JPS63179034A - Corrosion-resisting zirconium alloy - Google Patents

Corrosion-resisting zirconium alloy

Info

Publication number
JPS63179034A
JPS63179034A JP62011597A JP1159787A JPS63179034A JP S63179034 A JPS63179034 A JP S63179034A JP 62011597 A JP62011597 A JP 62011597A JP 1159787 A JP1159787 A JP 1159787A JP S63179034 A JPS63179034 A JP S63179034A
Authority
JP
Japan
Prior art keywords
corrosion
content
zircaloy
zirconium alloy
nodular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62011597A
Other languages
Japanese (ja)
Other versions
JP2675297B2 (en
Inventor
Katsuhiro Abe
安部 勝洋
Makoto Harada
誠 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62011597A priority Critical patent/JP2675297B2/en
Publication of JPS63179034A publication Critical patent/JPS63179034A/en
Application granted granted Critical
Publication of JP2675297B2 publication Critical patent/JP2675297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To improve nodular corrosion resistance and uniform corrosion resistance, by specifying and reducing Sn content in a zirconium alloy with a specific composition. CONSTITUTION:The zirconium alloy has a composition consisting of, by weight, <=1.0% Sn, 0.05-0.5% Fe, <=0.3% Cr, <=0.2% Ni, and the balance Zr. s compared with a zirconium alloy produced in the ordinary manufacturing process for corrosion-resisting zirconium alloy, e.g., zircaloy-2 and zircaloy-4, this alloy is reduced in Sn content, though respective contents of Fe, Cr, and Ni are equivalent. When Sn content is increased, nodular corrosion occurs and uniform corrosion velocity is increased, but, when it is less than 1.0%, the occurrence of nodular corrosion cannot be observed and uniform corrosion velocity is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐蝕性ジルコニウム合金に関し、さらに詳しく
は、耐ノジユラー腐蝕性に優れ、かつ、耐均−腐蝕性に
優れた耐蝕性ジルコニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a corrosion-resistant zirconium alloy, and more particularly to a corrosion-resistant zirconium alloy that has excellent nodular corrosion resistance and excellent uniform corrosion resistance.

[従来技術] 一般的に、ジルコニウム合金は小さい中性子吸収断面積
および優れた耐蝕性を有していることから、沸騰水型軽
水炉の構造材料である燃料被覆管として広く使用されて
いる。
[Prior Art] In general, zirconium alloys have a small neutron absorption cross section and excellent corrosion resistance, and are therefore widely used as fuel cladding tubes, which are structural materials for boiling water reactors.

そして、これまでに最も普通に使用されているジルコニ
ウム合金としては、ASTMに規定されているノルカロ
イ−2、ジルカロイ−4があり、その他、Nb 1wt
%含有のZr−1vt%Nb合金、Nb 2.5wt%
含有のZr−2,5w1%Nb合金、NbO,1wt%
、Ni 0.1wt%、Fe O,tvt%、Sn o
、2wt%含有の0zheniteおよびPe 0.1
wt%以下、Cr1.0wt%以下含有するValoy
がある。
The most commonly used zirconium alloys to date include Norcaloy-2 and Zircaloy-4 specified by ASTM, as well as Nb 1wt.
% containing Zr-1vt%Nb alloy, Nb 2.5wt%
Contains Zr-2,5w1%Nb alloy, NbO,1wt%
, Ni 0.1 wt%, Fe O, tvt%, Sn o
, 2wt% of 0zhenite and Pe 0.1
Valoy containing Cr1.0wt% or less
There is.

しかし、これらの合金の耐蝕性は必ずしも充分なものと
はいえず、例えば、沸騰水型軽水炉のチャネルボックス
にジルカロイ−4を、燃料被覆管にジルカロイ−2を使
用すると、ノジュラー腐蝕と呼ばれる白色斑点状の腐蝕
が発生することがある。
However, the corrosion resistance of these alloys is not necessarily sufficient. For example, when Zircaloy-4 is used in the channel box of a boiling water reactor and Zircaloy-2 is used in the fuel cladding tube, white spots called nodular corrosion occur. Corrosion may occur.

そして、このノジュラー腐蝕が進展すると、時には剥離
現象を起こして肉減りし、構造材料として機械的性質の
低下をもたらす恐れがあり、また、剥離した腐蝕生成物
は放射能を有し取り扱い上好ましくない。そのため、原
子炉の構造材料としてのジルコニウム合金の耐ノジユラ
ー腐蝕特性を改善することが注目されるようになってき
た。
As this nodular corrosion progresses, it sometimes causes a peeling phenomenon and thinning, which may lead to a decrease in the mechanical properties of the structural material.Furthermore, the peeled corrosion products are radioactive and undesirable for handling. . Therefore, attention has been focused on improving the nodular corrosion resistance of zirconium alloys as structural materials for nuclear reactors.

さらに、ウラン資源の有効利用、放射性廃棄物の発生量
の低減および発電コストの低減を目的として燃料の高燃
焼度化が進められている。そのため、上記ジルカロイ製
品等炉内構造物にはノジュラー腐蝕のような局部腐蝕に
対する耐蝕性ばかりでなく、均一腐蝕に対する耐蝕性に
優れていることが望まれている。
Furthermore, efforts are being made to increase the burnup of fuel with the aim of effectively utilizing uranium resources, reducing the amount of radioactive waste generated, and reducing power generation costs. Therefore, it is desired that the above-mentioned Zircaloy products and other furnace internal structures have excellent corrosion resistance not only against localized corrosion such as nodular corrosion, but also against uniform corrosion.

[発明か解決しようとする問題点] 本発明は上記に説明した従来におけるジルコニウム合金
のノジュラー腐蝕に鑑み、本発明者は脱色研究を行い、
検討を重ねた結果、通常の耐蝕性ジルコニウム合金の製
造工程、即ち、溶解−鍛造→β焼入れ(約1000℃の
温度に20分保持後水冷、マメテンサイド組織)−熱間
加工(800℃)−冷間圧延→焼鈍(700℃、等軸品
)→製品の工程で作られたジルコニウム合金、例えば、
ジルカロイ−2、ジルカロイ−4と比較して、Fe、C
rおよびNi含有量はジルカロイ−2またはジルカロイ
−4の含有量と同等であるがSn含有量を低く制御する
ことにより、ノジュラー腐蝕の発生が極めて少量となる
こと、あるいは、均一腐蝕に対する腐蝕速度も極めて小
さくなり、酸化膜の剥離開始が遅くなり、また、最終焼
鈍条件によっても変化しないことを見出だし、ジルコニ
ウム合金、例えば、ジルカロイ−2およびジルカロイ−
4で作られたチャネルボックスや燃料被覆管に発生する
ノジュラー腐蝕の発生を防止し、並びに均一腐蝕を極力
抑えることができる耐蝕性ジルコニウム合金を開発した
のである。
[Problems to be solved by the invention] In view of the nodular corrosion of conventional zirconium alloys explained above, the present inventor conducted decolorization research,
As a result of repeated studies, we decided to follow the usual manufacturing process for corrosion-resistant zirconium alloys: Melting - Forging -> β-quenching (held at a temperature of about 1000°C for 20 minutes, then water-cooled, mameten side structure) - Hot working (800°C) - Cold rolling → annealing (700℃, equiaxed product) → Zirconium alloy made in the process of product, e.g.
Compared to Zircaloy-2 and Zircaloy-4, Fe, C
The r and Ni contents are equivalent to the Zircaloy-2 or Zircaloy-4 contents, but by controlling the Sn content low, the occurrence of nodular corrosion will be extremely small, or the corrosion rate will be lower than that of uniform corrosion. They found that the size of the oxide film becomes extremely small, the start of peeling of the oxide film is delayed, and that it does not change depending on the final annealing conditions.
We have developed a corrosion-resistant zirconium alloy that can prevent the occurrence of nodular corrosion that occurs in channel boxes and fuel cladding tubes made with 4, as well as suppress uniform corrosion as much as possible.

[問題点を解決するための手段] 本発明に係る耐蝕性ジルコニウム合金は、Sn 1.O
vt%以下、Fe O,05〜0.5vt%、Cr 0
.3wt%以下、 Ni O,2wt%以下 を含有し、残部実質的にZrからなることを特徴とする
耐蝕性ジルコニウム合金である。
[Means for Solving the Problems] The corrosion-resistant zirconium alloy according to the present invention contains Sn1. O
vt% or less, Fe O, 05 to 0.5 vt%, Cr 0
.. This is a corrosion-resistant zirconium alloy characterized by containing 3wt% or less of NiO, 2wt% or less of NiO, and the remainder substantially consisting of Zr.

以下本発明に係る耐蝕性ジルコニウム合金について以下
詳細に説明する。
The corrosion-resistant zirconium alloy according to the present invention will be explained in detail below.

先ず、本発明に係る原子炉用ジルコニウム合金の含有成
分および含有割合について説明する。
First, the components and content ratios of the zirconium alloy for nuclear reactors according to the present invention will be explained.

本発明者の研究によれば、S n 1.20〜1.70
wL%、Fe O,07〜0.24vt%、Cr 0.
05〜0.15wt%を含有し、また、Ni 0.08
vt%を含有し、または、含有しないジルカロイ−2お
よびジルカロイ−4の耐蝕性は、含有成分であるSn、
Fe、CrおよびNiの含有量によりいつじるしく影響
を受け、FeおよびN1は耐蝕性改善効果を有し、Sn
は逆に耐蝕性をやや劣化させ、Crは耐蝕性にはあまり
寄与しないこと、また、ジルコニウムにFeまたはNi
を含有させると均一腐蝕がジルカロイ−2およびジルカ
ロイ−4より小さくなり、ノジュラー腐蝕に耐えること
がわかった。
According to the research of the present inventor, S n 1.20 to 1.70
wL%, FeO, 07-0.24vt%, Cr 0.
05 to 0.15 wt%, and Ni 0.08
The corrosion resistance of Zircaloy-2 and Zircaloy-4 with or without vt% is determined by the contained components Sn,
It is severely affected by the content of Fe, Cr and Ni, with Fe and N1 having the effect of improving corrosion resistance, and Sn
On the contrary, Cr slightly deteriorates corrosion resistance, and Cr does not contribute much to corrosion resistance.
It was found that the uniform corrosion was smaller than that of Zircaloy-2 and Zircaloy-4 when Zircaloy-4 was added, and that it was resistant to nodular corrosion.

先ず、本発明に係る耐蝕性ジルコニウム合金の含有成分
および含有割合について説明する。
First, the components and content ratios of the corrosion-resistant zirconium alloy according to the present invention will be explained.

Sn含有量が増加するとノジュラー腐蝕を発生させ、均
一腐蝕速度を増加し、そして、腐蝕増量の関係から含有
量が1.1wt%を越えて含有されるとノジュールの発
生が認められるが、含TTmが1.0w1%未満ではノ
ジールの発生は認められず、均一腐蝕速度もSn含有量
が多い場合に比べてかなり低くなる。よって、Sn含有
量は+、Owt%以下とする。
When the Sn content increases, nodular corrosion occurs and the uniform corrosion rate increases.If the Sn content exceeds 1.1 wt%, the formation of nodules is observed due to the increase in corrosion. When the Sn content is less than 1.0w1%, no nozzle generation is observed, and the uniform corrosion rate is considerably lower than when the Sn content is high. Therefore, the Sn content is set to below +, Owt%.

Feは耐ノジユラー腐蝕性を付与する元素であり、含有
mが0.05wt%未満では耐ツノニラ−腐蝕性が劣り
、また、o 、 5vt%を越えて含有されるとZrと
の金属間化合物が増加して加工が困難となる。よって、
Fe含有量は0.05〜0.5wt%とする。
Fe is an element that imparts nodular corrosion resistance, and if the content m is less than 0.05wt%, the nodular corrosion resistance is poor, and if the content exceeds 5wt%, an intermetallic compound with Zr is formed. increases, making processing difficult. Therefore,
The Fe content is 0.05 to 0.5 wt%.

N1は耐ノジユラー腐蝕性を改善する元素であり、含有
量が0.2wt%を越えて含有されると水素を吸収し易
くなり、水素化物を析出して機械的性質を低下させる。
N1 is an element that improves nodular corrosion resistance, and when the content exceeds 0.2 wt%, it tends to absorb hydrogen, precipitates hydrides, and deteriorates mechanical properties.

よって、Ni含有量は0.2wt%以下とする。Therefore, the Ni content is set to 0.2 wt% or less.

Crは耐ノジユラー腐蝕性を改善する元素であり、含有
量が0.3wt%を越えて含有されるとZrとの金属間
化合物を増加して、加工が困難となる。
Cr is an element that improves nodular corrosion resistance, and if the content exceeds 0.3 wt%, it increases intermetallic compounds with Zr, making processing difficult.

よって、Cr含有量は0.3wt%以下とする。Therefore, the Cr content is set to 0.3 wt% or less.

[実 施 例コ 本発明に係る耐蝕性ジルコニウム合金の実施例を説明す
る。
[Example] An example of the corrosion-resistant zirconium alloy according to the present invention will be described.

実施例 本発明に係る耐蝕性ジルコニウム合金において、Sn含
有量の変化による腐蝕増量について500℃×24時間
のオートクレーブ腐蝕試験を行った。
EXAMPLE An autoclave corrosion test at 500° C. for 24 hours was conducted on the corrosion-resistant zirconium alloy according to the present invention to examine the increase in corrosion due to changes in Sn content.

その結果、耐蝕性の変化を第1図により具体的に説明す
る。
As a result, changes in corrosion resistance will be explained in detail with reference to FIG.

第1図は、ジルカロイ−2(第1図でOで示す。FIG. 1 shows Zircaloy-2 (indicated by O in FIG. 1).

)またはジルカロイ−4(第1図で・で示す。)に含有
さ仕るSn含有量を変化させた場合の腐蝕増量(試験条
件は500°C×24時間)を示しているが、Sn含有
量の減少と共に腐蝕増量が減少しているのがわかる。特
に、ジルカロイ−4の場合、Sn含有量を減少させると
腐蝕増量は急激に減少し、成分規格の下限含有量近< 
(S n 1.25wt%)の試料にはノジールの発生
が認められたが、Sn含有量が1.Ovt%以下の試料
にはノジールは全く発生していなかった。なお、第1図
において、AはASTM規格を示す。
) or Zircaloy-4 (indicated by . in Figure 1). It can be seen that the corrosion increase decreases as the amount decreases. In particular, in the case of Zircaloy-4, when the Sn content is decreased, the corrosion increase rapidly decreases, and the content is close to the lower limit of the component specification.
(S n 1.25 wt %) sample showed nozzle generation, but the Sn content was 1.25 wt %. No nozzle was generated in the samples with Ovt% or less. Note that in FIG. 1, A indicates the ASTM standard.

第2図(aXb)は試験時間を延長した場合の腐蝕増量
(試験条件は400℃x I 05 kg/c+n”)
の変化を示したものである。
Figure 2 (aXb) shows the increase in corrosion when the test time is extended (test conditions are 400℃ x I 05 kg/c+n”)
This shows the changes in

第2図(a)はSn含有量を変化させたジルカロイ−4
について、また、第2図(b)はSn含有量を変化させ
たジルカロイ−2についての測定値を示したしのである
。なお、第2図(a)において、・はSn含有jl 2
.11vt%、○はSn含有量1.45wt%、OはS
n含有量1.00wt%を示し、また、第2図(b)に
おいて、・はSn含有@ 2.20vt%、○はSn含
有ffi 1.45wt%、OはSn含有量1.00w
t%をそれぞれ示している。
Figure 2(a) shows Zircaloy-4 with varying Sn content.
Also, FIG. 2(b) shows measured values for Zircaloy-2 with varying Sn content. In addition, in FIG. 2(a), . represents Sn-containing jl 2
.. 11vt%, ○ means Sn content 1.45wt%, O means S
Indicates n content of 1.00wt%, and in Fig. 2(b), * indicates Sn content @ 2.20vt%, ○ indicates Sn content ffi 1.45wt%, and O indicates Sn content of 1.00w.
t% is shown respectively.

標準組成のジルカロイ−4またはジルカロイ−2と比較
して、Sn含有量を減少させたジルカロイは腐蝕増量が
少ないばかりでなく、腐蝕増量が急増する遷移(第2図
中腐蝕増量を結ぶ直線が折れる点で示される。)後の均
一腐蝕速度(直線の傾きで示される。)が小さく、均一
腐蝕特性に優れていることがわかる。
Compared to Zircaloy-4 or Zircaloy-2 of standard composition, Zircaloy with reduced Sn content not only exhibits less corrosion increase, but also shows a transition where the corrosion increase rapidly occurs (in Figure 2, the straight line connecting the corrosion increase is broken). It can be seen that the uniform corrosion rate (indicated by the slope of the straight line) after (indicated by a dot) is small, and the uniform corrosion characteristics are excellent.

従って、Snの含有量は1.0wt%以下とするのがよ
い。
Therefore, the content of Sn is preferably 1.0 wt% or less.

[発明の効果] 以上説明したように、本発明に係る耐蝕性ジルコニウム
合金は上記の構成であるから、例えば、沸騰水型軽水炉
で使用されるチャネル、燃料被覆管を製造してもノジュ
ラー腐蝕の発生は極めて少なく安全に操業することがで
き、さらに、長期間原子炉ないで使用されても、均一腐
蝕の進行が抑制されるために長期間健全性を保持できる
という優れた効果を奏するものである。
[Effects of the Invention] As explained above, since the corrosion-resistant zirconium alloy according to the present invention has the above structure, nodular corrosion can be avoided even when manufacturing channels and fuel cladding tubes used in boiling water reactors, for example. It can be operated safely with very little occurrence, and even if it is used without a nuclear reactor for a long time, it has the excellent effect of maintaining its integrity for a long period of time because the progress of uniform corrosion is suppressed. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジルカロイ−2またはジルカロイ−4に含有さ
れるSn含有量の変化と腐蝕増量との関係を示す図、第
2図はSn含有量を変化させたジルカロイ−2およびジ
ルカロイ−4の試験時間と腐蝕増量の関係を示す図であ
る。 矛1 図 0       1.2       2.0、Sn 
宕鳴i (wtz) 刃占  令室 かカ1 ど−シ2ン一・)腐 蝕槽i(
−角−=)
Figure 1 is a diagram showing the relationship between changes in Sn content contained in Zircaloy-2 or Zircaloy-4 and corrosion increase, and Figure 2 is a test of Zircaloy-2 and Zircaloy-4 with varying Sn contents. It is a figure showing the relationship between time and corrosion increase. Spear 1 Figure 0 1.2 2.0, Sn
Minaki i (wtz) blade fortune telling room ka 1 do-shi 2 in 1・) corrosive tank i (
-Angle-=)

Claims (1)

【特許請求の範囲】 Sn1.0wt%以下、Fe0.05〜0.5wt%、
Cr0.3wt%以下、 Ni0.2wt%以下 を含有し、残部実質的にZrからなることを特徴とする
耐蝕性ジルコニウム合金。
[Claims] Sn 1.0 wt% or less, Fe 0.05 to 0.5 wt%,
A corrosion-resistant zirconium alloy containing 0.3 wt% or less of Cr, 0.2 wt% or less of Ni, and the remainder substantially consisting of Zr.
JP62011597A 1987-01-21 1987-01-21 Corrosion resistant zirconium alloy Expired - Lifetime JP2675297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62011597A JP2675297B2 (en) 1987-01-21 1987-01-21 Corrosion resistant zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62011597A JP2675297B2 (en) 1987-01-21 1987-01-21 Corrosion resistant zirconium alloy

Publications (2)

Publication Number Publication Date
JPS63179034A true JPS63179034A (en) 1988-07-23
JP2675297B2 JP2675297B2 (en) 1997-11-12

Family

ID=11782313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62011597A Expired - Lifetime JP2675297B2 (en) 1987-01-21 1987-01-21 Corrosion resistant zirconium alloy

Country Status (1)

Country Link
JP (1) JP2675297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173235A (en) * 1988-12-27 1990-07-04 Toshiba Corp Corrosion resisting zirconium alloy
CN115747570A (en) * 2022-10-31 2023-03-07 上海大学 Zirconium alloy cladding material for small pressurized water reactor and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134552A (en) * 1981-02-13 1982-08-19 Toshiba Corp Zirconium alloy substrate
JPS58224139A (en) * 1982-06-21 1983-12-26 Hitachi Ltd Zirconium alloy with high corrosion resistance
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy
JPS63145735A (en) * 1986-12-08 1988-06-17 Sumitomo Metal Ind Ltd Zirconium alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134552A (en) * 1981-02-13 1982-08-19 Toshiba Corp Zirconium alloy substrate
JPS58224139A (en) * 1982-06-21 1983-12-26 Hitachi Ltd Zirconium alloy with high corrosion resistance
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy
JPS63145735A (en) * 1986-12-08 1988-06-17 Sumitomo Metal Ind Ltd Zirconium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173235A (en) * 1988-12-27 1990-07-04 Toshiba Corp Corrosion resisting zirconium alloy
CN115747570A (en) * 2022-10-31 2023-03-07 上海大学 Zirconium alloy cladding material for small pressurized water reactor and preparation method thereof

Also Published As

Publication number Publication date
JP2675297B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP5704553B2 (en) Zirconium alloy resistant to shadow corrosion for components in boiling water reactor nuclear fuel assemblies
KR100205917B1 (en) Zirlo material for light water reactor applications
US5832050A (en) Zirconium-based alloy, manufacturing process, and use in a nuclear reactor
JPH07504500A (en) Reactor fuel rod with double layer cladding
WO2005094504A2 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US4876064A (en) Corrosion resistant zirconium alloys containing bismuth
JPH04232220A (en) Corrosion-resistant zirconium alloy with improved extensibility
US4963323A (en) Highly corrosion-resistant zirconium alloy for use as nuclear reactor fuel cladding material
EP1259653A1 (en) Zirconium niobium-tin-iron alloy for use in nuclear reactors and method of its manufacture
JPH08260081A (en) Long-life corrosion-resistant zirconium alloy for coating fuel
US5334345A (en) Zirconium-based alloy for components in nuclear reactors
CN105296803B (en) A kind of nuclear reactor fuel can zirconium-niobium alloy and preparation method thereof
JPS63179034A (en) Corrosion-resisting zirconium alloy
US4863685A (en) Corrosion resistant zirconium alloys
EP0287889B1 (en) Corrosion resistant zirconium alloys containing bisbuth
JP5367208B2 (en) Non-heat treated zirconium alloy fuel coating and method for producing the same
JPH01301830A (en) High corrosion-resistant zirconium alloy
JPS6333535A (en) Zirconium alloy for nuclear reactor
JP2515172B2 (en) Manufacturing method of cladding tube for nuclear fuel
JP2023525484A (en) Cladding tubes, fuel rods and fuel assemblies for fuel rods for nuclear reactors
JPS6036640A (en) Corrosion-resistant zirconium alloy
JPH04224648A (en) High corrosion resistant and high strength zirconium alloy
JPS6233734A (en) Zirconium alloy having high corrosion resistance
Farina et al. Current status of Zirconium alloys for fission cladding
JPS62287029A (en) Corrosion-resistant zirconium alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term