JPS63179001A - Production of hyper-fine particle of magnetic material - Google Patents

Production of hyper-fine particle of magnetic material

Info

Publication number
JPS63179001A
JPS63179001A JP62010043A JP1004387A JPS63179001A JP S63179001 A JPS63179001 A JP S63179001A JP 62010043 A JP62010043 A JP 62010043A JP 1004387 A JP1004387 A JP 1004387A JP S63179001 A JPS63179001 A JP S63179001A
Authority
JP
Japan
Prior art keywords
base material
heat treatment
hyper
atmosphere
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62010043A
Other languages
Japanese (ja)
Other versions
JPH07115876B2 (en
Inventor
Tetsuo Iijima
飯島 哲生
Masahiro Seki
関 昌浩
Nobuo Inagaki
稲垣 伸夫
Toshihiko Sato
寿彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62010043A priority Critical patent/JPH07115876B2/en
Publication of JPS63179001A publication Critical patent/JPS63179001A/en
Publication of JPH07115876B2 publication Critical patent/JPH07115876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce hyper-fine particle of a magnetic material having a uniform particle shape and distribution, high saturation magnetization and low coercive force by subjecting a base material consisting of the hyper-fine particle of the magnetic material contg. Fe and Zn elements to a heat treatment at a high temp. in an atmosphere below atm. pressure. CONSTITUTION:A base material consisting of the hyper-fine particle of the magnetic material contg. the Fe and Zn elements is subjected to the heat treatment for 1 - several hours at >=800 deg.C in the atmosphere of the atm. pressure or reduced pressure. The above-mentioned base material is preferably obtd. by a co-deposition method such as, for example, method of adding NaOH to an aq. soln. contg. FeCl2 and ZnCl2 and has about several - tens and some nm grain size. The above-mentioned heat treatment is adequately executed in the atm. atmosphere or inert gaseous atmosphere such as N2. The hyper-fine particle of the magnetic material of the single compsn. having the high saturation magnetization, low coercive force and uniform particle shape and distribution is thereby obtd.

Description

【発明の詳細な説明】 (腫東上の利用分野ン 本発明に粒径分布の一様性が高く、かつ高い飽l磁化5
r、有する磁性体超微粒子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of application of the present invention)
The present invention relates to a method for producing ultrafine magnetic particles having

(従来技術お工び発明が屏決し工9とする問題点〕従来
、この樵の磁性体超微粒子は磁気記録用。
(Problems raised by the prior art and the invention as a final step) Conventionally, the magnetic ultrafine particles of this woodcutter have been used for magnetic recording.

磁性流体用として多方向に用いらnている。ガえば、磁
気記録用微粒子としてのγ−Fe、Os ij最も広く
便わ扛ている材料の1つであるが、その生成工程は針状
のα−Fe00Hを出発母材として、 (1−Fe0OH+ a −Fe2O−+FB、0.→
γ−Fe2O3なる順序を経て作製さnる〇 これらの工程はいずnも熱処理を伴った酸化又は還元反
応である。この場合とくに初期工程では、脱水に伴うボ
ア(穴)の発生や焼結によって形状の均一性(針状性枝
分れ形状分布)が着しくそこなわれる。そのため出猟記
録用媒体を作製する際、粒子の分散が不十分でめったジ
、磁気特性がそごなわnるという問題点があった。
It is used in many directions for magnetic fluids. For example, γ-Fe is one of the most widely used materials for magnetic recording particles, and its production process uses acicular α-Fe00H as a starting material, (1-Fe0OH+ a -Fe2O-+FB, 0.→
γ-Fe2O3 is produced through the following steps. All of these steps are oxidation or reduction reactions accompanied by heat treatment. In this case, especially in the initial process, the uniformity of the shape (acicular, branched shape distribution) is seriously impaired due to the formation of bores (holes) due to dehydration and sintering. Therefore, when producing a medium for recording hunting trips, there was a problem in that the particles were not sufficiently dispersed and the magnetic properties were rarely uniform.

これに対しボアの発生を防止する封孔処理が行なわれる
ことかめるが、この場合にも一般に保磁力の向上は一部
認めら詐るものの、結果的に不純物を含有することにな
るので飽沌伍化が低下するという問題がめった0また、
プロセスも増えるという問題があった。
In response to this, a sealing treatment is performed to prevent the formation of bores, but in this case as well, although some improvement in coercive force is generally recognized, the result is that impurities are contained, so it is chaotic. The problem of lowering the level of 50% is rare.
There was a problem that the number of processes would increase.

また、磁気シールド材としては一般に飽和磁化が高く、
低保磁力で、しかも安価で生産性の大きいことが望まれ
る。従来はめ5Zn−フェライトが主に用いられていた
が、飽和磁化は高々間emu/lと小さく、特性の良好
なものは得られなかった。一方、他の高飽和磁化材料と
して、例えばセンダストがあるが、この材料は微粒子化
に吸して加工が難しく高価で1ハ生産性に欠けるという
問題がめつ九。即ち、従来の磁気シールド材料の技術分
野では<&)生産性、(b)高飽和磁化をともに満足す
る材料はなかった。
In addition, magnetic shielding materials generally have high saturation magnetization;
It is desired to have a low coercive force, low cost, and high productivity. Conventionally, Zn-ferrite has been mainly used, but its saturation magnetization is as small as emu/l at most, and it has not been possible to obtain a material with good characteristics. On the other hand, there are other high saturation magnetization materials, such as sendust, but this material suffers from the problems of being difficult to process, expensive, and lacking in productivity due to its tendency to become fine particles. That is, in the technical field of conventional magnetic shielding materials, there has been no material that satisfies both <&) productivity and (b) high saturation magnetization.

(発明の目的) 本発明は上記の欠点を改善する几めに提案さnたもので
、粒子形状が揃っており、しかも高飽和磁化を有する超
微粒子の製造方法を提供することを目的とする。
(Objective of the Invention) The present invention has been proposed to improve the above-mentioned drawbacks, and an object of the present invention is to provide a method for producing ultrafine particles having uniform particle shapes and high saturation magnetization. .

(問題点tS決する友めの手段) 上記の目的を達成するため、本発明はFe及びZn元素
を含む磁性体超微粒子からなる母材を、常圧あるいは減
圧雰囲気下で800℃以上の温度で熱処理することを特
徴とする磁性体超微粒子の製造方法を発明の要旨とする
ものでおる。
(Friendly means to resolve the problem) In order to achieve the above object, the present invention provides a base material made of ultrafine magnetic particles containing Fe and Zn elements at a temperature of 800°C or higher in an atmosphere of normal pressure or reduced pressure. The gist of the invention is a method for producing ultrafine magnetic particles characterized by heat treatment.

本発明の特徴とする点は、共沈法に工っで得九粒径数〜
lO数面の磁性体超微粒子を出発材料(母材)とし、あ
る雰囲気(大気中又はN、ガス等の不活性ガスン、又は
こ牡らの減圧雰囲気中で、800℃以上の温度で1−数
時間熱処理を行うことによって得られる磁性体超微粒子
の製造方法にメク、従来の技術とは (イ)出発材料が異なること (ロ)プロセスが1つと単純であること(ハ)熱処理条
件の範囲が異なること という点において異なるものである。
The feature of the present invention is that it can be obtained by using the coprecipitation method.
The starting material (base material) is ultrafine magnetic particles with several 1O planes, and the 1- The manufacturing method of magnetic ultrafine particles obtained by heat treatment for several hours is different from conventional technology because (a) the starting material is different, (b) the process is simple with only one, and (c) the range of heat treatment conditions. They are different in that they are different.

次に本発明の詳細な説明する。なお実施例は一つの例示
であって1本発明の梢神を逸脱しない範囲で、種々の変
更あるいは改良を行いうろことは言うまでもない。
Next, the present invention will be explained in detail. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the scope of the present invention.

出発母材mる磁性体超微粒子の製法にイしては、特公昭
36−18284号公報、特願昭59−200298号
明細書等に開示さnているので、ここではその−例を述
べる。以後の出発母材たる磁性体超微粒子は同様に作製
できる。
The method for producing ultrafine magnetic particles as a starting base material is disclosed in Japanese Patent Publication No. 36-18284, Japanese Patent Application No. 59-200298, etc., and examples thereof will be described here. . The magnetic ultrafine particles that will serve as the starting base material thereafter can be produced in the same manner.

〔実施f/+J 1 : Fe0o、@Zn06,4・
Fetolの場合〕(1)0.2mol/lのFeCL
g水浴& 50 mAに0.1mol/lのFeCL*
と同濃髪のZnCtl水m液を6:4の割合で混合きせ
た水溶液50 mtを加え、亜鉄酸塩水m液を作り、こ
れに室温で3NのNaOHを急に疹加する。3NのNa
OH菫は混合後の溶液のpHが13付近のアルカリ性を
示す工うに調節する0 この混合さnた浴液を攪拌しつつ加熱処理、ガえば(社
)℃で1時間沈澱物のw%成を行った後、十分清浄し遠
心分離器で脱水して加熱処理温度がそn工り低い温度、
例えば60℃r O−I Torrで減圧乾燥する。こ
の工うにして出発母材としてのP″eo@、s Zn0
6,4@に’etos (# A  Oとする)を得7
to得らjL 7j Fe0o、@ Zn0o、a ”
 Fe101の粒子はxmの(ロ)折スペクトルの半値
幅から7エラー(Sherrer、)の式を用いて半均
粒径を求め几。
[Implementation f/+J 1: Fe0o, @Zn06,4・
In the case of Fetol] (1) 0.2 mol/l FeCL
g water bath & 0.1 mol/l FeCL* at 50 mA
Add 50 mt of an aqueous solution of ZnCtl and ZnCtl at a ratio of 6:4 to make a ferrite aqueous solution, and then suddenly add 3N NaOH at room temperature. 3N Na
The OH violet was adjusted so that the pH of the mixed solution was alkaline, around 13. The mixed bath solution was heated while stirring, and the w% composition of the precipitate was heated at ℃ for 1 hour. After that, it is thoroughly cleaned, dehydrated in a centrifuge, and heated at a lower temperature.
For example, drying is carried out under reduced pressure at 60°C r O-I Torr. In this way, P″eo@,s Zn0 as the starting base material
6,4 @ got 'etos (# A O) 7
to get jL 7j Fe0o, @ Zn0o, a ”
For Fe101 particles, the semi-uniform particle diameter was determined from the half-width of the xm (b) fold spectrum using the 7-error formula (Sherrer, ).

また出猟特性は振励型磁力計(東英工業製うを用い最大
磁場12KOeで測定し、これを1/H(H=fBJa
)→0(H→■)の憔限として飽和磁化σBを求め几。
In addition, hunting characteristics were measured using an excitation magnetometer (manufactured by Toei Kogyo) at a maximum magnetic field of 12KOe, and this was determined by 1/H (H = fBJa
)→0(H→■) Find the saturation magnetization σB as the limit.

また化学分析の結果、数重皺−の水を宮むものの、はぼ
化字貫論的組成であることが確認され友。
In addition, chemical analysis confirmed that although the water was contained in several layers, it was found to have a consistent composition.

上記出発母材#A−〇のFe06.@*Zn06.a・
Fe、03の半均粒径は約10 nm 、飽和磁化は約
70 emu / f +保磁力Hcは100e以下で
ろり友。
Fe06 of the above starting base material #A-〇. @*Zn06. a・
The semi-uniform grain size of Fe, 03 is about 10 nm, the saturation magnetization is about 70 emu/f + the coercive force Hc is less than 100 e, making it a good choice.

(2) このFe0(、、@* Zn0o、4−Fe*
03e (A  1 )大気中。
(2) This Fe0(,,@* Zn0o, 4-Fe*
03e (A 1 ) In the atmosphere.

(A−2)Ntガス中、具体的には約10 tの炉に5
mL1分の泥波でN、ガスを流し、(A−3)1〜3 
X lO”Torrの減圧空気で温度T’C,1時間熱
処理を行った。得らnた飽和磁化σ3のI[を熱処理温
度Tの値に対してプロットし、第1図に示し友。減圧空
気中で、さらに100O℃で2時間(A−3)’、3時
間(A −31の熱処理を行い、第1図に◎印で示し九
〇 図かられかるように、いずれの雰囲気の場合もsoo 
’cを越える熱処理温度で出発母材の値工9大きくなっ
た。とくに、減圧大気中1000℃×1時間(Dモ(D
(A−3)及び1000 CX 2時間。
(A-2) In Nt gas, specifically in a furnace of about 10 tons,
Flow N and gas in a mud wave for 1 mL, (A-3) 1 to 3
Heat treatment was performed for 1 hour at temperature T'C in reduced pressure air of In air, heat treatment was further performed at 100°C for 2 hours (A-3)' and 3 hours (A-31). Too soo
The value of the starting base material increased by 9 when the heat treatment temperature exceeded 'c. In particular, in a reduced pressure atmosphere at 1000°C for 1 hour (D
(A-3) and 1000 CX 2 hours.

1000℃×3時間熱処理したものは、’3 =110
 emu/lと出発母材である70 emu/ fに比
べて57%大きな[を示した。
For those heat-treated at 1000°C for 3 hours, '3 = 110
emu/l was 57% larger than the starting base material, 70 emu/f.

このとき、保磁力は200e以下と小さい値でめった。At this time, the coercive force was a small value of 200e or less.

また、粒径は出発母材の約10 nmから約400 n
m程度に成長してい九が1粒子の形状(寸法比)を保っ
た“まま粒径が大きくなっている。しがもボアもみられ
ない。第2図に出発母材としてのFe06.@” Zn
06.4” FetO1粒子(第2図a)と、こnを減
圧を気中に1000℃で1時間熱処理したときの粒子(
wJ2図b)の形状を示す透過電子顕微鏡4真を示す〇 〔実施?1J2) (1)実施PI lでFeC1HfA度f 0.4 m
ol/l* FeC4及びZnCtt 5lft 0.
2mol/lト各k 2 倍Kj ル以外は実施?+1
1と同様な方法でFe06.@ Zn0a、4 Fet
usを得之。この試料を#Bとし几。この場合、平均粒
径は約12nmと実施例1の出発母材#A−0と比べて
やや大きくなつ次。
In addition, the particle size varies from about 10 nm of the starting base material to about 400 nm.
The particle size has grown to about 1.0 m and the particle size has increased while maintaining the shape (size ratio) of 1 particle.However, no bores are seen.Figure 2 shows Fe06.@ as the starting base material. Zn
06.4" FetO1 particles (Fig. 2a) and particles obtained by heat-treating the FetO1 particles at 1000°C for 1 hour under reduced pressure (Fig. 2a)
Transmission electron microscope showing the shape of wJ2 figure b) 〇 [Implementation?] 1J2) (1) FeC1HfA degree f 0.4 m in implementation PI l
ol/l* FeC4 and ZnCtt 5lft 0.
2 mol/l each k 2 times Kj Is everything else done? +1
Fe06. @ Zn0a, 4 Fet
Obtained US. This sample was designated as #B. In this case, the average particle size was approximately 12 nm, which was slightly larger than that of the starting base material #A-0 of Example 1.

(2)実施例1でFeC4濃1jtl t 1 mol
/l、 FeCt、及びZnCt鵞濃度全濃度5mol
/lと各々5倍にする以外は実施例1と同様な方法でF
e0(1,@ znoO,4Fetusを得た。この試
料を#Cとし友、$Cの平均粒径は#A−0と比べて大
きい14 nmであった。
(2) In Example 1, FeC4 concentration 1 jtl t 1 mol
/l, FeCt, and ZnCt total concentration 5 mol
F in the same manner as in Example 1, except that /l and each are multiplied by 5.
e0(1,@znoO,4Fetus) was obtained. This sample was designated as #C, and the average particle size of $C was 14 nm, which was larger than that of #A-0.

上記出発母材#B、#Cを実施ガlと同様、大気減圧突
気雰囲気中、具体的には1〜3 X 10−”Torr
の雰囲気中で温度TCで1時間熱処理を行ない、飽和磁
化の値を第3図にプロットした。
The above starting base materials #B and #C were heated in the same way as in the test sample 1 in a reduced pressure atmosphere, specifically at 1 to 3 x 10-” Torr.
Heat treatment was carried out at temperature TC in an atmosphere of 1 hour, and the saturation magnetization values were plotted in FIG.

第3図には第1図の(A−3)も再掲した。In Figure 3, (A-3) in Figure 1 is also reproduced.

第3図から900℃を越える熱処理!度で出発母材ニジ
大きな飽和磁化のものが得らnた。ま几保磁力も300
0eと小さかった。
As shown in Figure 3, heat treatment exceeds 900℃! A starting base material with a large saturation magnetization was obtained at a temperature of 1. The coercive force is also 300
It was small at 0e.

〔実施例3〕 (1)実施例1において、濃度0.1 mol/lの谷
々FeCttとZnC4混合液の割合を(3−1)30
ニア0゜(3−2)50:50. (3−3)70:3
0に選ぶ以外は実施例1と同様な方法で各々出発母材F
e0xZn01−xeFet03 (但し、 (3−1
)はx=0.3.  (3−2)はx=0.5. (3
−3)はx=o、7〕を作製し友。こnらの出発母材を
減圧空気雰囲気中、具体的には1〜3 X IF” T
orrの雰囲気中で、温度TCで1時間熱処理し、その
飽和磁化の甑を第4図にプロットし友。同図には第11
の(A−3)の曲線も再掲した。
[Example 3] (1) In Example 1, the ratio of the valley FeCtt and ZnC4 mixture with a concentration of 0.1 mol/l was changed to (3-1) 30
Near 0° (3-2) 50:50. (3-3) 70:3
The starting base material F was prepared in the same manner as in Example 1 except that
e0xZn01-xeFet03 (However, (3-1
) is x=0.3. (3-2) is x=0.5. (3
-3) creates x=o, 7]. These starting base materials are heated in a reduced pressure air atmosphere, specifically 1 to 3
Heat treatment was performed for 1 hour at a temperature of TC in an atmosphere of 0.25 mm, and the resulting saturation magnetization was plotted in Figure 4. The same figure shows the 11th
The curve (A-3) is also reproduced.

図かられかる工うに、900Ct−越える熱処理温度で
いずれも出発母材工り大きい飽和磁化を得た。保磁力H
cも300e以下と小さかつ友。ま友このと!!災施ガ
1と同様、形状はキュービック状であり、焼結、ボアの
発生等もない。
As can be seen from the figure, large saturation magnetization of the starting base material was obtained at heat treatment temperatures exceeding 900 Ct. Coercive force H
C is also small and friendly, less than 300e. Mayu Koto! ! Similar to Disaster 1, the shape is cubic, and there is no sintering or bore formation.

〔比較例1〕 実施NJ 1において、0.1mol/を濃度のFeC
t150 ml t 0.2 mol/1(Ik [の
FeC450mtと混合攪拌する以外は実施例1と同様
な方法でにeO・FelOl粒子を得友0こn 1&:
1〜3 X 10−” Torrの減圧空気雰囲気で@
度’rcx 1時間熱処理を行なつ九〇この試料の飽和
磁化の熱処理温度依存性を第4図に併記し友(第4図の
睦印太い実線〕。
[Comparative Example 1] In Implementation NJ 1, FeC at a concentration of 0.1 mol/
t150 ml t 0.2 mol/1 (Ik) eO・FelOl particles were obtained in the same manner as in Example 1, except for mixing and stirring with FeC450mt.
In a reduced pressure air atmosphere of 1 to 3 X 10-” Torr @
The dependence of the saturation magnetization on the heat treatment temperature for this sample is also shown in Figure 4 (thick solid line in Figure 4).

即ち、比較例は出発母材の飽和磁化は77ernu/f
で6つ几ものが100℃の熱処理温度で若干増加するが
、100℃以上の熱処理温度とともに急激に減少し、1
000℃では26 emu/7と出発母材及びバルクの
値(92emu/ f )に比べて各に3H%、28チ
の値に低下し九。
That is, in the comparative example, the saturation magnetization of the starting base material was 77 ernu/f.
At 100 degrees Celsius, the temperature increases slightly at a heat treatment temperature of 100 degrees Celsius, but rapidly decreases as the heat treatment temperature rises above 100 degrees Celsius.
At 000°C, the value decreased to 26 emu/7, 3H% and 28%, respectively, compared to the starting base material and bulk values (92 emu/f).

以上のことから以下のことがわかる。From the above, we can understand the following.

(υ 出発母材がFe−Zn系磁性体超微粒子では、減
圧空気中又は大気圧又は不活性ガス中800 C以上で
1時間熱処理を行うことに工9、飽7TO磁化が高くな
る。とくに、Fed@、@ ZnO@、4 Fetus
 ’に出発母材とし、減圧空気中で1時間以上熱処理を
行うことにLシ、aB = 110 emu/fと出発
母材(70%mu/?)に対して57%増の大きな値を
示した。
(υ When the starting material is Fe-Zn-based magnetic ultrafine particles, heat treatment at 800 C or higher for 1 hour in reduced pressure air, atmospheric pressure, or inert gas increases the TO magnetization. Particularly, Fed@, @ZnO@, 4 Fetus
When the starting base material was heat-treated for more than 1 hour in reduced pressure air, aB = 110 emu/f, which was a large value of 57% increase compared to the starting base material (70% mu/?), was obtained. Ta.

また保磁力Hc 4.20 Q6以下と小さかつ友。し
かも、第2図にみらnるように、その形状を保ったまま
で大きく成長しており、粒子間の焼結もみらnない。
Also, the coercive force Hc is small, less than 4.20 Q6. Moreover, as shown in FIG. 2, the particles have grown to a large size while maintaining their shape, and no sintering between particles is observed.

(2)上記熱処理による飽和磁化の増大傾向は、磁性体
超微粒子作製時の浴液濃度を変えても同様に得らnた。
(2) The tendency for the saturation magnetization to increase due to the heat treatment described above was similarly obtained even if the concentration of the bath solution during the production of ultrafine magnetic particles was changed.

(3)化学式Fe0z Zn01−1* Fe1O1で
x = 0.3 、0.5゜0.6,0.7と広範囲に
変えても同様な熱処理で出発母材の飽和磁化の値エリ高
いものが得ら扛7’CQ (4)  これに対し、上記(3)項の化学式でx=1
とした比較例では同様な熱処理条件で飽和磁化は温間と
ともに逆に減少することがわかった。
(3) Even if the chemical formula Fe0z Zn01-1* Fe1O1 is changed over a wide range of x = 0.3, 0.5°, 0.6, 0.7, the saturation magnetization value of the starting base material is still high with the same heat treatment. Obtained7'CQ (4) On the other hand, in the chemical formula in section (3) above, x=1
In the comparative example, it was found that under similar heat treatment conditions, the saturation magnetization decreased with increasing temperature.

(1ン〜(3)の結果は画期的なものであp、そのポイ
ン) tt’l Fe及びZn元索を含む磁性体超微粒
子について出発母材のバルクの値に比べて高い飽和磁化
が得らnるとともに保磁力が四〜300e以下と小さい
こと、及び粒子形態かはぼ保存され、焼結が全く、また
は殆んど生じていないことである。しかもプロセスが簡
単にして工業的であると言える。これらは正に従来の欠
点を解決したものと言える。
(Results from 1 to (3) are groundbreaking, and that's the point) tt'l The saturation magnetization of ultrafine magnetic particles containing Fe and Zn elements is higher than that of the bulk of the starting base material. is obtained, the coercive force is as small as 4 to 300 e, and the particle morphology is largely preserved, with no or almost no sintering occurring. Moreover, it can be said that the process is simple and industrial. These can be said to have solved the conventional drawbacks.

なお、不発明の実施例では出発材料として1化字式Fe
0z ZnO1−X @Fet03においてx = 0
.3 *0.5 、0.6 、0.7のものを用い九が
、本発明はこれらに限定さnるものではな(、Fe−Z
n系磁性体超微粒子ならばよい。
Incidentally, in the uninvented embodiment, the monomorphic Fe is used as the starting material.
x = 0 in 0z ZnO1-X @Fet03
.. 3 *0.5, 0.6, 0.7 are used, but the present invention is not limited to these
Any n-based magnetic ultrafine particles may be used.

また共沈法を用いると粒就分布のばらつきが少い超微粒
子を得られる利点がある。
Furthermore, the coprecipitation method has the advantage of being able to obtain ultrafine particles with less variation in particle size distribution.

さらに不活性ガスとしてN!を用い九が、Mガスを用い
ても工く、これに限定さ扛るものではない。さらに反応
時間も本発明の実施例に限定されるものではなく、ゆっ
くりし几結晶育成が行なえるならば、例えば0.5時間
〜数時間でも工い0 (発明の効果) 以上説明し友ぶりに1本発明に工nば出発母材九る磁性
体超微粒子を、空気中又は不活性ガス中又はこれらの減
圧雰囲気中で、800℃以上の温度で熱処理して生成し
た磁性体超微粒子は、高飽和磁化Φ低保磁力の特性を有
するのみならず、ボアもなく焼結もほとんどない均一な
粒子形状と分布を有する単一組成の粒子となるという利
点を有する。
Furthermore, N as an inert gas! Although it is possible to use M gas, it is not limited to this. Furthermore, the reaction time is not limited to the embodiments of the present invention, and if slow and efficient crystal growth can be performed, for example, 0.5 hours to several hours can be used without any effort (effects of the invention). In accordance with the present invention, the magnetic ultrafine particles produced by heat-treating the magnetic ultrafine particles of the starting base material at a temperature of 800°C or higher in air, an inert gas, or a reduced pressure atmosphere thereof are It not only has the characteristics of high saturation magnetization Φ and low coercive force, but also has the advantage that it becomes particles of a single composition with no bores and almost no sintering, and a uniform particle shape and distribution.

しかも1本発明の炸裂方法は前処理等のない1プロセス
で行なえるので、生産性が高いという利点を有する。
Moreover, since the explosion method of the present invention can be carried out in one process without pretreatment, it has the advantage of high productivity.

本発明になる磁性体超微粒子としては、近年活発に研究
@開発が行なわれている高¥!!!度磁気記録用メモリ
として、例えば、形状がキュービック状(cubicJ
であり、配向性に優n1また保磁力も200e以下と小
でいため、垂直記録用下地層として使用できる。
The magnetic ultrafine particles of the present invention have been actively researched and developed in recent years. ! ! As a magnetic recording memory, for example, the shape is cubic (cubic J).
Since it has an excellent orientation n1 and a small coercive force of 200e or less, it can be used as an underlayer for perpendicular recording.

また、保磁力が小さく高飽和磁化であることを利用して
各種磁気シールド材として、バインダ等の他の結看剤と
混合させて用いることができる。さらに磁性流体として
も使用できることは明らかである。
Further, by utilizing the small coercive force and high saturation magnetization, it can be used as various magnetic shielding materials by mixing with other binders such as binders. It is clear that it can also be used as a magnetic fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図及び第4図は化学式FeO2Zn01−
8・Fe20gを出発材料として飽和磁化の熱処理温度
依存性を各々熱処理雰囲気及び熱処理時間(第1図〕、
出発材料作製時の溶液濃度(第3図)及び出発材料の組
成(上記化学式でx = 0.3 。 0.5 、0.6 、0.7 、1の場合)(第4区)
をパラメータに示したものである。 第2図td Fete、@ Zn0o、4・Fe10g
 ic ツィテI)A 圧空気中で1000℃、1時間
熱処理した磁性体超微粒子の電子顕微鏡写真を示す。 特許出願人  日本電信電話株式会社 第1 図 0  200   ゲ℃  6■  &わ  1σカ 
 功刀認処理部屋(°C) 第2図(0) 第3図 侯l私及(°C) 第4図 熱舛理運友(’C)
Figures 1, 3 and 4 show the chemical formula FeO2Zn01-
Using 20 g of 8.Fe as a starting material, the dependence of saturation magnetization on heat treatment temperature was determined by heat treatment atmosphere and heat treatment time (Fig. 1),
Solution concentration at the time of starting material preparation (Figure 3) and composition of starting material (in the case of x = 0.3, 0.5, 0.6, 0.7, 1 in the above chemical formula) (section 4)
is shown in the parameters. Figure 2 td Fete, @ Zn0o, 4・Fe10g
ic Tite I) A An electron micrograph of ultrafine magnetic particles heat-treated at 1000° C. for 1 hour in pressurized air is shown. Patent applicant: Nippon Telegraph and Telephone Corporation No. 1 Figure 0 200 ge℃ 6■ &wa 1σka
Merit recognition processing room (°C) Fig. 2 (0) Fig. 3 Hou l and private (°C) Fig. 4 Netsumari Unfriend ('C)

Claims (3)

【特許請求の範囲】[Claims] (1)Fe及びZn元素を含む磁性体超微粒子からなる
母材を、常圧あるいは減圧雰囲気下で800℃以上の温
度で熱処理することを特徴とする磁性体超微粒子の製造
方法。
(1) A method for producing ultrafine magnetic particles, which comprises heat-treating a base material made of ultrafine magnetic particles containing Fe and Zn elements at a temperature of 800° C. or higher in an atmosphere of normal pressure or reduced pressure.
(2)母材が共沈法で得られることを特徴とする特許請
求の範囲第1項記載の磁性体超微粒子の製造方法。
(2) The method for producing ultrafine magnetic particles according to claim 1, wherein the base material is obtained by a coprecipitation method.
(3)熱処理が不活性ガス雰囲気あるいは大気雰囲気下
で行われることを特徴とする特許請求の範囲第1項記載
の磁性体超微粒子の製造方法。
(3) The method for producing ultrafine magnetic particles according to claim 1, wherein the heat treatment is performed in an inert gas atmosphere or an air atmosphere.
JP62010043A 1987-01-21 1987-01-21 Method for producing ultrafine magnetic particles Expired - Fee Related JPH07115876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62010043A JPH07115876B2 (en) 1987-01-21 1987-01-21 Method for producing ultrafine magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62010043A JPH07115876B2 (en) 1987-01-21 1987-01-21 Method for producing ultrafine magnetic particles

Publications (2)

Publication Number Publication Date
JPS63179001A true JPS63179001A (en) 1988-07-23
JPH07115876B2 JPH07115876B2 (en) 1995-12-13

Family

ID=11739367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010043A Expired - Fee Related JPH07115876B2 (en) 1987-01-21 1987-01-21 Method for producing ultrafine magnetic particles

Country Status (1)

Country Link
JP (1) JPH07115876B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161008A (en) * 1979-05-31 1980-12-15 Toda Kogyo Corp Production of needle-like crystaline fe-zn alloy magnetic particle powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161008A (en) * 1979-05-31 1980-12-15 Toda Kogyo Corp Production of needle-like crystaline fe-zn alloy magnetic particle powder

Also Published As

Publication number Publication date
JPH07115876B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
EP0717397B1 (en) Spindle-shaped magnetic ironbased alloy particles containing cobalt and iron as the main ingredients and process for producing the same
DE19707754A1 (en) Production of magnetic alloy particles
JPH09295814A (en) Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production
US5552073A (en) Ferromagnetic fine particles of ε iron carbide and method for producing the same
JPS63179001A (en) Production of hyper-fine particle of magnetic material
US4576635A (en) Process for producing ferromagnetic metal powder
JP5418754B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
US4272285A (en) Process for producing magnetic metal powders
EP0326165A2 (en) Iron Carbide fine particles and a process for preparing the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JPH0777963B2 (en) Method for producing ultrafine magnetic particles
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JP3087778B2 (en) Method for producing acicular goethite particle powder
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP3011221B2 (en) Method for producing acicular goethite particle powder
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JPH03253505A (en) Production of ferromagnetic metal powder
JPS607105A (en) Manufacture of magnetic powder
JPH07126704A (en) Metal magnetic particle powder essentially consisting of iron and having spindle shape and its production
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS6172628A (en) Production of goethite particle powder showing strip shape
JPH04132621A (en) Acicular ferromagnetic iron oxide powder and production thereof
JPH04357116A (en) Production of particle powder of needle-like goethite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees