of the method for measuring the tilting error of the reflective surface of a polygon mirror according to the present invention is that the measurement light emitted from the measurement optical system for measuring the tilting error of the reflective surface with respect to the bottom surface of the polygon mirror is
In accordance with the law of refraction, the light is introduced into the interior from the opposite surface of the bottom of the polygon mirror, and is reflected by the bottom and the reflective surface to measure the error in the inclination of the reflective surface with respect to the bottom, which improves measurement accuracy. This has the effect of easily measuring the inclination error of the reflective surface of the polygon mirror.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るポリゴンミラーの反射面の倒れ誤
差測定方法の一例を示す図、第2図はその第1図に示す
測定光の反射屈折状態を示すポリゴンミラーの部分拡大
図、第3図は第1図に示すオートコリメータ\の焦点ガ
ラ♂上での結像状態を示す図、第4図はポリゴンミラー
の平面図、第5図は従来のポリゴンミラーの反射面の倒
れ誤差の測定方法の説明図、第6図は第5図に示すオー
トコリメータの測定原理を説明するための説明図である
。 1・・・ポリゴンミラー 1a=1h・・・反射面 11・・・底面 θ・・・倒れ誤差 P・・・測定光 5・・・測定光学系 6・・・対物レンズ i・・・入射角 r・・・屈折角 n・・・屈折率 G工、G2・・・焦点ガラス 第1図 第2図 第3図 第4屈 f 第5図 第6図 手  続  補  正  書 (自発)昭和63年 2
月 58゜ 特許庁長官     殿         −1、事件
の表示 特願昭62−10884号 一0発明の名称 ポリゴンミラーの反射面の倒れ誤差測定方法3、補正を
する者 事件との関係  特許出願人 住所 東京都板橋区前野町2丁目36番9号〒174電
話03−960−5162 ダ、補正の対象 (1)明細書の「発明の詳細な説明」の欄(2)図面 一\、 j、補正の内容 (1)明則書第4頁第6行の 「Δ=2・f・θ」を 「Δ畔2・f・θ」と補正する。 (2)同書第7頁第14行の 「r−θ」を (3)同書第10頁第5行の 「除いて」を 「覗いて」と補正する。 (4)図面の「第2図」を別紙訂正図面「第2Vのとお
り補正する。 !L肩正口QI]] 第2図
FIG. 1 is a diagram showing an example of a method for measuring inclination error of a reflective surface of a polygon mirror according to the present invention, and FIG. 2 is a partially enlarged view of the polygon mirror showing the catadioptric state of the measurement light shown in FIG. Figure 3 shows the state of image formation on the focal glass of the autocollimator shown in Figure 1, Figure 4 is a plan view of the polygon mirror, and Figure 5 shows the tilting error of the reflective surface of a conventional polygon mirror. FIG. 6 is an explanatory diagram for explaining the measurement principle of the autocollimator shown in FIG. 5. 1... Polygon mirror 1a=1h... Reflection surface 11... Bottom surface θ... Inclination error P... Measurement light 5... Measurement optical system 6... Objective lens i... Incident angle r...Angle of refraction n...Refractive index G, G2...Focus glass Figure 1 Figure 2 Figure 3 Figure 4 Refraction f Figure 5 Figure 6 Procedure Amendment (Spontaneous) 1982 year 2
Month 58゜To the Commissioner of the Japan Patent Office - 1. Indication of the case Japanese Patent Application No. 10884/1988 10 Name of the invention Method for measuring inclination error of the reflective surface of a polygon mirror 3. Person making the correction Relationship with the case Patent applicant address Tokyo 2-36-9 Maeno-cho, Itabashi-ku, Miyako 174 Phone: 03-960-5162 Subject of amendment (1) “Detailed description of the invention” column of the specification (2) Drawings 1\, j, Amendment Contents (1) "Δ=2・f・θ" in the 6th line of page 4 of the Meijōsho is corrected to "Δ畔2・f・θ". (2) "r-θ" on page 7, line 14 of the same book; (3) "except" on page 10, line 5 of the same book is corrected to "peek". (4) The “Figure 2” of the drawing is corrected as shown in the attached corrected drawing “No. 2V. !L Shoulder Front Exit QI]] Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ポリゴンミラーの底面に対する反射面の倒れ誤差
を測定する測定光学系から出射された測定光を、屈折の
法則に従って前記ポリゴンミラーの底面の対向面より内
部に導き、前記底面及び反射面で反射させることによっ
て、前記底面に対する前記反射面の倒れ誤差を測定する
ことを特徴とするポリゴンミラーの反射面の倒れ誤差測
定方法。
(1) Measurement light emitted from the measurement optical system that measures the inclination error of the reflective surface with respect to the bottom surface of the polygon mirror is guided inside from the opposite surface of the bottom surface of the polygon mirror according to the law of refraction, and A method for measuring a tilting error of a reflective surface of a polygon mirror, comprising measuring a tilting error of the reflective surface with respect to the bottom surface by reflecting the reflective surface.
JP1088487A 1987-01-20 1987-01-20 Measuring method for inclination error of reflecting surface of polygon mirror Pending JPS63179314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088487A JPS63179314A (en) 1987-01-20 1987-01-20 Measuring method for inclination error of reflecting surface of polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088487A JPS63179314A (en) 1987-01-20 1987-01-20 Measuring method for inclination error of reflecting surface of polygon mirror

Publications (1)

Publication Number Publication Date
JPS63179314A true JPS63179314A (en) 1988-07-23

Family

ID=11762742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088487A Pending JPS63179314A (en) 1987-01-20 1987-01-20 Measuring method for inclination error of reflecting surface of polygon mirror

Country Status (1)

Country Link
JP (1) JPS63179314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138613A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device
JP2002138614A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device
JP2002138604A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044811A (en) * 1983-08-22 1985-03-11 Onoda Cement Co Ltd Method for measuring angle of end part of plate shaped material
JPS61227277A (en) * 1985-04-01 1986-10-09 マグネテイツク ペリフエラルズ インコ−ポレ−テツド Calibration reference apparatus and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044811A (en) * 1983-08-22 1985-03-11 Onoda Cement Co Ltd Method for measuring angle of end part of plate shaped material
JPS61227277A (en) * 1985-04-01 1986-10-09 マグネテイツク ペリフエラルズ インコ−ポレ−テツド Calibration reference apparatus and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138613A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device
JP2002138614A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device
JP2002138604A (en) * 2000-11-01 2002-05-17 Okamura Corp Partition device

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JP5112077B2 (en) Telescope and panfocal telescope including plano-convex lens or plano-concave lens and deflecting means joined thereto
KR20120082463A (en) Sighting device, in particular telescopic sight, for a geodetic measuring apparatus and optical objective unit assembly for such a sighting device
CN109358435B (en) Device and method for adjusting perpendicularity of double telecentric lenses
US4723845A (en) Optical apparatus for the detection of position
JP2001050742A (en) Optical distance measuring device
US6115175A (en) UV image forming optical system
RU2470258C1 (en) Angle measurement device
US3910704A (en) Compensating device for sighting instruments
US4690485A (en) Flat bed optical scanning beam deflection system
JP3120885B2 (en) Mirror surface measuring device
JP2003065739A (en) Device for measuring angle of polygon mirror
JPS63179314A (en) Measuring method for inclination error of reflecting surface of polygon mirror
RU2682842C1 (en) Angle measurement device
US3832063A (en) Lens axis detection using an interferometer
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
US2960907A (en) Range finder
JPH08261734A (en) Shape measuring apparatus
US3552866A (en) Automatic leveling telescope including a reversible two-sided pendulum mirror
RU2713991C1 (en) Angle-measuring device
JPS60211304A (en) Measuring instrument for parallelism
US3706496A (en) Cinetheodolite
US20210181494A1 (en) Insertion apparatus
JPS6310364B2 (en)
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device